ХХХІІ Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.ІІІ: С 193-194 © Санкт-Петербургский государственный политехнический университет, 2004

УДК 621.74

А.А.Шамахов (6 курс, каф. ФХЛСиП), В.М.Голод, к.т.н., проф.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ШЛАКОВОЙ ЧАСТИЦЫ В ЛИТЕЙНОЙ ФОРМЕ

Чтобы предотвратить брак отливок, необходимо задерживать неметаллические включения в литниковой системе. Чем выше требования, предъявляемые к отливкам, тем надежнее должна быть конструкция шлакоуловителей. Разработка основ конструирования и расчеты литниковых систем должны быть дополнены анализом условий движения частицы в потоке.

Для численного моделирования процесса движения шлаковой частицы в форме необходимо рассчитать на основе распределения скоростей в металле и уравнений сил, действующих на частицу, изменение скорости частицы и её траекторию.

В основу модели положен второй закон Ньютона:

$$\rho_{p} \times \frac{\pi}{6} \times d^{3} \times dU$$
 $dt = F_{g} + F_{f} + F_{d} + F_{A} + F_{p} + F_{L} + F_{h} + F_{e}$

где ρ_p – плотность частицы шлака; d_p – диаметр частицы; dU_p/dt – ускорение частицы; F_g – гравитационная сила; F_f – сила Архимеда; F_d – сила вязкого сопротивления; F_A – сила, учитывающая добавленную массу, H; F_p – сила, обусловленная градиентом давления в жидкости, окружающей частицу; F_L – сила Саффмана, вызванная поперечным градиентом скорости; F_h – сила Бассета, обусловленная отклонением течения от установившегося состояния; F_e – сила, приложенная со стороны внешнего потенциального поля.

Было выбрано несколько физических характеристик, оказывающих большое влияние на движение частицы (плотность частицы RO, диаметр частицы d и вязкость расплава mu).

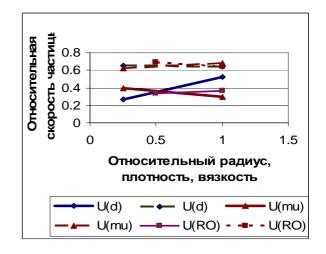


Рис.1 Зависимость скорости частицы от вязкости расплава, диаметра и плотности частицы

Производились расчёты, которые показали, что увеличение диаметра частицы с 0,0015 до 0,006 приводит к увеличению скорости частицы от 0,270 до 0,526; увеличение плотности с 2300 до 4600 также приводит к увеличению скорости шлаковой частицы от 0,333 до 0,363; а повышение вязкости расплава с 0,0039 до 0,0156 вызывает уменьшение скорости частицы от 0,398 до 0,295.

Кроме того производились расчёты с учётом силы Бассета. При этом были получены более высокие значения скоростей (пунктирная линия) (при увеличении диаметра частицы от 0,0015 до 0,006 значения скоростей 0,648 и 0,644; при увеличении плотности частицы от

до 4600-0,688 и 0,640; при увеличении вязкости расплава от 0,0039 до 0,0156-0,625 и 0,678 соответственно). Это говорит о необходимости рассмотрения этой силы при определении движения частицы.

Полученные в результате работы данные и сама модель могут использоваться при разработке литниковой системы, позволяющей значительно снизить количество шлаковых включений в теле отливки.