ПОЛЯРИЗАЦИОННЫЕ СВОЙСТВА Ω^- – ГИПЕРОНОВ, РОЖДАЮЩИХСЯ В КВАРК-ГЛЮОННОЙ ПЛАЗМЕ

Цель работы — проанализировать поляризационные свойства Ω^- – гиперона в моде распада $\Omega^- \to \Lambda^0 K^-$, а также поляризационные свойства Ω^- – гиперонов, рождающихся из кварк–глюонной плазмы.

Теоретический анализ поляризационных свойств Ω^- – гиперона как в лабораторной системе, так и системе покоя является актуальной проблемой в связи с теоретическими и экспериментальными исследованиями механизма рождения Ω^- – гиперонов, странных барионов и K – мезонов в высокоэнергетических столкновениях тяжелых ионов. Экспериментально Ω^- – гиперон детектируется по его модам распада. Основной модой распада Ω^- – гиперона является мода $\Omega^ \to$ Λ^0 K^- . Вероятность этого распада (68.7 \pm 0.7)%.

В работе получена вероятность распада $\Omega^- \to \Lambda^0 K^-$ (в состоянии с проекцией спина $\sigma = +3/2$) в зависимости от поляризации барионов

$$B(\Omega^- \to \Lambda^0 K^-)|_{\sigma=+3/2,s=+1/2} = \frac{1}{2} (1 + o_{\Lambda^0} \cdot o_{\Omega^-})$$

В силу сохранения полного момента количества движения, вероятность $B(\Omega^- \to \Lambda^0 K^-)|_{\sigma=+3/2,s=+1/2}$ максимальна, когда оси квантования спинов ξ_{Λ^0} и ξ_{Ω^-} параллельны. Вероятность обращается в нуль для антипараллельных осей квантования спина, поскольку данный случай запрещен законом сохранения полного момента количества движения.

Вычислено также импульсное распределение множественности Ω^- – гиперонов, рожденных из термализованной КГП. Для состояний с проекциями спина:

$$E_{\mathbf{k}} \frac{d^{3} N_{\Omega^{-}}(\mathbf{k})}{d^{3} k} \propto \frac{E_{\mathbf{k}}^{2} T^{5}}{e^{E_{\mathbf{k}}/T} + 1} \left(1 - \frac{(\mathbf{k} \cdot \boldsymbol{\xi}_{\Omega^{-}})^{2}}{E_{\mathbf{k}}^{2}} \right) \begin{vmatrix} \sigma_{\Omega^{-}} = \\ \pm 3/2 \end{vmatrix} = \frac{1}{2} \left(E_{\mathbf{k}} \frac{d^{3} N_{\Omega^{-}}(\mathbf{k})}{d^{3} k} \right) \propto \frac{1}{3} \frac{E_{\mathbf{k}}^{2} T^{5}}{e^{E_{\mathbf{k}}/T} + 1} \left(1 + 3 \frac{(\mathbf{k} \cdot \boldsymbol{\xi}_{\Omega^{-}})^{2}}{E_{\mathbf{k}}^{2}} \right) \end{vmatrix} = \frac{\sigma_{\Omega^{-}}}{\pm 1/2}$$

показано, что Ω^- -гипероны, рождающиеся в ультрарелятивистских столкновениях тяжелых ионов, могут быть поляризованными.

Рождение поляризованных Ω^- –гиперонов обусловлено ненулевым квадрупольным моментом. Данная особенность частиц со спином 3/2 отличает Ω^- гипероны от Λ^0 –гиперонов, которые рождаются неполяризованными.

Показано также, что если спин Ω^- –гиперона параллелен или антипараллелен импульсу, то в этом случае преимущественно рождаются Ω^- –гипероны с проекцией спина $\sigma=\pm 1/2$. В случае, когда спин Ω^- –гиперона ортогонален импульсу, то преимущественно рождаются Ω^- –гипероны с проекцией спина $\sigma=\pm 3/2$.

Таким образом, рождение поляризованных Ω^- -гиперонов из термализованной КГП может привести к появлению поляризованных Λ^0 -гиперонов, ($\Omega^- \to \Lambda^0 {\rm K}^-$). Это предполагает, что детектирование поляризованных Λ^0 -гиперонов, рожденных в ультрарелятивистских столкновениях тяжелых ионов, не означает отсутствие КГП в промежуточном состоянии.