XXX Юбилейная Неделя науки СПбГТУ. Материалы межвузовской научной конференции. Ч. III: С. 17-18, 2002. © Санкт-Петербургский государственный технический университет, 2002.

УДК 621.226 (075.8)

М.В. Карцева (6 курс, каф. ГМ), Д.В.Черцинов (асп., каф. ГМ), А.А. Жарковский, к.т.н., доц.

БАЛАНС ПОТЕРЬ ЭНЕРГИИ И УТОЧНЕНИЕ РАСЧЕТА ГИДРАВЛИЧЕСКОГО КПД В НАСОСАХ ТИПА "К" И "НДВ"

Уточнив методику вычисления $\Delta \eta_{\text{мех,i}}$ и проверив ее на имеющихся экспериментальных данных, мы выделили гидравлический КПД ступеней из полного:

$$\eta_{\scriptscriptstyle c} = rac{\eta}{\eta_{\scriptscriptstyle o o} \eta_{\scriptscriptstyle Mex}} \, .$$

Был составлен баланс потерь по составляющим для насосов типа K, НДв, питательных. Внутренний механический КПД при этом вычислялся по разработанной нами уточненной методике. Анализ полученных результатов по выделению $\eta_{\Gamma}^{\ \ \ \ }$ представлен на рис. 1.

Из рис.1 следуют, что $\eta_{\scriptscriptstyle \Gamma}$ хорошо коррелируется по величине $D_{1np} \sim \sqrt[3]{\frac{Q}{n}}$. Однако в

пределах каждого типа насоса наблюдается зависимость от n_s . Характер и величина η_{Γ} для насосов различных типов: консольных (К), питательных и двустороннего всасывания (НДв) - разные. Одной кривой, расчитанной по формуле Ломакина А.А., описать η_{Γ} для всех типов насосов с различными величинами n_s нельзя. Так консольные насосы по величине η_{Γ} можно разбить на 2 группы: $n_s \le 110$, $n_s > 110$. Рассмотренные нами питательные насосы имеют незначительную разницу по n_s (90÷120) и ложатся на одну кривую (близкую по характеру к рассчитанной по методике Ломакина А.А.). Высоконапорные насосы двустороннего всасывания с низким n_s имеют свою резко отличающуюся зависимость η_{Γ} =f (D_{1np}) по сравнению с

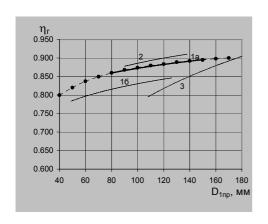


Рис. 1. Зависимость $\eta_r = f(D_{1пp})$ для насосов различных типов.

-•- - формула Ломакина А.А., 1а - насосы типа «К» ($n_s = 90$ -120), 1б - насосы типа «К» ($n_s = 60$ -90), 2 - питательные насосы, 3 - насосы типа НДв.

насосами типа "K"и питательными насосами. Это говорит о том, что для всех типов насосов нельзя подобрать единую зависимость. Зависимость Ломакина A.A. для η_Γ хорошо работает для консольных насосов с $n_s > 110$.

После выделения η_{Γ}^{9} была сделана попытка разделить η_{Γ} по элементам для ЦН разных типов (тип К и питательные насосы).

Величина $\Delta \eta_{\Gamma}^{pk}$ была выделена расчетным путем по методике кафедры гидромашиностроения СПбГТУ. Основным моментами этой методики, базирующейся на расчете пространственного пограничного слоя (ППС), были:

- а) наличие интенсивных вторичных течений (BT) на ограничивающих дисках рабочего колеса;
- б) наличие низкоэнергетической зоны (следа) у задней стороны лопасти, которая сильно загромождает межлопастной канал и оказывает существенное влияние как на величину потерь в каналах, так и на теоретический напор рабочего колеса (Нт).

