Министерство образования Российской Федерации Санкт-Петербургский Государственный Технический Университет

Инженерно-строительный факультет

Кафедра «Технология, организация и экономика строительства»

Булатов Г.Я.

Проектирование технологии общестроительных работ

Учебное пособие

Санкт-Петербург 2002 УДК 624.132: 69.057: 626.002(075.8) Б 907

Булатов Г.Я.

Проектирование технологии общестроительных работ: Учебное пособие.-СПб.: Изд-во СПбОДЗПП, 2002. -20 с.

Пособие посвящено разработке оптимальных технологических схем; выбор типа и числа строительных машин, необходимых для возведения сооружения в заданные сроки с требуемым качеством при минимальной стоимости работ.

Содержание записки

...Нашей первой задачей была выработка методики. И. П. Павлов

	стр.
Введение	
Исходные данные	
Информационная база	7
Часть 1. Выемка котлована	
1.1. Расчет объемов работ	
1.2. Предварительный календарный план	8
1.3. Выбор и расчет числа машин для снятия растительного слоя	9
1.4. Выбор и расчет числа машин для разработки котлована	
1.4.1. Экскавация	11
1.4.2. Вывоз грунта из котлована	12
1.4.3. Расчет оптимальной ширины забоя экскаватора типа	
«прямая лопата» и уточнение сроков работ	13
1.5. Выбор машин для планирования дна котлована	
(снятие защитного слоя)	15
1.6. Выбор машин для уплотнения грунта основания	
Часть 2. Бетонирование фундаментной плиты	
2.1. Расчет объемов работ	17
2.2. Выбор бетоносмесителей и уточнение сроков работы	
2.3. Выбор размеров блоков	
2.4. Выбор арматуры и опалубки	
2.5. Выбор кранов и бадей	
2.6. Расчет времени работ в блоке	
2.7. Выбор бетоновозов	
2.8. Выбор бетоноуплотнителей.	
2.9. Уточнение календарного плана	
2.5. V To monne kanongaphoro islana	
Состав графической части (технологические схемы)	
1. По котловану:	
1.1. Котлован (общий вид)	
1.2. Снятие растительного слоя	· • • • • • • • • • • • • • • • • • • •
1.3. Оптимальный забой экскаватора	
1.4. Выемка котлована.	
1.5. Снятие защитного слоя в основании котлована	

	1.6. Уплотнение основания
	1.7
2.	По фундаментной плите:
	2.1. Разрезка на блоки бетонирования
	2.2. Расстановка щитов опалубки и их крепление
	2.3. Пространство возможностей крана
	2.4. Подача бетона в блок
	2.5. Календарный план работ

Введение *)

На современном этапе решающим звеном научно-технического прогресса становится технология строительства. Н.В. Бойко

<u>Цель проекта</u> - разработка оптимальных технологических схем; выбор типа и числа строительных машин, необходимых для возведения сооружения в заданные сроки с требуемым качеством при минимальной стоимости работ.

Учебное пособие предназначено для студентов специальностей направления «Строительство» и близких к нему. Оно может быть использовано проектировщиками, а также исследователями, для которых открывается широкое поле деятельности по дальнейшему уточнению предлагаемых решений.

Приведенная в работе методика расчета основных параметров технологии сопровождается ссылками на рисунки («Графическая часть»), которые разрабатываются для конкретных характеристик сооружения и условий строительства.

^{*)} В технической подготовке работы принимали участие С.А. Пушева и др. студенты специальности «Мелиорация».

Исходные данные

- 1. Проект по дисциплине «Технология общестроительных работ» разрабатывается на основе проекта, например, насосной станции, выполненного на кафедре «Инженерные мелиорации, гидрология и охрана окружающей среды», или другого сооружения, или на основе специального задания.
- 2. Все сооружения строительного производства представляют собой либо выемки, либо насыпи. В случае строительства насосной станции необходимо сделать выемку (котлован), для чего снимается сначала растительный слой, а затем выполняется основная выемка экскаватором прямая лопата с погрузкой в автосамосвалы. После этого разрабатывается защитный слой, уплотняется основание котлована и бетонируется подземная часть сооружения.
 - 3. Чертежи конструктивных решений берем из проекта сооружения.

Место строительства	область.
Климатическая зона	
Территориальный район	
Расстояния от сооружения:	
а) до отвала грунта км,	
б) до бетонного завода км.	

Информационная база

По части 1.

