ХХХІ Неделя науки СПбГПУ. Материалы межвузовской научной конференции. Ч. II: С. 117, 2003. © Санкт-Петербургский государственный политехнический университет, 2003.

УДК 699.865

О.Ю. Бовина (4 курс, каф. ПТЭ), В.Н. Черных, к.т.н., проф.

ВЛИЯНИЕ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА (УТЕПЛЯЮЩЕГО СЛОЯ) НА СНИЖЕНИЕ ТЕПЛОПОТЕРЬ ЧЕРЕЗ НАРУЖНЫЕ СТЕНЫ ЗДАНИЯ

Стремление снижения стоимости квадратного метра площади при интенсивном новом строительстве в начале 60-х годов XX века привело к тому, что ограждающие конструкции жилых зданий имели очень низкое термическое сопротивление теплопередаче и в итоге — большие теплопотери. Особенно велики были теплопотери через наружные стены: 35...60% от общего количества теплопотерь здания. Потери таковы, что при тепловизионных обследованиях стены светятся. Такая картина наблюдается, к сожалению, и у зданий более поздней постройки, в стенах которых имеется утепляющий слой. Последнее объясняется ошибками при проектировании и строительстве зданий.

«Экономное» строительство 60-х годов привело к тому, что теплопотери некоторых зданий превысили нормативные в 2...3 раза; и, чтобы не оставить дома без отопления, на одной из ТЭЦ Санкт-Петербурга пришлось срочно ставить водогрейные котлы.

Ряд исследований в жилищном секторе города показал, что на отопление одного квадратного метра расходуется в среднем 250 кВт·ч в год. У наших соседей в Финляндии – 130...150 кВт·ч на 1 кв. м в год.

С 1 января 2000 года действуют новые, повышенные требования по теплозащите зданий – нормы увеличены в 2...3 раза.

Выполнять такие требования возможно только при устройстве в наружных стенах теплоизолирующего слоя из материала с низкой теплопроводностью, что снизит теплопотери и даст экономию энергоресурсов.

В качестве теплоизоляции хорошо зарекомендовала себя минеральная базальтовая вата компании Rockwool (теплопроводность 0,036...0,039 Bt/(м·°C)).

Ее можно использовать в любых районах России при различных материалах стен. При толщине утепляющего слоя от 50 до 200 мм термическое сопротивление теплопередаче стены возрастает в 2,2...2,8 раза в зависимости от строительного материала и его толщины. При температуре наружного воздуха $t_H = -26^{\circ}\text{C}$ и внутреннего — в помещении $t_B = 20^{\circ}\text{C}$ температура внутренней поверхности наружной стены - 18,2 °C, что соответствет требованиям СНИП II-3-79 *(1998 г).