XXXIV Неделя науки СПбГПУ. Материалы межвузовской научно-технической конференции.

Ч.IV: C.116-117, 2006.

© Санкт-Петербургский государственный политехнический университет, 2006.

УДК 539.17

Е.М.Маркина (5 курс, каф. ЭЯФ), А.Я.Бердников, к.ф.-м.н., доц.

ВКЛАД ГЛЮОНОВ В ОТНОШЕНИЯ СРЕДНИХ МНОЖЕСТВЕННОСТЕЙ АДРОНОВ, РОЖДЕННЫХ ИЗ КВАРК-ГЛЮОННОЙ ПЛАЗМЫ В УЛЬТРАРЕЛЯТИВИСТСКИХ СТОЛКНОВЕНИЯХ ТЯЖЕЛЫХ ИОНОВ

Отношение средних множественностей адронов, рожденных в столкновениях тяжелых ядер — один из признаков образования кварк-глюонной плазмы (КГП), поэтому понимание механизмов образования адронов важно (совместно с другими признаками) с точки зрения поиска и исследования КГП.

В данной работе в рамках термодинамической модели учтен вклад глюонов в процесс адронизации КГП.

Согласно коалесцентной модели коррелированных кварков [1,2] вклад глюонных степеней свободы должен быть одинаков для всех множественностей рождения адронов. Они могут быть записаны в виде:

$$N_h(\vec{q},T) = N_h^{ngl}(\vec{q},T) + C_g T^3 \exp(-\frac{q}{T}),$$

где $N_h^{ngl}(\vec{q},T)$ — множественность рождения \pmb{h} -адрона с импульсом \vec{q} при температуре \pmb{T} без вклада глюонных степеней свободы. Последний член в правой части уравнения относится к вкладу глюонных степеней свободы. Константа $\pmb{C}_{\pmb{g}}$ должна быть одинаковой для всех адронов.

Таблица 1. Теоретические значения величин отношений множественностей рождения адронов и результаты различных экспериментов по столкновению Au-Au.

	Теория	Эксперимент
π/π	fit	0.747±0.007±0.046 [Phenix]
$p/\pi^{^{+}}$	0.102±0.016	0.099±0.001±0.006 [Phenix]
$\frac{-}{p}/\pi^-$	0.079±0.017	0.075±0.001±0.004 [Phenix]
K^{-}/K^{+}	0.808 ± 0.018	0.933±0.007±0.054 [Phenix]
$\pi^{ extstyle -}\!/\pi^{\scriptscriptstyle +}$	0.968±0.001	0.984±0.004±0.057 [Phenix]
$K^{\!\scriptscriptstyle +}/\!\pi^{\!\scriptscriptstyle +}$	0.183±0.014	0.171±0.001±0.010 [Phenix]
K ⁻ /π ⁻	0.155±0.016	0.162±0.001±0.010 [Phenix]
$\Lambda / \overline{\Lambda}$	0.873 ± 0.004	0.74±0.01±0.04 [Star]
Ē/E	0.981 ± 0.003	$0.83\pm0.04\pm0.05$ [Star]
$ar{arOmega}/arOmega$	0.998 ± 0.001	0.95±0.15±0.05 [Star]
$(ar{\Xi}/\!\Xi)/(ar{\Lambda}/\!\Lambda)$	1.13±0.006	1.17± 0.11 [Star]
$(ar{arOmega}/\Omega)/(ar{arDelta}/arSigma)$	1.01±0.008	1.14±0.21 [Star]
p/K^+	0.558 ± 0.007	
p/K ⁻	0.516±0.014	
Λ/π^-	0.088 ± 0.001	
$\overline{\Lambda}/\pi^-$	0.078±0.001	

Используя экспериментальное значение отношения $\frac{\bar{p}}{p}$ [3], теоретическое значение

множественности для антипротонов и протонов, сосчитанное в [1], и учитывая возможное рождение протонов и антипротонов вследствие сильного распада $\Delta(1232)$ и $\overline{\Delta}(1232)$ резонансов, можно сделать оценку константы C_g . Она оказывается равной $C_g = (1.68 \pm 0.41) \cdot 10^{-9} \ MэB^{-3}$. В рамках модели термализованной кварк-глюонной системы рассчитываются отношения множественностей (табл. 1).

Усовершенствованная коалесцентная модель коррелированных кварков хорошо описывает экспериментальные данные по рождению адронов в экспериментах RHIC BNL USA. Сильные резонансные распады адронов вносят значительный вклад в отношения средних множественностей рождения адронов из термализованной КГП при высоких энергиях.

ЛИТЕРАТУРА:

- 1. A.Ya.Berdnikov, Ya.A.Berdnikov, A.N.Ivanov, V.A.Ivanova, V.F.Kosmach, V.M.Samsonov, N.I.Troitskaya. e-Print Archive: hep-ph/0005205v2, April 23, 2001.
- 2. Berdnikov A.Ya., Berdnikov Ya.A., Ivanov A.N., Kosmach V.F., Samsonov V.M., Troitskaya N.I. Acta Physica Slovaca 2002. V.52. № 3. P.143-160.
- 3. S.S.Adler, et al. PHENIX Collaboration. nucl-ex/0307022(2003).