- 1. Ясинецкий В.Г., Фенин Н.К. Организация и технология гидромелиоративных работ .- М.: Агропромиздат, 1986.- 352 с.
- 2. Бауман В.А. и др. Строительные машины. Справочник.-М.: Стройиздат, Т.1, 1976.-502 с.
- 3. Булатов Г.Я. Технология возведения грунтовых плотин.-СПбГТУ, 1994.-90 с.
- 4. Галузин В.М., Телешев В.И. Выбор строительных машин для производства земляных работ.-ЛПИ, 1987.
- 5. СниП-3.02.01.-87. Правила производства и приемки работ. Земляные сооружения. –М.: Стройиздат, 1988.-124 с.

По части 2.

- 6. Галузин В.М., Комаринский М.В., Телешев В.И. Выбор машин и оборудования для производства бетонных работ .- СПбГТУ, 1995.
- 7. Белоликов В.Т. Производство бетонных работ в гидротехническом строительстве .- ЛПИ, 1972.-72 с.
- 8. Правила производства бетонных работ при возведении гидротехнических сооружений. ВСН-31-83.- Л.: ВНИИГ,1984.-84 с.
- 9. Бетонные и железобетонные работы. Справочник строителя .- М.: Стройиздат, 1987.-320 с.
- 10. Данилов Н.Н. и др. Технология строительных процессов.-М.: Высшая школа, 2000.
- 11. Российские патенты http//www.rupto.ru

<u>Примечание:</u> В учебном пособии [3, с.85] приведен "Указатель справочных материалов (для проектирования) из основных литературных источников".

Часть 1. Выемка котлована

1.1. Расчет объемов работ

Размер котлована в плане определяется размерами в плане здания насосной станции, плюс c=1...3 м — запас по ширине для установки опалубки и устройства осущительной системы. Выездная траншея проектируется исходя из двустороннего движения автомобилей и пешеходов. Ширина выезда назначается равной B=8...10 м, уклон i=(1:10...1:8). Ширина берм на откосах котлована назначается b=3...5 м, ориентировочно через 5 м по высоте.

1) Объем растительного слоя [3, с.8], покрывающего территорию выемки $V_{P.C.} = S_{P.C.} \cdot h_{P.C.}$, (1)

где $S_{P.C.}$ – площадь, определяемая границами котлована по верху, M^2 ; $h_{P.C.}$ – толщина растительного слоя. Разбивая план котлована в плане на элементарные фигуры (например, трапеции), определяем площадь в виде

$$S_{P.C.} = \sum_{i=1}^{i=n} \frac{b_{i1} + b_{i2}}{2} l_i , \qquad (2)$$

где b_i - основания трапеций; l_i - высоты трапеций.

2) Вычертим разрезы и план котлована. Объем выемки котлована представляем в виде суммы объемов горизонтальных слоев:

$$V_{K} = \sum_{i=1}^{i=m} \frac{S_{iB} + S_{iH}}{2} \Delta H_{i},$$
 (3)

где S_i - площади соответственно верхней и нижней поверхностей i -го слоя;

 ΔH_i - высота i-го слоя, считая от верха котлована.

Площади слоев котлована определяются аналогично по формуле (2).

3) Объемы защитного слоя (0,1...0,3 м) в основании котлована и уплотняемого слоя (0,3...0,5 м) грунта в основании насосной станции определяются аналогично (1).

1.2. Предварительный календарный план

Назначим, например, продолжительность работ по ЧАСТИ 1 «Возведение котлована»- три месяца: май, июнь, июль.

10% из этого времени отводим на снятие растительного слоя с поверхности котлована бульдозером.

Снятие защитного слоя – 1 день.

Уплотнение основания – 1 день.

Остальное время приходится на разработку выемки котлована экскаваторами и вывоз грунта на автосамосвалах.

Продолжительность работ по ЧАСТИ 2 «Бетонирование фундаментной плиты», например, один месяц - август.

1.3. Выбор и расчет числа машин для снятия растительного слоя

Основы расчета приведены в [3, с.15, 85].

- <u>1)</u> Для снятия растительного слоя (группа грунта -...) выбираем бульдозер марки..... на базовом тракторе с гидравлическим управлением и с поворотным отвалом размерами :
- b- длина-...; h- высота-.... [2, с.116]. Схема снятия растительного слоя представлена на рис. Геометрическая дальность транспортировки грунта измеряется в плане между центрами тяжести выемки и насыпи (склада-отвала) [3, с.17]. Объем насыпи-отвала :

$$V_H = V_B * K_P , \qquad (1)$$

где V_B – объем выемки, K_P – коэф. разрыхления (1,1...1,2).

