## ПУЛЕНЕЦ Николай Евгеньевич

# РОТОРЫ ИСПЫТАТЕЛЬНЫХ ЦЕНТРИФУГ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ВОСПРОИЗВЕДЕНИЯ БОЛЬШИХ УСКОРЕНИЙ

Специальность 05.02.02 – Машиноведение, системы приводов и детали машин

Автореферат диссертации на соискание ученой степени кандидата технических наук Работа выполнена в государственном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный политехнический университет»

Научный руководитель: доктор технических наук, профессор

Дьяченко Владимир Алексеевич

Официальные оппоненты: доктор технических наук, профессор

Каразин Владимир Игоревич

кандидат технических наук, доцент

Балашов Алексей Леонидович

Ведущая организация: ОАО «ВНИИ Трансмаш»

Защита состоится «15» мая 2007 г. в 16 часов на заседании диссертационного совета Д 212.229.12 при ГОУ ВПО «Санкт-Петербургский государственный политехнический университет» по адресу: 195251, Санкт-Петербург, Политехническая ул., д.29, 1-й учебный корпус, ауд. 41.

С диссертацией можно ознакомиться в фундаментальной библиотеке ГОУ ВПО "Санкт-Петербургский государственный политехнический университет".

Ваши отзывы на автореферат диссертации (2 экз., заверенные печатью учреждения) просим отправлять по адресу 195251, Санкт-Петербург, Политехническая ул., д.29, ГОУ ВПО «СПбГПУ», ученому секретарю диссертационного совета Д 212.229.12.

Автореферат разослан «\_\_\_\_» апреля 2007 г.

Ученый секретарь диссертационного совета Д 212.229.12 кандидат технических наук, профессор

May

Евграфов А.Н.

#### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

**Актуальность темы диссертации**. Известно, что применимость различных разрабатываемых технических средств определяется по результатам испытаний, виды и типы которых устанавливаются стандартами, а конкретное содержание программ испытаний и режимов применительно к конкретным объектам испытаний различных классов определяется нормативными документами различных уровней.

Задачи оценки предельных возможностей при создании роторов различных конфигураций актуальны для испытательных центрифуг, однако проработки в этом направлении немногочисленны. Можно отметить только диссертацию Г.А.Дуброва и его публикации.

Значительный вклад в теорию и практику проектирования роторных XX60-80 века внесли ученые Ленинградского стендов ГΓ. политехнического института (ныне СПбГПУ): Г.А.Смирнов, В.А.Дьяченко, Ал.Н.Тимофеев, Ан.Н.Тимофеев, В.И.Каразин, С.А.Ковчин и др. Из других российских коллективов следует отметить специалистов Владимирского государственного университета.

Основной объем исследований приходится на динамику колебаний. Из работ последних двух десятилетий в первую очередь следует отметить Б.Ф.Шорра, монографии И.А.Биргера, Г.Б.Иосилевича, А.В.Левина, Е.Д.Консона, А.С.Кельзона, К.Н.Боришанского, Ю.П.Циманского, В.И.Яковлева. Колебания роторов исследовались работах И.И.Вульфсона, В.Л.Вейца. В этих источниках основное внимание уделяется расчету собственных частот, на которых возможны резонансы, и свободных колебаний, соответствующих форм оценкам влияния динамических небалансов, статических И построению процедур балансировки, анализу возможностей снижения уровней резонансных колебаний и ухода от резонансов, анализу процессов прохождения через резонансы и т.д.

Теоретической основой для расчета роторов стендов рассматриваемого типа следует считать теорию быстро вращающихся

роторов, которая основывается на общих уравнениях динамики твердого тела и теории колебаний. В прикладных аспектах эта теория развивалась в значительной мере применительно к турбомашинам, турбогенераторам, компрессорам и пр. Наиболее сложные модели рассматривались для валов с дисками, на которых закреплены лопатки, имеющие сложную геометрию.

