ХХХ Юбилейная Неделя науки СПбГТУ. Материалы межвузовской научной конференции. Ч. III: С. 22, 2002. © Санкт-Петербургский государственный технический университет, 2002.

УДК 621.226 (075.8)

Д.В.Калашников (6 курс, каф. ГМ), А.А.Жарковский, к.т.н., доц., В.Л. Плешанов к.т.н., доц.

ПРОЕКТИРОВАНИЕ ОТВОДА ЛОПАТОЧНОГО ТИПА ДЛЯ СТУПЕНИ ПИТАТЕЛЬНОГО НАСОСА НИЗКОЙ БЫСТРОХОДНОСТИ

Проектировались варианты ступени питательного насоса ПН-1135 с числом ступеней насоса i=6 ($n_s=89.5$). Рабочее колесо (V140128) было спроектировано на нижеследующие параметры: $Q_1=0,3968$ м³/с; $H_1=563$ м; n=5100 об/мин; $n_s=94,8465$; $\eta_\Gamma=0,895$; $\eta_{o6}=0,97$; $\eta_M=0,96$. Рабочее колесо имело следующие параметры: $D_2=0,402$ м; $d_{BT}=0,140$ м; $D_0=0,202$ м; $d_{BT}=0,028$ м; $d_{BT}=0,040$ м; $d_{BT}=0,004$ м; $d_{BT}=0,004$

Было проанализировано несколько вариантов канального отвода (см. табл.) с параметрами: $\alpha_3 = 9^\circ$; $D_3/D_2 = 1.03$; $b_3/b_2 = 1.17$; $D_4/D_2 = 1.4$. Каналы поворотного участка представляют собой часть единого канала МКО. Лучшим является МКО с $z_3 = 12$, $\alpha_{\text{рад.пл.}} = 4^\circ$, $\epsilon_{\text{мерид.пл.}} = 8^\circ$. Окончательный выбор варианта отвода будет произведен на основе расчета течения в аэродинамической и полной постановках в отводах обоих типов.

Таблица

Z_3	$lpha_{ ext{pad.}\pi\pi}$	Е мерид.пл.	n_p	$\Delta\eta_{ m MKO}$
8	0°	12°	1.903	7.46 %
10	0°	12°	1.948	7.26 %
12	0°	12°	1.976	7.19 %
8	8°	8°	2.488	7.05 %
10	8°	8°	2.861	6.67 %
12	8°	4°	2.652	5.84 %
12	12°	0°	2.505	5.82 %
12	4°	8°	2.53	5.55 %