С другой стороны, принимая сечение отвала треугольным, запишем

$$V_H = \frac{(B_H \cdot H_H \cdot L_H)}{2} , \qquad (1a)$$

где $_{B_{^{\mathit{H}}}},H_{^{\mathit{H}}},L_{^{\mathit{H}}}$ - ширина, высота и длина отвала (насыпи).

Принимая

$$H_H \cong 10 \, h_{P.C.} \tag{16}$$

и задаваясь длиной, определим ширину отвала.

2) Расчетное число машин определяется по формуле [3, с.13]

$$N_{MAIII}^{P} = \frac{I^{P}}{\Pi^{9}},\tag{2}$$

где I^P – интенсивность работ или расчетный поток материалов, $M^3/4$;

 Π^{3} – эксплуатационная производительность одной машины, м 3 /ч.

$$I^{P} = \frac{V}{T^{P}} \cdot K_{HEP},$$
 (2a)

где V – объем работ, M^3 ;

 T^{P} – расчетное время выполнения работ, ч;

 $K_{{\it HEP}}$ — коэффициент неравномерности потока строительных материалов (1,1...1,2).

$$T^{P} = N_{v} \cdot n_{nem}. \tag{3}$$

Здесь N_{q} – годовой режим работы машин[4, с.53, табл.26];

 $n_{{\scriptscriptstyle nem}}$ – время работы в годах.

3) Эксплуатационная производительность машины [3, с.11]

$$\Pi^{\mathcal{I}} = \Pi^T \cdot K_B, \tag{4}$$

где Π^{T} – техническая производительность (при непрерывной работе);

 K_{B} – коэффициент использования рабочего времени машины.

$$\Pi^T = \frac{Q_{II}}{T_{II}},\tag{5}$$

где $Q_{\scriptscriptstyle I\!I}$ – объем продукции , вырабатываемый машиной за один цикл;

 T_{II} – продолжительность цикла.

$$Q_{II} = q \cdot K_3, \tag{6}$$

где q – геометрический объем призмы волочения [3, c.18] при $\alpha_{o} = 45^{\circ}$;

 K_3 – коэф. загрузки рабочего органа машины.

$$K_3 = (K_H / K_P) \cdot K_C \cdot K_\alpha \cdot \eta_B \cdot \dots , \qquad (7)$$

Здесь K_H – коэффициент наполнения призмы волочения (\approx 1,0);

 K_P – коэффициент разрыхления грунта (1,2...1,3);

 K_{C} – коэффициент сохранности грунта при переносе или транспортировании;

 K_{α} – коэффициент учитывающий влияние уклона местности [3, с.18] при α_{∂} =45°;

 $\eta_{\scriptscriptstyle B}$ – коэффициент эффективности выгрузки (≈1,0).

$$K_p = \frac{\rho_{ecm}}{\rho_{pblx\lambda}} , \qquad (8)$$

где $\rho_{\it ecm}, \rho_{\it pыхл}$ - плотности грунта в естественном и в рыхлом состояниях;

$$K_C = 1 - \frac{L}{L_{np}},\tag{9}$$

где L , L_{IIP} - дальности транспортирования: расчетная и предельная [3, с.18 и 88].

$$T_{\mathcal{U}} = \kappa \cdot L + T_0, \tag{10}$$

где κ – коэффициент длительности цикла транспортирования;

 $T_{\rm 0}$ – часть цикла, не зависящая от дальности транспортирования.

$$\kappa = \left(\frac{1}{V_{IX}} + \frac{1}{V_{IIX}}\right) \cdot \psi,\tag{11}$$

где V_{IX} и V_{IIX} – скорости груженого и порожнего хода [3, с.19];

 ψ – коэффициент потерь времени на разгон и торможение [3, c.19];

$$L_{\Pi P} = L^0_{\Pi P} \cdot \boldsymbol{\eta}_{\boldsymbol{I}}, \tag{12}$$

где $L^0_{\mathit{\PiP}}$ - предельная (стандартная) дальность,

 η_L – коэф. учета особенностей и усовершенствований в технологиях и машинах.

$$T_{0} = T_{p} + T_{B} + T_{\Pi O B} \cdot n_{\Pi O B} + T_{\Pi E P} \cdot n_{\Pi E P} + T_{M A H} \cdot n_{M A H} \quad , \tag{13}$$

где T_{HOB} – время одного поворота [3, стр.19];

 n_{HOB} – число поворотов;

 $T_{\mathit{ПЕР}}$ – время одного переключения скоростей;

 $n_{\text{ПЕР}}$ – число переключений;

 $T_{{\scriptscriptstyle MAH}}$ – время одного маневрирования рабочим органом;

 n_{MAH} – число маневрирований.

