XXXII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.III : С 169-170 © Санкт-Петербургский государственный политехнический университет, 2004

УДК 621.762

Т.В.Минина (5 курс, каф. ПОМ), В.Н.Цеменко, д.т.н., проф., Р.А.Паршиков, асс., Б.В.Фармаковский, к.т.н., ст. науч. сотр. ЦНИИ КМ «Прометей»

ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ ДИСПЕРСНЫХ ПОРОШКОВ ИЗ АМОРФНЫХ СПЛАВОВ

Традиционные материалы исчерпали свой запас механических и физико-химических свойств и практически достигли предельно-возможных характеристик. Развитие новой техники и новых технологий делает необходимым использование новых материалов, обладающих повышенным уровнем физико-механических свойств. К таким материалам, относятся аморфные металлические сплавы. Материалы с аморфной структурой обладают значительным и еще невостребованным потенциалом свойств.

Наиболее рационально получать аморфные металлические сплавы в виде ленты, но для её дальнейшего использования, например, в виде покрытий, в большинстве случаев ленту необходимо подвергать механическому измельчению.

Цель данной работы - анализ изменения свойств и структуры порошка, полученного из аморфной ленты измельчением в дезинтеграторной установке, и выбор наиболее рационального режима измельчения порошка, предназначенного для нанесения функциональных покрытий.

Порошки аморфных сплавов получали на дезинтеграторной установке Д95. Показано, что наиболее перспективным методом получения аморфных порошков является ударно-активаторная технология дробления аморфной ленты. Высокоскоростная дезинтеграторная обработка является оптимальным методом получения аморфного порошка из аморфной ленты, т.к. обрабатываемый материал не загрязняется продуктами износа технологического оборудования, а также сохраняет аморфную структуру.

Куски аморфной ленты различной массы помещались в лабораторный дезинтегратор Д95 с перемешивающими цилиндрическими роторами, и производилось измельчение. Полученный порошок подвергался фракционному и рентгенографическому анализу.

Проанализировано изменение аморфной структуры порошка при измельчении в дезинтеграторе методом рентгенографического анализа. Рентгенограммы аморфного сплава 71КНСР, полученные до и после дезинтеграторной обработки, не показали ярко выраженных пиков, что свидетельствует о сохранении аморфной фазы и отсутствии кристаллической решетки в пределах погрешности рентгеновской установки.

Исследовано влияние скорости вращения роторов дезинтегратора и количества циклов измельчения на фракционный состав порошка аморфного сплава 71КНСР. В результате измельчения получены в основном частицы в виде пластин. Установлен оптимальный режим дезинтеграторной обработки аморфной ленты для получения аморфного порошка с целью его последующего использования для покрытий электромагнитной защиты, позволяющий при минимальных затратах средств и времени достигать максимального выхода необходимой фракции.

При ударно—дезинтеграторной активации могут иметь место локальные повышения давления и температуры. Благодаря этим локальным кратковременным разогревам, при трении частиц возможен синтез интерметаллических соединений вследствие механического сплавления. Но в настоящее время нет единого мнения о природе механохимического синтеза: является ли он твёрдофазным или проходит в жидкой фазе. Особенность веществ,

получаемых механохимическим методом, является их высокая дисперсность (наноразмерные частицы). Как влияет этот процесс на физико-химические свойства материала – задача будущих исследований.