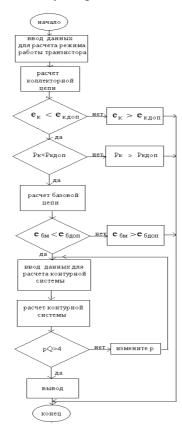
XXIX Неделя науки СПбГТУ. Материалы межвузовской научной конференции. Ч.VI: С.15-16, 2001. © Санкт-Петербургский государственный технический университет, 2001. УДК 621.372.4.


А.В. Рехкайнен (6 курс, каф. РТТК), А.Я. Сергеев, к.т.н., доц.

МЕТОДИКА КОМПЬЮТЕРНОГО РАСЧЕТА ТРАНЗИСТОРНОГО ВЧ УСИЛИТЕЛЯ МОЩНОСТИ

Компьютерный расчет транзисторного ВЧ усилителя мощности (УМ) предназначен для использования в процессе подготовки и выполнения лабораторной работы "Исследование резонансного транзисторного ВЧ усилителя мощности" и должен осуществлять расчет режима работы транзистора в УМ и расчет выходной контурной системы.

Расчет УМ проводится исходя из условия получения заданной мощности в нагрузке, при этом в качестве исходных данных для расчета задаются: мощность в нагрузке усилителя, рабочая частота, напряжение источника коллекторного питания, высокочастотный угол отсечки коллекторного тока, сопротивление нагрузки усилителя, температура окружающей среды и параметры транзистора.

Программа расчета написана на языке программирования Turbo Pascal и работает по алгоритму, приведенному на рис.1.

В результате расчета коллекторной цепи определяются: амплитуда напряжения на коллекторе, амплитуда напряжения на нагрузке, мощность, подводимая к УМ от источника коллекторного питания, кпд коллекторной цепи, сопротивление приведенной к коллекторной цепи нагрузки, обеспечивающее получение заданной мощности и выбранного режима работы усилителя. Эти величины измеряются при помощи комплекса приборов, входящих в состав лабораторного макета, и т.о. имеется возможность сопоставления результатов расчета с экспериментальными данными. При расчете базовой

цепи определяются необходимое напряжение смещения и амплитуда напряжения входного сигнала, которые обеспечивают получение заданного режима. Полученые значения выставляются на лабораторном макете.

При расчете выходной контурной системы исходными данными являются: сопротивление приведенной к коллекторной цепи нагрузки, полученное из расчета коллекторной цепи, сопротивление нагрузки, рабочая частота, добротность ненагруженного контура, индуктивность контура. В результате расчета выходной контурной системы определяются значения элементов контурной системы, которые выставляются на лабораторном макете, а так же значение добротности нагруженного контура.

В итоге проведенной работы была разработана методика компьютерного расчета транзисторного ВЧ усилителя мощности, включая выходную контурную систему. В результате расчетов и проведенных экспериментов можно сделать вывод о том, что разработанная методика в целом хорошо согласуется с экспериментальными данными и может служить в качестве базовой в процессе подготовки и выполнения лабораторной работы.