Время резания грунта:

$$T_{p} = \frac{Q_{II}}{b \cdot \delta \cdot \eta_{3AYR} \cdot V_{p} \cdot K_{C}}, \qquad (14)$$

где δ – толщина срезаемой стружки;

 $\eta_{\scriptscriptstyle 3AXB}$ – КПД захвата грунта;

 V_P - скорость движения при резании.

Время выгрузки грунта:

$$T_B = \frac{Q_{II} \cdot K_P}{b \cdot h_{OTC} \cdot V_B} \,. \tag{15}$$

3десь V_{g} – скорость движения при выгрузке (≈0,75 м/с);

 h_{OTC} – толщина слоя отсыпки.

4) Определяем проектную интенсивность

$$I^{\Pi} = \Pi^{\mathcal{I}} \cdot N_{MAIII}^{\Pi} \quad , \tag{16}$$

где N_{MAIII}^{II} – принятое (проектное) число машин.

5) Определяем проектное время выполнения работ

$$T^{\Pi} = \frac{V}{I^{\Pi}} \cdot K_{\text{hep}} \cdot K_{\text{3an}} \quad , \tag{17}$$

где K_{3an} - коэффициент запаса в сроках работ.

$$T^{n} = \dots$$
 $q = \dots$ $cmeh = \dots$ $cyt = \dots$ $mec.$

1.4. Выбор и расчет числа машин для разработки котлована

Если мозг думает, память придет сама. А.Н. Несмеянов

1.4.1.Экскавация

Источники информации см. в [3, с.85].

По справочнику [2, с.7] выбираем: наименование грунта —, группа -, плотность в естественном состоянии ρ_{ecm} =.....

По условиям размещения машин в котловане выбираем экскаватор с гибкой подвеской — прямая лопата марки......, объем ковша q=...... m^3 .[2, c.14, табл.2, c.52]. Расчет ведем аналогично методике, приведенной в п.1.3 и по [3, c.13, 8].

Продолжительность цикла определяем по формулам п. 1.4.3. Коэффициент K_{mp} , учитывающий группу грунта по трудности разработки, принимаем по [3, с.31]. Определяем сроки работ.

1.4.2.Вывоз грунта из котлована

Выбор автосамосвалов осуществляем по двум параметрам:

- по грузоподъемности M_B (должна превышать массу груза);
- по объему кузова V_B (должен превышать объем груза).

Определим массу груза по формуле

$$M_T = Q_u \cdot m \cdot \rho_{ecm}, \tag{1}$$

где Q_{y} - объем грунта в ковше, приведенный к плотному естественному состоянию [3, с.11];

m – число ковшей с грунтом подаваемых на один автосамосвал (6...8).

 $\rho_{_{\!PCM}}^{}$ – плотность грунта в естественном состоянии[2, с.7];

Объем груза (грунта) в кузове

$$Q_{IIT} = Q_{II} \cdot m \cdot K_{P}. \tag{2}$$

По справочнику [2, с.254] выбираем транспортное средство — самосвал марки (M_B =.....кг, V_B =....м 3 , b_T =...м; h_T =...м).

Определяем расчетное число автосамосвалов

$$N_T^P = \frac{T_{IJT}}{\max\{T_{MII} + T_{II}; T_{MB} + T_B\}},$$
(3)

где время полного оборота автосамосвала

$$T_{IIT} = K \cdot L + T_0 \tag{4}$$

при

$$K = \left(\frac{1}{V_{IX}} + \frac{1}{V_{IIX}}\right) \cdot \psi \quad . \tag{4a}$$

Проектную интенсивность транспортирования определим по формуле Б.Э. Казанцева:

$$I_T^{\Pi} = \frac{Q_{UT}}{\max\{T_{M\Pi} + T_{\Pi}; \frac{T_{UT}}{N_T^{\Pi}}; T_{MB} + T_B\}}.$$
 (5)

Здесь приняты следующие обозначения:

 $T_{M\Pi}$ и T_{Π} – время маневра самосвала (0,5...2 мин) и его погрузки;

 T_{MB} и T_{B} – время маневра самосвала (1...2 мин) и его выгрузки (1 мин);

 κ – коэф. пропорциональности в цикле;

 V_{TX} и V_{HX} – скорости груженого и порожнего хода [4, с.40, табл.16];

 Ψ – коэф. потерь времени на разгон и торможение (≈1,05);

 $N_T^{\ II}$ — принятое (проектное) число самосвалов.

