
 134

XXXII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.II : С.134-135
© Санкт-Петербургский государственный политехнический университет, 2004

УДК 681.3.07

M.Kosby (postgraduate student, Intelligent Systems Program),
M.V.Khloudova, PhD, associate prof.

PARALLEL FUNCTIONAL PROGRAMMING: ADVANTAGES AND CLASSIFICATIONS

Parallel programming is inherently harder than sequential programming. The exploitation of
parallelism is a long pursued – and not yet convincingly met – goal in programming. It appears to
be a contradiction between the efficient exploitation of parallelism and the simplicity of the
corresponding programs: the more control the language has on process management,
communication and synchronization aspects, the more complex and longer, and the less amenable
for reasoning, are the resulting programs written by programmers must not only describe what to
compute, but also how to organize the sub-computations on the target architecture. Imperative
parallel programming is a good example of this assertion. Contemporary functional languages have
three key properties that make them attractive for parallel programming:
a. Abstraction: Two important abstraction mechanisms are function composition and higher

order function. Function composition allows complex problems to be decomposed into
simpler sub-functions. Higher-order functions are ones that manipulate other functions, which
may be used to form the basis of new parallel programming constructs. Thus more efforts can
be devoted to improving parallel algorithms and experimenting with alternative
parallelization.

b. Elimination of unnecessary dependencies: the absence of side effects makes it relatively
straightforward to identify potential parallelism; the only source of sequential dependency is
that the arguments to a function must be evaluated before they can be used. Since the values
do not change once they have been computed, data flow analysis is not needed to determine
usage patterns, even at inter-procedural level.

c. Architecture independence: Good parallel abstractions encourage high level portability by
abstracting over lower level issues. At extreme case could even lead to implicit parallelism.
By using standards like PVM or MPI at runtime system level, languages can abstract over
architecture characteristics.
It is well known that functional languages offer, in principle, good opportunities for

parallelism exploitation due to the freedom they present in the evaluation order of their sub
expressions. In some sense, the implicit parallelism is too much. If we try to exploit all of it, then
we get a big number of very low granularity parallel activities, in such a way that the benefits of
parallelism are lost in creating and communicating processes. For this reason, most of the
approaches rely on the programmer to decide which expressions deserve the effort of creating a
parallel process for their evaluation. The differences between these approaches fall mainly in the
degree of explicitness they consider to be the appropriate one to deliver this information. From less
to more explicitness, we can classify the languages into the two following groups.

Transformational languages. In a parallel transformational system some inputs are
transformed into some outputs functionally depending on them. The whole purpose of parallelism is
to speed up the computation. The programmer supplements a purely functional program with
special expressions, either written as annotations interspersed in the text or provided as specialized
wiring functions, that directs the compiler about where and when processes should be created. The
semantics of the program with these specialized expressions is (almost) the same as the semantics

 135

of the program without them. The only difference is the order of evaluation of the subexpressions.
This group can be further classified into two subgroups: annotated languages – we classify here
languages such as Concurrent Clean and Glasgow parallel Haskell and skeleton based languages
and the language Caliban.

Reactive languages. Reactive systems are the opposite to transformational ones: usually for
them there are no clear notions of inputs and outputs or even of termination and the whole purpose
of parallelism is to maintain a set of separate tasks interacting with an external environment. Of
course, reactive constructs can also be used for the programming of parallel transformational
systems but the set of possible systems is wider than in the previous group. Non determinism
unavoidably appears in these systems and the referential transparency of functional languages is
lost.

Typically, languages in this group offer constructs not only for the creation of processes but
also for communicating and synchronizing them. In some sense, the resulting languages appear to
be a more or less successful combination of two languages: a functional one and a coordination one.
languages such as FACILE, Concurrent ML, Erlang, and Concurrent Haskell fall in this category.

Another classification proposed is on the approach the languages implement parallelism.
Skeleton based approach: Skeleton based approach defines a set of parallel templates or

skeletons. The programmer writes the program using these skeletons as appropriate. A parallelizing
compiler can then exploit the rules provided for each skeleton in order to produce an efficient
parallel implementation of the program on target machine. Languages falling in this category are
Parallel ML with skeletons (PMLS), Caliban SCL and P3L.

Process/Thread based approach. Thread based approaches to parallelism allows threads to be
created, but do not provide mechanisms to control those threads. Threads are thus managed entirely
under runtime-system control. In process based approaches, the language expose parallel tasks at
the language level. The programmer must manage the tasks using the control mechanisms provided
in the language. For example in Eden is explicit about process creation and about the
communication topology. The other languages that fall in the thread/ process based approaches are
Glasgow parallel Haskell and Concurrent Clean.

A even more recent approach is the data parallel functional language. the most successful is
NESL. Currently two data parallel extensions of Haskell have been partly implemented. Data field
Haskell and Nepal.

 136

