ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ПЫЛЕУЛАВЛИВАНИЯ СОРБЦИОННО-ФИЛЬТРУЮЩИМИ МАТЕРИАЛАМИ ГРУППЫ КМ

г. Волгоград, Волгоградская государственная архитектурно-строительная академия

В технике пылеулавливания в качестве фильтрующих перегородок достаточно часто используются текстильные материалы. При очистке пылегазовых потоков, в состав которых входят токсичные газообразные соединения, целесообразно применять нетканые материалы, содержащие ионообменные волокна, которые способны улавливать как пылевые частицы, так и газообразные соединения.

Среди известных ионообменных волокон интерес представляют волокна группы КМ. Опыт практического применения текстильных материалов из этих волокон в технике пылегазоулавливания показал их высокую эффективность как по твердым частицам, так по кислым и основным газам.

Проведена оценка защитных свойств нетканых иглопробивных материалов из смеси анионообменного волокна КМ–А1 и катионообменного волокна КМ–К2 (поверхностная плотность 400г/м^2 , толщина слоя 4мм). По методу Кирша, Стечкиной и Фукса были определены коэффициенты захвата частиц отдельным волокном за счет сил касания (η_R^B), инерции (η_S^B) и диффузии (η_Z^B), а также фракционная эффективность реального фильтра с учетом его неоднородности (η_S^B). Расчет в сравнении с экспериментальными данными (улавливаемая пыльпыль цемента, $d_{50} = 2,8$ мкм) приведен в табл.1.

Расчет фракционной эффективности улавливания

Таблица 1

d	$\eta_R^{\;B}$	$\eta_{ m J}^{\ m B}$	η д+R	η_{St}^{B}	η_{Σ}^{B}	η,%	
$d_{\text{част.}}$						расчет.	эксп.
1.10-7	_	0,012	0,005	0,000	0,002 74	70,7	71,2
1 ·10-6	0,005	0,002	0,001	0,008	0,018	80,3	81,1
3 · 10	0,048	0,001 8	0,002	0,054 8	0,057	99,1	9,3
5 · 10	0,044 8	0,000	0,004	0,229 0	0,683 9	99,9	99,9

Для комплексной оценки способности материала улавливать твердые частицы были определены пылепроницаемость и пылеемкость. Коэффициенты пылепроницаемости и пылеемкости определяли по формулам:

$$\Pi_{\pi} = \frac{q_4}{q_1} 100, \quad \Pi_{Hb} = \frac{q_2}{q_1} 100.$$
:

где $q_4 = q_1 - (q_2 + q_3)$, г; q_1 – количество пыли перед фильтром, г; q_2 – количество пыли, оставшейся в фильтре, определяется как разность массы фильтра до и после испытания, г; q_3 – количество пыли, выпавшей перед фильтром, г; q_4 – количество пыли, проникшей через фильтр, г;

В табл.2 представлены результаты испытаний пылеемкости и пылепроницаемости ИВМ из волокон группы КМ по пыли стандартного шлифпорошка № 5 имеющего, следующий дисперсный состав: количество частиц с диаметром менее 3 мкм−62%, (3−5) мкм − 40%, (5−7) мкм−30%, (7−10)−6%. Анализ полученных данных показывает, что разработанные материалы обладают высокой эффективностью улавливания твердых частиц (d>3·10⁻⁶м), низкой пылепроницаемостью и высокой пылеемкостью.

Фракционная эффективность пылеулавливания, пылепроницаемость и пылеемкость материалов

№	Размер частиц						
вариан	менее 3 мкм			3–5 мкм			
та	η,%	Πп	Пе	η,%	Пп	Пе	
1	2	3	4	5	6	7	
3	87,2	0,123	18,8	94,3	0,067	22,0	
6	84,3	0,095	18,3	94,0	0,066	22,6	
10	83,9	0,123	18,8	94,3	0,064	22,4	
12	87,7	0,120	18,4	94,2	0,063	22,3	

Продолжение табл.2

No	Размер частиц							
ва-								
риан	5-7 мкм			7–10 мкм				
та	η,%	Пп	Пе	η,%	Пп	Пе		
1	8	9	10	11	12	13		
3	97,8	0,032	25,8	98,3	0,013	31,3		
6	97,7	0,025	26,3	98,3	0,013	31,3		
10	97,9	0,038	25,4	98,4	0,011	31,7		
12	97,8	0,023	25,2	98,6	0,012	31,3		

Примечание : по пыли шлифпорошка, $d_{50}=3.0$ мкм; $\sigma=3.0$; $\rho_{\pi}=4400$ кг/м 3 . Варианты: 3–иглопробивной материал, содержание КМ–К2 50%масс.,КМ–А1 50% масс.;6— иглопробивной материал, содержание КМ–К2 50%масс.,КМ–А2 50% масс.;10— двухслойный иглопробивной материал, 1слой–мегалон, второй– содержание КМ–К2 50%масс.,КМ–А1 50% масс.; 12— двухслойный иглопробивной материал, 1слой–мегалон, второй– содержание КМ–К2 50%масс.,КМ–А2 50% масс.