Часть цикла, не зависящая от дальности транспортирования грунта,

$$T_O = T_{MII} + T_{II} + T_{MB} + T_B$$
 (6)

$$T_{II} = T_{II} \cdot m \,, \tag{7}$$

где T_{II} — время цикла экскавации.

1.4.3. Расчет оптимальной ширины забоя экскаватора типа «прямая лопата» и уточнение сроков работ

Гораздо труднее увидеть проблему, чем найти ее решение. Дж.Д. Бернал.

Рассматриваем работу экскаватора "прямая лопата" в боковом ярусном забое при погрузке грунта на автосамосвалы [3, с.28]. Здесь одним из основных параметров является ширина забоя В, которая и влияет на производительность экскаватора. При этом существует оптимальная ширина забоя, отклонение от которой как в сторону уменьшения, так и в сторону увеличения ведет к снижению производительности экскаватора. Отыскание оптимальной ширины забоя, обеспечивающей максимум производительности, и является целью приведенного решения.

Техническую часовую производительность экскаватора запишем в виде

$$\Pi^T = \frac{Q_{II}}{T_{II}},\tag{1}$$

где Q_{μ} – объем грунта в ковше, приведенный к естественной плотности в выемке [3, c.11];

 T_{II} – продолжительность цикла.

Эксплуатационная производительность

$$\Pi^{\ni} = \Pi^T \cdot K_R \tag{2}$$

при

$$K_{B} = K_{M} \cdot K_{II} \cdot K_{PB} \cdot K_{B}' . \tag{3}$$

Здесь K_M – коэффициент использования рабочего времени экскаватора, учитывающий потери времени на маневр самосвалов перед погрузкой;

 K_{π} – коэффициент, учитывающий потери времени на передвижки экскаватора вдоль забоя;

 K_{PB} – коэффициент, учитывающий потери времени на концевые развороты экскаватора (\approx 1,0);

 $K_{\scriptscriptstyle B}$ '– коэффициент, учитывающий прочие потери времени (pprox 0,95).

$$K_{M} = \frac{m \cdot T_{\mathcal{U}}}{m \cdot T_{\mathcal{U}} + \left(T_{M} - T_{\mathcal{U}}\right)},\tag{4}$$

где T_{M} – время маневра самосвала перед погрузкой (0,5...2 мин), а также перерывы в подаче самосвалов;

$$K_{\Pi} = \frac{\frac{V_{\Pi}}{\Pi^T \cdot K_M}}{\frac{V_{\Pi}}{\Pi^T \cdot K_M} + (T_{\Pi} - T_M)},$$
(5)

где T_{II} – время, затрачиваемое на одну передвижку экскаватора (1...4 мин).

Объем грунта, разрабатываемый с одной стоянки экскаватора

$$V_{\Pi} = l_{\Pi} \cdot H \cdot B \,, \tag{6}$$

где $l_{\scriptscriptstyle H}$ – длина передвижки экскаватора, B – ширина забоя, H – высота забоя.

$$B = 2 \cdot (2 \cdot R \cdot \sin \beta / 2 - a), \tag{7}$$

где *R* – средний расчетный радиус резания (при заборе грунта);

 β – средний расчетный угол поворота экскаватора на выгрузку (рад). Частная ширина рабочей зоны

$$a = a_0 + a_T , \qquad (8)$$

где a_0 – эксцентриситет забоя;

 a_{T} – расстояние от границы забоя до оси транспортного хода.

$$T_{II} = K \cdot \beta + T_{0}, \tag{9}$$

$$a_T = b_T/2 + \Delta a_T , \qquad (10)$$

$$a_0 = H \cdot ctg\alpha \,, \tag{11}$$

где b_T – ширина транспортного средства (см. п. 1.4.2);

 Δa_T – запас ширины (0,5...1м);

 α – угол откоса элемента забоя (60 °...75 °).

Ниже приведены справочные эмпирические зависимости:

$$T_0 = K_{TP} \cdot 2.7 \cdot \sqrt[4]{M_{\odot}} + 2 + 0.5 \cdot R_P$$
 , с
 $K = 0.45 \cdot R_P$, с/рад
 $l_{\Pi} = 0.5 \cdot H_{HB}$, м
 $H = \eta_{HB} \cdot H_{HB}$, м
 $H = 1.5 \cdot \sqrt[4]{M_{\odot}}$, м
 $R = R_B - 0.5 \cdot l_{\Pi}$, м

Здесь K_{TP} — коэф. трудности разработки грунта [3, с.31]; M_{\odot} — масса экскаватора, т; R_P — максимальный радиус резания (копания) грунта; η_{HB} — относительная высота забоя; H_{HB} — высота напорного вала на стреле экскаватора; R_B — максимальный радиус выгрузки; η_{HB} — относительная высота забоя [3, с.31].

