ХХХIII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.III: С.49, 2005. © Санкт-Петербургский государственный политехнический университет, 2005.

УДК 621.762.4

М.А.Ильин (асп., каф. МиТОМД), К.К.Мертенс, д.т.н., проф

ПРЕССОВАНИЕ СТУПЕНЧАТЫХ ДЕТАЛЕЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ ПРИ ПОМОЩИ ЭЛАСТИЧНЫХ СРЕД

Развитие современной техники существенно зависит от производства специальных материалов, обладающих заданными свойствами. Значительная роль в решении этой проблемы принадлежит порошковой металлургии, обладающей рядом преимуществ перед другими методами обработки материалов. Наибольшее распространение в промышленности получил способ холодного статического прессования в жестких пресс-формах. Однако таким способом можно получить только простые по форме и незначительные по габаритам детали. Расширение способов прессования увеличивает номенклатуру деталей из порошковых материалов.

Прессованием в жесткой пресс-форме сложно получить равноплотные детали типа стержня с широким фланцем, что может привести к искажению формы или разрушению детали при спекании. Неравноплотность получаемых деталей существенно зависит от отношения их высоты к диаметру. Анализ возможных способов изготовления данного типа деталей показал, что одним из наиболее эффективных способов является прессование с использованием эластичных сред (эластостатическое прессование).

Для определения возможностей эластостатического прессования были проведены эксперименты по получению деталей с фланцем из железного порошка ПЖ4-М2 ГОСТ 9849-79, медного ПМС-1 ГОСТ 4960-75 и керамического 94ВК-1. При проведении эксперимента варьировались отношение диаметров фланца и стержня D_{φ}/D_{c} в пределах 3...5, отношение высоты стержня к его диаметру H_{c}/D_{c} =2...4. Прессование осуществлялось на гидравлическом прессе усилием 1250кН. Давление прессования изменялось от 70 до 450Мпа.

В результате установлено, что данным способом прессования возможно получить равноплотные детали типа «стержень с фланцем». Средняя плотность изделий, полученных методом эластостатического прессования, оказалась примерно на 10% выше плотности деталей, полученных в жесткой пресс-форме при том же давлении. Разноплотность по высоте стержня и по диаметру фланца не превышает 6%, что позволяет спекать детали без их разрушения и образования трещин.

Высокая производительность процесса, сравнимая с производительностью при прессовании в жесткой пресс-форме, простота и дешевизна оснастки, возможность применения универсального оборудования, свидетельствует об экономической целесообразности использования эластостатического прессования для получения порошковых деталей сложной формы.