В настоящее время имеется потребность в центрифугах, которые способны создавать очень большие линейные ускорения  $60000 \text{ м/c}^2$ ), тогда необходимо «выжимать» из конструкций все предельные возможности, при условии сохранения прочности ротора. При этом наиболее простые конструктивные решения часто оказываются неудовлетворительными. Рассматриваемые в этой диссертации роторы центрифуг в качестве объектов проектирования, в отличие от роторов большинства других машин, обладают той особенностью, что при задании в технических требованиях максимального ускорения и желаемого радиуса установки испытуемого объекта в принципе допускаются широкие пределы варьирования общих форм и отдельных элементов ротора. Поэтому после анализа возможностей удовлетворения в принципе требованиям по ускорению и радиусу ротора необходимо проводить сопоставительный анализ большой совокупности возможных вариантов конструкций, рассчитываемых по различным расчетным моделям и при использовании разнообразных средств анализа. Подобные комплексные исследования до сих пор не проводились.

Для комбинированных сложных конструкций, в которых некоторые узлы заданы, а на параметры других налагаются различные ограничения, как правило, не находятся аналитические решения. Соответствующие задачи расчета прочности и деформаций решаются методом конечных элементов на компьютере при использовании специального программного обеспечения, такого как CosmosWorks, AnSys, ProEngineer и др.

Однако, несмотря на то, что конструкции роторов центрифуг не относятся к категории самых сложных деталей машин, представляет

трудности преимущественно подробный содержательный анализ результатов. Подобные работы до сих пор не проводились.

Вследствие этого тема данной диссертации, посвященной исследованию различных типов и конфигураций роторов и разработке комплекса обоснованных рекомендаций при проектировании роторных стендов, — испытательных центрифуг - предназначенных для воспроизведения больших ускорений, является актуальной.

**Целью работы** данной диссертации является разработка методик оценки предельных возможностей и обоснованного выбора роторов испытательных центрифуг, предназначенных для воспроизведения больших линейных ускорений, обобщение и развитие методик расчета их прочностных характеристик.

Для достижения указанной цели в диссертации поставлены и решены следующие основные задачи:

- систематизация требований к механическим характеристикам испытательных центрифуг и их роторов;
- анализ возможных схемных и конструктивных решений роторов испытательных центрифуг, их классификация, формулировка предложений по новым конструкциям высоконагруженных роторов;
- построение расчетных схем основных вариантов высоконагруженных роторов испытательных центрифуг, обобщение и развитие методик их расчета; разработка рекомендаций по выбору их основных параметров;
- вывод и обоснование критерия оценки предельных возможностей роторов центрифуг, предназначенных для воспроизведения больших ускорений, исходя из условий обеспечения заданных запасов прочности;
- формулирование требований к устройствам крепления испытуемых изделий на роторе центрифуги, обоснование и постановка задачи их силового и контактного взаимодействия;

- применение разработанных в диссертации методик оценки предельных возможностей и расчета конструкций роторов испытательных центрифуг при разработке роторного стенда ПЦ-14 «Энергия».

На защиту выносятся следующие основные положения:

- развитие методик расчета стержневых и осесимметричных роторов центрифуг и вывод критерия предельных возможностей, обеспечивающего определение граничных значений областей функционирования роторов центрифуг;
- обоснование и постановка задачи разработки методик расчета и проектирования устройств крепления испытуемых изделий на роторе центрифуги с учетом их силового контактного взаимодействия;
- применение методик расчета, проектирования и оценки предельных возможностей роторов испытательных центрифуг на примере центрифуги ПЦ-14 «Энергия».

Внедрение полученных в диссертации результатов осуществлено в плане анализа технических требований, предварительного и окончательного расчета вариантов конструкции ротора испытательной центрифуги ПЦ-14 «Энергия». Обоснованность и достоверность основных положений, выводов и рекомендаций подтверждается результатами их практического использования при доработке и испытаниях центрифуги ПЦ-14 «Энергия».