Из геометрических соотношений имеем предельные величины для ширины забоя: теоретический максимум и технологический минимум

$$B_{MAKC}^{TEOP} = \frac{2}{3} \cdot \left[2 \cdot \left(\sqrt{R_{CT}^2 - l_{II}^2} + a_0 \right) - a \right] , \qquad (13)$$

где $R_{\it CT}$ – максимальный радиус резания грунта на уровне стоянки;

$$B_{MHH}^{TEX} = \frac{m \cdot Q_{II}}{l_{II} \cdot H} \,. \tag{13a}$$

При малых В рекомендуется проверить, не касается ли платформа экскаватора откосов забоя. Проверка легко выполняется графически на плане или по условию:

$$B_{MIJH}^{\Gamma EOM} = 2 \cdot r_{XB}, \tag{14}$$

где r_{XB} – радиус, описываемый хвостовой частью экскаватора при поворотах.

Абсолютная максимальная ширина забоя (физический максимум) и ее технологический максимум:

$$B_{MAKC}^{\phi H3} = \sqrt{R_{CT}^2 - l_{II}^2} + R_B - a_T$$
 (15)

И

$$B_{MAKC}^{TEX} = 2 \cdot \sqrt{R_{CT}^2 - l_H^2}$$
 (15a)

Задавая ряд величин β_i , находим соответствующие им производительности Π_i^{\ni} и по результатам вычислений строим график функции $\Pi^{\ni} = f(\beta, B)$, по которому находим <u>оптимальный угол поворота</u> экскаватора $\beta_{OHT} =^0$, соответствующий максимуму эксплуатационной производительности $\Pi_{MAKC}^{\ni} =\frac{M^3}{q}$. По величине β_{OHT} находим остальные технологические параметры, в том числе <u>оптимальную ширину забоя</u> $B_{OHT} =M$ и строим забой (рис.....).

Проектный поток экскавации:

$$I^{\Pi} = \Pi_{MAKC}^{\mathfrak{I}} \cdot N_{\mathfrak{I}KCK}^{\Pi} \tag{17}$$

Уточненное проектное время выполнения работы

$$T^{\Pi} = \frac{V}{I^{\Pi}} K_{HEP} \cdot K_{3A\Pi} \quad . \tag{18}$$

 $T^{II} = \dots q = \dots cMeH = \dots cyT = \dots Mec.$

1.5. Выбор машин для планирования дна котлована (снятие защитного слоя)

Для снятия защитного слоя применяем тот же бульдозер , что и для снятия растительного слоя

Толщина защитного слоя h =м.

Далее см. п. 1.3.

1.6. Выбор машин для уплотнения грунта основания

Основные положения см. в [3, с.44].

Для уплотнения дна котлована используем каток марки с вальцами, самоходный [2, с.150], [4] и др.

Определим эксплуатационную производительность катка

$$\Pi^{\ni} = \frac{h_{C\Pi} \cdot (b - \Delta b) \cdot L_K}{(\frac{L_K}{V_K} + T_{\Pi OB})n} \cdot K_B,$$
(1)

где $h_{C\!I\!I}$ — толщина уплотненного слоя грунта; b - ширина полосы уплотнения (следа катка), м; Δb — ширина перекрытия полос уплотнения при последующих проходках катка; V_K — скорость движения катка; K_B - коэффициент использования рабочего времени (0,8); L_K - длина карты уплотнения; n — число проходов по одному следу; T_{HOB} — время одного поворота катка.

Время работ – по формуле (1.4.3.18). $T^{II} = \dots = \dots + \dots + \dots$ смен.

Часть. 2. Бетонирование фундаментной плиты

2.1. Расчет объемов работ

На уплотненное дно котлована укладываем бетонную подготовку из тощего бетона марки B-5 толщиной 0,1м. Бетонную подготовку выводим за контуры сооружения на 0,5 м, чтобы разместить на нем элементы опалубки.

На подготовку укладывается гидроизоляция в виде битумной массы или спецматериалов, затем защитный слой бетона 0,05м. На него устанавливается арматура и опалубка. Блок промывается водой и просушивается сжатым воздухом.

Определим необходимый объем бетона для насосной станции

$$V_1 = m \cdot \sum B_i \cdot H_i \cdot L_i , \qquad (1)$$

где m - монолитность (массивность) сооружения (0,4...0,5);

 B_i , H_i , L_i - габаритные размеры частей сооружения.

