XXXII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.III : С 177-178 © Санкт-Петербургский государственный политехнический университет, 2004

УДК 541.13

Л.А.Гейн (6 курс, каф. ТМЭТ), Л. А.Филатов, асс.

ПОЛУЧЕНИЕ ПЛЕНОК КАТАЛИЗАТОРА ДЛЯ ВЫРАЩИВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК

Высокие автоэмиссионные характеристики покрытий из углеродных нанотрубок (УНТ) позволяют их использовать в качестве материала катодов в вакуумных микролампах различного назначения. Для успешного применения материала требуется получение на плоских подложках вертикальных массивов УНТ. Такая задача решается с помощью CVDтехнологий, основанных на проведении реакции термохимического углеродсодержащих газообразных соединений на поверхности металлического катализатора. В качестве катализатора обычно используются пленки Ni, Co, Fe. Успешное зародышеобразование УНТ и их рост обеспечивают размеры и плотность зерен катализатора, размещенных на подложке. Основными требованиями к УНТ являются их однородность по высоте, диаметру, плотности расположения на поверхности, их гомофазность и вертикальность. В большой степени эти характеристики УНТ определяет морфология катализатора, которая становится ключевым параметром для осаждения УНТ. Диаметр УНТ и плотность их расположения на поверхности задаются размерами и плотностью зерен катализатора. Таким образом, основная проблема получения больших массивов УНТ связана с подготовкой поверхности подложки при помощи нанесения на нее одинаковых по размеру частиц катализатора с заданной плотностью.

В данной работе для получения пленок катализатора выбран дешевый и простой метод электрохимического осаждения. Подобный процесс легко контролировать (посредством контроля количества электричества, пропущенного через ячейку), что особенно актуально при нанесении слоев малой толщины (менее 5 нм), требуемой для рассматриваемого применения. Этот способ пока единственный, с помощью которого можно получать отдельно стоящие зерна катализатора с различной плотностью расположения по подложке, не прибегая к помощи различных видов литографии.

Используемая электролитическая ячейка содержала никелевый анод и кремниевую подложку используемую в качестве катода. Чтобы в течение зародышеобразования УНТ сократить взаимную диффузию между слоем катализатора и кремнием, на подложку вакуумно-термическим способом был нанесен подслой из титана или хрома (100 или 200 нм). В рассматриваемой системе эти металлы обладают хорошими барьерными для диффузии свойствами. Процесс осаждения контролировался при помощи генератора прямоугольных импульсов и осциллографа. Типичную плотность тока через ячейку поддерживали на уровне 50 мА/см2, время осаждения варьировали в пределах 20-1000 мс. Использовали хлористый электролит: 300 г/л NiCl₂·6H₂O, 30 г/л H₃BO₃. Большое значение для процесса электролитического осаждения Ni имеет показатель рН электролита, т.к. при рН<2 процесс не идет, а при рН>6 на катоде образуется слой Ni(OH)₂. В ходе работы рН электролита поддерживался на уровне 5. Морфология поверхности пленок катализатора анализировалась посредством атомной силовой микроскопии.

УНТ осаждали с помощью плазмохимического осаждения из газовой фазы (общее давлении 350 Па в системе реагентов C_2H_2 -NH3, газовый разряд постоянного тока имел параметры U=510 В и j=1 мA/см², температура осаждения 600°C). Полученные слои анализировали с помощью растровой электронной микроскопии.

В данной работе электролитическим способом были получены слои никеля разной толщины (0,2-50 нм). Пленки были гладкие и не способствовали формированию плотных массивов УНТ. Слои катализатора толщиной около 4 нм позволили синтезировать УНТ малого диаметра (менее 10 нм) с низкой плотностью по поверхности подложки. Для более успешного управления осаждением и структурой покрытий из УНТ необходимо существенно изменить морфологию никелевых пленок. Электрохимический способ осаждения для этого имеет много возможностей (например, варьирование плотностью тока, а также параметрами электролита: pH, температура, состав, концентрация реактивов).