**Методы исследования.** Геометрические, кинематические, силовые, прочностные и динамические характеристики роторов исследовались с использованием методов аналитической геометрии, теории механизмов и машин, теоретической и аналитической механики, методом конечных элементов (*CosmosWorks*). При расчетах были использованы также пакеты математических вычислений «*Maple*» и «*MathCad*».

### Научная новизна диссертации заключается в следующем:

- установлено, что для роторов испытательных центрифуг предельные режимы, устанавливаемые из условий прочности,

определяются произведением максимального ускорения a на радиус ротора R или окружной скоростью V;

- показано, что существует единый, устанавливаемый из условий прочности, критерий достижимости предельных режимов для разных схем несущих частей роторов в виде стержней (балок), дисков постоянного или переменного сечений, или колец;
- для многопозиционных стендов целесообразно использовать конструкцию с кольцевым, бесцентровым кусочно-дуговым ротором; чтобы избежать его изгиба протяженные кусочно-дуговые участки должны иметь определенную форму в виде многоугольника с криволинейными сторонами, позволяющую избежать их изгиба; определены пути построения решетчатых конструкций;
- для типовых элементов роторов, работающих на растяжение и на изгиб, получены условия, при которых можно пренебрегать изгибом;
- для типовых принципиальных решений установочных устройств для базирования и закрепления испытуемых объектов сформулированы и формализованы задачи расчета прочности и предложены пути построения соответствующих математических моделей.

Практическая ценность работы заключается в том, что в ней предложены И обоснованы критерии, позволяющие при анализе технических требований на испытательные центрифуги, предназначенные для воспроизведения больших перегрузок, оценивать принципиальную возможность их создания, а при установленной возможности реализации – обоснованно выбирать конструктивные схемы И затем проводить необходимые расчеты конструкции ротора и его элементов на прочность и определять его деформации.

Апробация работы и публикации. Основные положения диссертационной работы докладывались на научно-технических конференциях СПбГПУ в 2005 и 2006 гг., на семинарах кафедры «Автоматы» СПбГПУ, а также на IV международной научно-практической

конференции СПбГПУ в 2006г. По результатам диссертационной работы опубликовано 6 печатных работ.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и списка использованной литературы. Список использованной литературы содержит 121 наименование. Общий объем диссертации 168 страниц, в тексте имеется 91 рисунок и 10 таблиц.

### СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулированы цель и задачи исследования, а также основные положения, выносимые на защиту, приведен краткий обзор содержания диссертации по главам. Основной материал диссертации распределен по четырем главам.

В первой главе проведен конструктивный и функциональнопараметрический анализ роторов центрифуг, исследованы методы их расчета выявлены основные недостатки. Определено И место испытательных центрифуг в классе машин с быстро вращающимся Приведены сведения из истории разработки центрифуг различного назначения, в том числе и технологических. Особое внимание обращено на сведения о разработках в рассматриваемой области, выполненных в ЛПИ (СПбГПУ), в частности, на кафедре «Автоматы» в 60 - 80 гг. Отмечено, что при большом числе публикаций по различным аспектам данной тематики, вопросы расчета и проектирования роторов центрифуг проработаны недостаточно, особенно в плане выявления их потенциальных возможностей. Многообразие возможных схемных решений представлено в виде классификационной схемы (рис.1), разработанной автором.

Далее в этой главе проанализированы типовые требования, предъявляемые к испытательным центрифугам, из которых в качестве основных выделены требования к величине радиуса R установки



Рис.1. Классификационные признаки роторов центрифуг

объекта, испытуемого ПО диапазонам угловой скорости И воспроизводимого ускорения a, по прочности, по точности и ограничения на увеличение радиуса. В связи со спецификой темы диссертации, особое внимание уделено выявлению предельных возможностей роторов при совместном учете требований к прочности и параметрам режимов испытаний. Детально проанализирована специфика требований испытательным центрифугам и выявлены вытекающие из этих требований особенности принципиальных и конструктивных решений центрифуг в целом, их роторов и основных узлов. В заключение главы формулируются задачи научных исследований, представленных в диссертации.