Объем бетонной подготовки

$$V_{II} = h_{.II.} \cdot \sum B_n \cdot L_n \quad . \tag{2}$$

Общий объем бетона

$$V_{E} = (V_{1} + V_{II}) \cdot K_{IIP}$$
, (3)

где $K_{\mathit{ДP}}$ - коэф., учитывающий потребность в бетоне для других сооружений.

2.2. Выбор бетоносмесителей и уточнение сроков работ

Расчет числа машин выполняем аналогично земляным работам (Часть 1). Так как применяем густое армирование , бетон используем на заполнителе $d \le 70$ мм.

Определим расчетное время выполнения работ

$$T^P = n_{\text{vec}} \cdot 20 \cdot 2 \cdot 8 , \text{ y} .$$
 (1)

Определим расчетный поток бетонной смеси

$$I^{P}_{BC} = \frac{V_{E}}{T^{P}} \cdot \kappa_{HEP} . \tag{2}$$

Выберем, например, гравитационный бетоносмеситель [6,с.11] марки с объемом готового замеса $Q_{CM} = \dots$ и эксплуатационной производительностью $\Pi^9 = \dots M^3/q$. Число смесителей определим по [3, с.13] как для ведущих машин.

Проектный поток бетонной смеси:

$$I^{\Pi}{}_{\mathcal{B}\mathcal{C}} = \Pi^{\mathcal{G}} \cdot N^{\Pi}{}_{\mathcal{C}M} , \qquad (3)$$

где N^{II}_{CM} — проектное число смесителей.

2.3. Выбор размеров блоков

Максимальные плановые размеры блоков по производственным условиям определяются прежде всего производительностью комплекса бетоносмесительных и бетоноукладочных машин. По этим условиям площадь блока и производительность этих машин связаны следующей зависимостью

$$\Omega_{EJI} = \frac{I^{II}_{EJI} \cdot T_{CJI}}{h_{CJI}},\tag{1}$$

где $\Omega_{\mathit{E\! I}}$ -площадь блока.

Интенсивность подачи бетонной смеси в блок

$$I^{\Pi}_{\mathcal{B}\Pi} = \alpha \cdot I^{\Pi}_{\mathcal{B}C}, \tag{2}$$

где α - степень использования I_{EC}^{Π} — проектного потока (интенсивности производства) бетонной смеси(см.п.2.2).

Время укладки одного слоя бетона в блок

$$T_{CJI} = T_{E} - T_{TP}, (3)$$

где $T_{\rm F}$ – возраст бетонной смеси к моменту закрытия ее следующим слоем;

 T_{TP} — время транспортирования бетонной смеси.

$$T_{TP} = T_{LIT} - T_{IIX} + T_{LI_{LIP}} - T_{MII},$$
 (3a)

где $T_{\mu_{KP}}$ – время подачи бетонной смеси краном в блок (цикл работы крана ≈ 5 мин), остальные обозначения см. в п. 1.4.2;

 $h_{\rm CJ}$ - толщина укладываемого слоя, выбирается в зависимости от длины рабочей части вибратора [6, с.68].

$$T_{II} = \frac{Q_T}{I_{EC}^{II}},\tag{4}$$

где Q_T – объем смеси в одном транспортном средстве (в кузове бетоновоза), см. п. 2.7.

Согласно полученной площади (блока) разбиваем фундаментную плиту на блоки бетонирования (см. рис).

2.4. Выбор арматуры и опалубки

Армирование блоков осуществляем армокаркасами, например, по 6 арматурных элементов на блок. Частота подачи армокаркасов ~2 цикла в час. Время установки арматуры на один блок составляет около ... часов.

Опалубка — это временная конструкция, которой ограждается бетонируемый блок и в которую укладывается бетонная смесь. Она обеспечивает форму и размеры блоков.

Принимаем опалубку щитовую деревянную съемную. Продолжительность подачи щита и установка на место составляет ~30мин.

Размеры одного щита:

$$h_{III} = h_{EJI} + 0.2 M$$
 , (1)

$$l_{III} = h_{III} \cdot (3 \div 4) \quad . \tag{1a}$$

На один расчетный блок № устанавливаемщитов. Значит, установка опалубки займет часов или смен.

Всего на установку арматуры и опалубки в один блок требуется времени

$$T_{no\partial z} = T_{APM} + T_{OII} . {2}$$

 $T_{no\partial z} = \dots$ qac =cmeH.