Расчетные значения потерь КПД в РК $\Delta\eta_{_{\Gamma}}^{\ \ pk}$ и отводах $\Delta\eta_{_{\Gamma}}^{\ \ co}$ и $\Delta\eta_{_{\Gamma}}^{\ \ MKO}$, выделенные из гидравлического КПД ступени:

$$\Delta \eta_{\Gamma}^{\text{ OTBO} \Pi} = \Delta \eta_{\Gamma} - \Delta \eta_{\Gamma}^{\text{ pk}}$$

представлены в табл. 1.

Таблица 1 Выделение потерь в отводе для насосов типа "K" и питательных насосов

Насосы типа "К"							Питательные насосы					
Марка	n _s	D _{1пр} , мм	Эксперимент			Рас-	Мар- ка	n _s	D _{1пр} , мм	Эксперимент		
			$\Delta\eta_{\scriptscriptstyle \Gamma}$	$\Delta\eta_{\scriptscriptstyle \Gamma}^{\;\;p\kappa}$	$\Delta\eta_{\scriptscriptstyle \Gamma}^{\ co}$	$\Delta\eta_{\scriptscriptstyle \Gamma}^{\ co}$				$\Delta\eta_{\scriptscriptstyle \Gamma}$	$\Delta\eta_{\scriptscriptstyle \Gamma}^{\;\;p\kappa}$	$\Delta\eta_{\scriptscriptstyle \Gamma}^{\ \ MKO}$
1,5к-6	71	41	0,319	0,049	0,27	0.20	К500	122	138	0,087	0,057	0,03
2к-6	71	52	0,204	0,064	0,14	0.165	K500	123	138	0,09	0,05	0,04
3к-6	68	72	0,203	0,043	0,16	0.16	К500	122	138	0,105	0,054	0,05
4к-6	65	86	0,189	0,049	0,14	0.145	K500	123	138	0,08	0,05	0,03
2к-9	85	48,8	0,216	0,066	0,15	0.17	K500	123	138	0,08	0,05	0,03
3к-9	101	70	0,181	0,041	0,14	0.145	К300	109	100	0,114	0,074	0,04
4к-8	87	87	0,191	0,051	0,14	0.135	К300	114	100	0,132	0,072	0,06
6к-8	82	126	0,140	0,07	0,07	0.08	К300	114	100	0,145	0,075	0,07
4к-12	123	86	0,137	0,057	0,08	0.072	К800	109	100	0,107	0,077	0,03
6к-12	120	126	0,11	0,07	0,04	0.045	К800	103	100	0,101	0,071	0,03
8к-12	119	152	0,095	0,065	0,03	0.03	К800	112	130	0,102	0,062	0,04
4к-18	154	80	0,133	0,083	0,05	0.05						
8к-18	160	152	0,101	0,071	0,03	0.03						

Получены следующие закономерности для насосов типа "К":

- 1) потери в рабочем колесе (РК) с ростом n_s растут с 4 до 7%;
- 2) потери в спиральном отводе (СО) с ростом n_s падают с 20 до 3%;
- 3) суммарные потери с ростом n_s от 60 до 160 падают с 22 до 10%;

Для питательных насосов с пространственными лопастями рабочего колеса:

- 1) потери в рабочем колесе с ростом n_s падают с 7 до 5%;
- 2) потери в малоканальном отводе (МКО) с ростом n_s падают с 7,5 до 3%;
- 3) суммарные потери с ростом n_s от 60 до 160 падают с 12 до 8%;

При наличии решеток перед и за РК (промежуточные ступени) потери КПД меньше, чем в ступенях с осевым подводом и выходом в CO (консольные насосы) (см. табл. 1).

Проведенное разделение экспериментальных потерь $\Delta\eta_{\Gamma}$ на $\Delta\eta_{\Gamma}^{pk}$ и $\Delta\eta_{\Gamma}^{co}$ позволило уточнить полуэмпирическую методику расчета потерь и добиться достаточно хорошего совпадения расчетных и экспериментальных значений $\Delta\eta_{\Gamma}^{co}$. Подобное уточнение в дальнейшем будет произведено для МКО.