**Вторая глава** посвящена разработке методик расчета роторов центрифуг в тех случаях, когда ротор реализуется в виде прямолинейной и работающей только на растяжение радиальной балки, несущей на конце устройство для установки и закрепления объекта испытаний. Рассмотрены

случаи постоянного, ступенчато или линейно изменяющихся сечений ротора. Во всех случаях одинаковы постановка, схема решения задач, совокупность ограничений, используемые критерии и методология анализа результатов. Считаются задаваемыми радиус R установки объекта и максимальное ускорение a, показано, что эти два требования сводятся к одному требованию на их произведение или на ограничение максимальной окружной скорости V испытуемого объекта.

Уравнение для силы растяжения, обусловленной распределенными и сосредоточенными центробежными силами, изменяющимися по радиусу имеет вид

$$dF = -S(r)\rho r\omega^2 dr$$

где S(r) – площадь сечения, в общем случае изменяющаяся по радиусу,

 $\rho$  – плотность материала.

При r = R задается граничное условие F:

$$F(R) = m_0 a ,$$

где  $m_0$  — масса испытуемого объекта вместе с массой установочного устройства.

При постоянном сечении по заданному допускаемому напряжению определяются площади сечений

$$S_{\min} = \frac{am_0}{\sigma_{\partial on}} \cdot \left(1 - \frac{a\rho R}{2\sigma_{\partial on}}\right)^{-1},$$

а затем и массы несущей части ротора (стержня) и его удлинение. Рассмотрены случаи постоянного сечения, сечения, изменяющегося по радиусу ступенчато и линейно. Показано, что критерий реализуемости имеет вид

$$\psi = \frac{a\rho R}{2\sigma_{\partial on}} < 1.$$

Таким образом, доказано, что во всех случаях имеет место жесткое

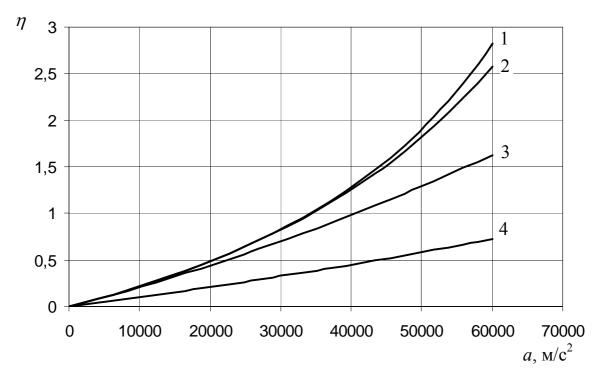



Рис.2. Зависимость отношения масс ротора и объекта испытаний от воспроизводимого ускорения

1 – постоянная площадь сечения; 2 – ступенчато-изменяющаяся площадь сечения;

3 - линейно-изменяющаяся площадь сечения; 4 - стержень равного сопротивления

ограничение на произведение радиуса R на ускорение a или, что тоже самое, на окружную скорость V; уровень ограничения пропорционален отношению допускаемого напряжения  $\sigma_{\partial on}$  материала к его плотности  $\rho$ . По мере приближения к ограничению ( $\psi = 1$ ) потребная масса  $m = \rho R \int S(r) dr$  ротора растет, графическая интерпретация зависимости отношения массы ротора к массе испытуемого изделия  $\eta = m/m_0$  для постоянной (1), ступенчато (2) и линейно изменяющейся (3) площади сечения представлены на рис.2.

