XXXIII Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции. Ч.XII: С.80, 2005. © Санкт-Петербургский государственный политехнический университет, 2005.

УДК 681.

Лю Шухуань (асп., каф. ТОИ), Л.С.Чечурин, к.т.н., доц.

РОБАСТНЫЙ РЕГУЛЯТОР ДЛЯ СИСТЕМЫ МАГНИТНОГО ПОДВЕСА

Для систем магнитного подвеса (СМП), которые имеют возможность обеспечить высокую скорость вращения ротора [1,2], одним из основных факторов неопределенности считается неизвестная скорость вращения. Действительно, в этом случае неизвестны ни гироскопический момент, НИ возмущения центробежными силами, вызванными эксцентриситетом ротора. При этом надо иметь в виду, что, как правило, помимо требования обеспечения устойчивости замкнутой системы с неопределенностями, необходимо обеспечить и допустимое качество управления - отклонения оси вращения никогда не должны превышать весьма малого зазора между магнитом и ротором. Таким образом, процесс синтеза робастного регулятора заключается в решении двух задач: выбора весовых функций и минимизации смешанного функционала.

В работе рассмотрена задача конструирования линейного робастного управления СМП при неопределенной скорости вращения и учете эксцентриситета. При моделировании неопределенности она представлена в виде аддитивного возмущения, а выбор скорости вращения основан на естественных ограничениях на неопределенность. Предложена методика сведения задачи синтеза оптимального по критерию робастности регулятора к стандартной H_{∞} проблеме. Для этого использован подход смешанной чувствительности, где, в отличие от других подходов, выбор весовых функций осуществлен из естественных ограничений на возмущения [3]. В том числе, построен функционал смешанного управления, обеспечивающий минимум H_{∞} нормы передаточной функции от возмущений к выходам.

Для решения проблемы сингулярной постановки задачи применена процедура асимптотической регуляризации.

Вычисленный в качестве примера регулятор гарантирует устойчивость замкнутой системы при минимизации радиуса номинальной орбиты при любой скорости вращения ротора p.

ЛИТЕРАТУРА:

- 1. R.Larsonneur, Design and Control of Active Magnetic Bearing System for High Speed Rotation, PhD Theis, Swiss Federal Institute of Technology, ETH Zurich, Switzer Land, June, 1988.
- 2. C.R.Knospe, R.W.Hope, S.J.Fedigan, and R.D.Williams. Experiments in the Control of Unbalance Response using Magnetic Bearings, Mechatronics, Vol. 5, No. 4, 1995, 385-400.
- 3. Kemin Zhou and John C.Doyle, Essentials of Robust Control, Pentice Hall, 1998.