2.5. Выбор кранов и бадей

Подачу бетонной смеси в блок осуществляем в поворотной бадье марки полезной емкостью $V_{\text{БАЛ}} = \dots \text{м}^3$ [6, c.60] с помощью крана.

Выбираем [6, с.49], например, стреловый гусеничный кран марки грузоподъемностью т, так как масса бадьи с бетоном равна т. Вылет крана ($R_{KP} =M$) обеспечивает дальность подачи по горизонтали, при условии постановки крана на место блока \mathbb{N}^{2} (см. рис......). Высота подъема крюка крана ($H_{KP} =$ м) обеспечивает подачу бетонной смеси на любую отметку сооружения. Кран выбираем на основе известных критериев.

Приводим пространство возможностей крана (рис....).

Краны относятся к машинам цикличного действия, поэтому расчет эксплуатационной производительности ведем согласно общему подходу. При этом приближенное время цикла работы крана можно взять по [7, с.....].

2.6. Расчет времени работ в блоке

Время бетонирования расчетного блока № ... будет

$$T_{\text{BET}} = \frac{V_{\text{BJT}}}{I^{T}_{\text{BJT}}} K_{\text{HEP}} \,. \tag{1}$$

Время работ в блоке

$$T_{EII} = T_{IIOIII} + T_{EEI} . {2}$$

 $T_{\it E\!\Pi} =$ мас =смен.

2.7. Выбор бетоновозов

<u>1)</u> Дальность транспортирования бетонной смеси L = ...км.

Основные положения выбора бетоновозов – см. [6, с.22].

Выбираем автобетоновозы — специализированные автомобили, предназначенные для перевозки готовой бетонной смеси. Их высокие закрытые кузовы каплевидной формы расположены в зоне минимальной вибрации рамы автомобиля, благодаря чему обеспечивается сохранность бетонной смеси от расслоения и разбрызгивания.

Для защиты смеси от воздействия осадков и ветра кузов снабжен крышкой, а для предохранения от температурного воздействия- двойной обшивкой, образующей полости, что позволяет термоизолировать или обогревать кузов выхлопными газами [6, с.26].

<u>2)</u> Выбор марки автобетоновоза осуществляем по объему бетонной смеси и ее массе по аналогии с п. 1.4.2 с учетом условий:

$$Q_T = Q_{\scriptscriptstyle CM} \cdot m_{\scriptscriptstyle CM}, \tag{1}$$

где $Q_{\scriptscriptstyle {\it CM}}$ – объем готового замеса;

 m_{cy} – число замесов, подаваемых на один бетоновоз;

$$Q_T = V_{BAJI} \cdot n_{BAJJ} , \qquad (2)$$

где $n_{\mathit{БАД}}$ – число одновременно заполняемых бетоном бадей из бетоновоза.

<u>3)</u> Расчетное число транспортных средств (в нашем случае - автобетоновозов), а также и расчетный поток доставки бетонной смеси определяем аналогично п.1.4.2.

2.8. Выбор бетоноуплотнителей.

Основные положения выбора – см. [6, с.63].

Для уплотнения бетонной смеси в блоках применим, например, электромеханические ручные вибраторы с гибким валом марки [6, c.68].

Эксплуатационная производительность вибратора

$$\Pi^{\mathcal{G}} = \left(\pi \cdot R_{B}^{2} \cdot h_{CH} \cdot \eta / T_{HB}\right) \cdot K_{B}, \tag{1}$$

где $R_{\scriptscriptstyle B}$ - радиус эффективного действия вибратора;

 $h_{\scriptscriptstyle C\!\it{I}\!\it{I}}$ – толщина уплотненного слоя ;

 η - коэффициент, учитывающий перекрытие уплотняемых зон в плане (≈ 0.7); $K_B \approx 0.75$;

 T_{UB} – время цикла уплотнения (20...40 с).

$$R_R \cong 5d$$
 , (2)

где d – диаметр корпуса вибратора.

Число вибраторов определяется по общей методике.

2.9. Уточнение календарного плана

Составление окончательного календарного плана производится на основе результатов расчетов времени (сроков) работ.

Время бетонных работ по сооружению

$$T_{EET}^{\Pi} = \frac{V_{COOP}}{I_{EII}^{\Pi}} K_{HEP} \cdot K_{3A\Pi} \quad , \tag{1}$$

где K_{HEP} – коэф. неравномерности работ (1,1...1,2).

$$T_{EET}^{\Pi} =$$
 eyr = cyr = mec.

Цена $1 \, \text{м}^3$ бетона определяется в соответствии с рекомендациями [7, с. ...].