Рассматривается также случай балки равного сопротивления (на рис.2 кривая 4), для которой строгое ограничение на произведение радиуса и ускорения отсутствует. Однако при увеличении указанного произведения  $(V^2 = (aR)^2)$  выше определенного уровня требуемая масса ротора начинает

быстро расти. В заключение главы рассмотрены задачи расчета ротора с конструкцией параллельных стержней, которые помимо растяжения подвергаются также и изгибу. Получены ограничения по прочности на подобные конструкции.

**Третья глава** посвящена разработке методик расчета основных характеристик несущих частей многопозиционных роторов центрифуг в тех случаях, когда ротор реализуется по нетрадиционным схемам, а также установочных устройств. Из нетрадиционных схем с точки зрения полноты исследования представляет особый интерес кольцевая бесцентровая схема; в этом случае центральный шпиндель отсутствует, а приводной двигатель располагается по кольцу. Объекты испытаний устанавливаются равномерно по окружности (рис.3).

Показано, что для устранения изгиба элементов контур кольца должен представлять собой многоугольник со сторонами определенной кривизны, в соответствии с разработанной методикой определены пути построения решетчатых конструкций (рис.4). В заключение главы рассмотрены задачи анализа условий работы устройств для установки испытуемого объекта. Рассмотрены различные случаи взаимодействия испытуемого объекта и установочной плиты, предложены пути устранения его деформации при изгибе установочной плиты.

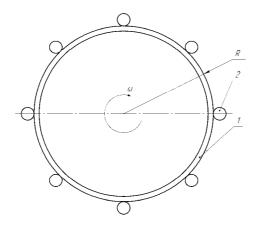



Рис.3. Кольцевой ротор

1 – кольцевой ротор, 2 – испытуемое изделие

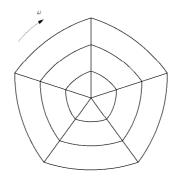



Рис. 4. Решетчатая конструкция ротора, исключающая изгиб дуг

Показано, что при расчете элементов установочного устройства, работающих на изгиб, необходимо учитывать характер контакта с ним основания объекта и контактные напряжения. При рассмотрении изгиба важно корректное описание свойств основания испытуемого объекта и вытекающее из этого описания распределение поверхностных напряжений по площади.

**Четвертая** глава содержит описание результатов расчета и проектирования испытательной центрифуги ПЦ-14 «Энергия», в создании которой принимал участие автор. Ее основные параметры: масса испытуемого объекта 50 кг, радиус установки объекта 1,0 м, максимальное воспроизводимое ускорение  $50000 \text{ м/c}^2$ .

На основе разработанной автором методики произведен анализ технических требований и показано, что конструкция ротора выполнима на основе балки постоянного сечения. Приведено сокращенное техническое описание всего комплекса центрифуги.

Далее, следуя алгоритму проектирования, поставлены и решены задачи определения напряжений, деформаций и упругих перемещений под действием центробежных сил для нескольких вариантов конструкции ротора. Ввиду наличия сочетаний сложных форм и сопряжений осуществлены компьютерные расчеты методом конечных элементов с помощью пакета программ *CosmosWorks*.

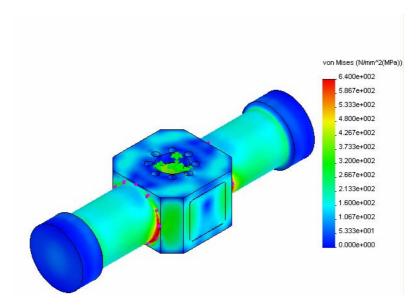



Рис. 5. Распределение нормальных напряжений ротора

Приведены данные о программе расчетов. Результаты расчетов представлены наглядно в виде эпюр. Рассчитанное методом конечных элементов для одного из вариантов распределение нормальных напряжений по поверхности ротора представлено на рис.5.

По результатам расчетов был забракован первый вариант с несимметричной центральной частью. Приемлемыми по критериям прочности оказались два других варианта конструкции. Последним является вариант конструкции ротора с четырьмя параллельными штангами.

