ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ЗАДАЧ ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА

Одним из основных принципов внедрения информационных технологий в практику является использование широко распространённых и доступных, а не специализированных, программных продуктов. При данном подходе, в рамках ГИС систем, пользователи получают возможность самостоятельно добавлять, обновлять, корректировать информацию о том или ином водном объекте, а также создавать новые тематические карты. Примером такой работы является справочная база гидрологических, гидрохимических и гидробиологических данных (БД) по водным объектам Санкт-Петербурга и Ленинградской области в формате MS Access, разрабатываемая в Санкт-Петербургском государственном политехническом университете.

Справочная база данных состоит из следующих частей:

- 1) базовая информация об объектах исследования: название, местоположение объекта, расположение створов и вертикалей;
- 2) информация справочной БД, обрабатываемая в программе MS Access, содержит сведения о пространственном местонахождении точек отбора проб и результатах обработки тематических данных за фиксированные промежутки времени;
- 3) статистическая обработка данных производится в MS Access с помощью согласования всех информационных таблиц (рис. 1), включённых в базу данных. Сформировав запрос, пользователь имеет возможность получить интересующую его информацию по каждому объекту в отдельности или по нескольким объектам одновременно в табличной или графической форме за определённый промежуток времени (рис. 2).

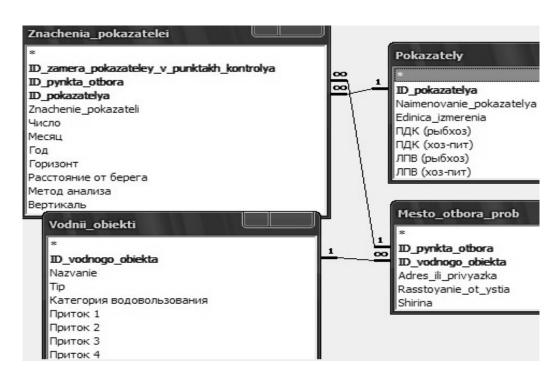


Рис. 1

Черная : запро	ос на выборку				
Nazvanie	Adres_ili_privyazka	Naimenovanie_pokazatelya	Znachenie_pokazateli	Месяц	Год
Чёрная	р. Чёрная (мост)	УЭП	0,029	август	2005
Чёрная	р. Чёрная (мост)	Кислотность	0,14	март	2006
Чёрная	р. Чёрная (мост)	Щелочность	1,58	март	2006
Чёрная	р. Чёрная (мост)	Гидрокарбонаты	87,84	март	2006
Чёрная	р. Чёрная (мост)	Хлориды	10,7	март	2006
Чёрная	р. Чёрная (мост)	Сульфаты	26	март	2006
Чёрная	р. Чёрная (мост)	Жесткость общая	0,72	март	2006
Чёрная	р. Чёрная (мост)	Кальций	9,6	март	2006
Чёрная	р. Чёрная (мост)	Магний	3,12	март	2006
Чёрная	р. Чёрная (мост)	Перманганатная окисляемость	12	март	2006
Чёрная	р. Чёрная (мост)	Цветность	34	март	2006
Чёрная	р. Чёрная (мост)	Мутность	174	март	2006
Чёрная	р. Чёрная (мост)	Запах	2	март	2006
Чёрная	р. Чёрная (мост)	Пенистость	-	март	2006
Чёрная	р. Чёрная (мост)	Азот нитритный	0,006	март	2006
Чёрная	р. Чёрная (мост)	Азот аммонийный	0,3	март	2006
Чёрная	р. Чёрная (мост)	Азот нитратный	1	март	2006
Чёрная	р. Чёрная (мост)	Ортофосфаты	0,2	март	2006
Чёрная	р. Чёрная (мост)	Железо	0	март	2006

Рис. 2

База данных позволяет решать следующие задачи:

- сбор информации, её первичная обработка и хранение в электронном виде;
- добавление новых и обновление существующих данных;
- визуализация статистической информации;
- представление информации в удобном для пользователя виде;
- разработка элементов интерфейса для удобства конечного пользователя (ведётся в данный момент);
- автоматизация ряда аналитических операций;
- экспортирование данных в ГИС.

ЛИТЕРАТУРА:

- 1. Алексеев В.В., Куракина Н.И., Орлова Н.В. Геоинформационная система мониторинга водных объектов и нормирования экологической нагрузки // журнал ArcReview. 2006-№1(36)
- 2. Коровёв П.Г. Применение задач теории расписаний для проектирования измерительных систем. СПб: Известия ГЭТУ, сб. научных трудов 1994 г. с. 36-40.