В отношении прочности «слабым» местом оказалась установочная плита, на которую устанавливается и к которой крепится испытуемый объект. По результатам расчетов распределений нормальных напряжений методом конечных элементов была разработана конструкция установочной плиты, удовлетворяющая требованиям заданного запаса прочности.

#### **ЗАКЛЮЧЕНИЕ**

1. Научная проблематика проектирования роторов испытательных центрифуг проработана недостаточно, особенно для центрифуг, воспроизводящих большие ускорения.

- 2. Разработана классификация роторов центрифуг и их элементов, которая позволяет упорядочить информацию о многообразии принципиальных и конструктивных решений роторов испытательных и градуировочных центрифуг и систематизировать задачи их исследования.
- 3. Показано, что предельные возможности центрифуг определяются произведением радиуса установки изделия на максимальное воспроизводимое ускорение или квадратом окружной скорости.
- 4. Для конструкций роторов, построенных на основе радиальной балки постоянного или переменного сечений, сформулирован критерий предельных возможностей ротора. Получены и исследованы соотношения для оценки несущей способности ротора центрифуги.
- 5. Доказано, что для многопозиционных стендов при размещении на роторе нескольких испытуемых объектов целесообразно использовать конструкцию с кольцевым бесцентровым кусочно-дуговым ротором, позволяющим избежать изгибных деформаций его элементов. Предложены подходы к расчету таких конструкций.
- 6. Доказано, что для сплошного дискового ротора постоянной или переменной толщины применим критерий предельных возможностей ротора центрифуги, выведенный для роторов стержневого типа; оценены ограничения по воспроизводимому ускорению на таких роторах.
- 7. Обоснована и поставлена задача разработки методик расчета установочного устройства для крепления испытуемого объекта. Показано, что при расчете работающих на изгиб элементов установочного устройства необходимо учитывать характер его возможных деформаций при контакте с ним основания испытуемого изделия.
- 8. По результатам расчетов методом конечных элементов показано, что наиболее перспективным для центрифуги ПЦ-14 «Энергия» является ротор с системой параллельных штанг; предложены рациональная конструкция такого ротора и его установочной плиты.

#### ПУБЛИКАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ

- 1. **Пуленец Н.Е.** Контроллерное управление механизмами испытательного комплекса // XXXIV неделя науки СПбГПУ: Материалы межвузовской научно-технической конференции. СПб: издательство СПбГПУ. 2005. Ч.ІІІ. С.19-20.
- 2. **Пуленец Н.Е.** Предельные возможности испытательных центрифуг // XXXV неделя науки СПбГПУ: Материалы межвузовской научнотехнической конференции. СПб: издательство СПбГПУ. -2006. -Ч.ІІІ. -С.8-9.
- 3. Павлюченко С.В., Попов А.Н., Пуленец Н.Е., Тимофеев А.Н. Измерительные токосъемники // Научные исследования и инновационная деятельность: Материалы науч.-практ.конф. СПб: издательство СПбГПУ. -2006. –С.46-50.
- 4. Павлюченко С.В., Попов А.Н., Пуленец Н.Е., Тимофеев А.Н. Испытательные и градуировочные стенды // Научные исследования и инновационная деятельность: Материалы науч.-практ.конф. СПб: издательство СПбГПУ. 2006. –С.50-56.
- 5. Павлюченко С.В., Попов А.Н., Пуленец Н.Е., Тимофеев А.Н. Специальное программное обеспечение и аппаратные средства испытательных градуировочных стендов// Научные исследования и инновационная деятельность: Материалы науч.-практ.конф. СПб: издательство СПбГПУ. 2006. –С.56-60.
- 6. **Пуленец Н.Е.** Задачи и методы обеспечения прочности роторов испытательных центрифуг // Научно-технические ведомости СПбГТУ. -СПб: издание СПбГПУ; №5-1 (47). -2006. –С.193-197.