Musel

### ВЛАСОВА Анна Николаевна

## РАДИАЦИОННЫЕ ЯВЛЕНИЯ В МИКРОНЕОДНОРОДНЫХ СТРУКТУРАХ АКТИВИРОВАННЫХ ФОСФАТНЫХ И ФТОРИДНЫХ СТЕКЛООБРАЗНЫХ МАТЕРИАЛОВ

Специальность – 01.04.04. «Физическая электроника» 01.04.07 «Физика конденсированного состояния»

> Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в государственном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный политехнический университет»

Научный руководитель: Доктор физико-математических наук, профессор

Бочарова Татьяна Викторовна

Официальные оппоненты: Доктор физико-математических наук, профессор

Ханин Самуил Давидович

Кандидат физико-математических наук

Королева Екатерина Юрьевна

Ведущая организация: Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет информационных технологий, механики и оптики».

Защита состоится «<u>9</u>» декабря 2010 г. в <u>15</u> часов на заседании диссертационного совета Д 212.229.01 при ГОУ ВПО «Санкт-Петербургский государственный политехнический университет» по адресу: 195251, Санкт-Петербург, ул. Политехническая, д. 29, 2 учебный корпус, ауд. 470.

С диссертацией можно ознакомиться в фундаментальной библиотеке ГОУ ВПО «Санкт-Петербургский Государственный Политехнический Университет».

Автореферат разослан «<u>02</u>» ноября <u>2010</u> г.

Ученый секретарь диссертационного совета Д 212.229.01, доктор технических наук, профессор

А.С. Коротков

### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

**Актуальность темы.** Настоящая работа посвящена выявлению микронеоднородной структуры активированных фосфатных и фторидных стекол путем исследования механизмов образования и параметров радиационных дефектов, возникающих под действием  $\gamma$ -излучения, их влияния на оптические и спектроскопические свойства материалов.

В последние годы стеклообразные и стеклокристаллические материалы привлекают значительное внимание физиков, работающих в области, как фундаментальных исследований, так и прикладных разработок, благодаря комплексу уникальных свойств, которыми они обладают. Сфера использования таких материалов достаточно широка: электроника, оптоэлектроника, волоконная и нелинейная оптика, на их основе создаются наноматериалы, которые нашли применение в медицине и пр.

В настоящее время большая часть исследований сосредоточена на поисках новых материалов. Особый интерес вызывают фторофосфатные, ниобиевофосфатные и свинцовофосфатные стекла. Активированные ниобиевофосфатные стекла представляют интерес для создания на их основе активных волноводов, применяемых для передачи информации на небольшие расстояния. Свинцовофосфатные стекла используются в качестве защитных экранов в учреждениях, работающих с ионизирующими излучениями. Поэтому задача разработки радиационно-устойчивых оптических стекол с заданными параметрами является актуальной.

В настоящее время проводится разработка волоконных усилителей на основе стекол, содержащих эрбий  $Er^{3+}$  и празеодим  $Pr^{3+}$ , излучение которых приходится на ближнюю ИК область спектра, в которой выполнение экспериментальных исследований затруднено. В качестве пробных ионов активаторов традиционно используются ионы европия  $Eu^{3+}$  и тербия  $Tb^{3+}$ , которые в радиационных процессах выступают в качестве электронных и дырочных ловушек соответственно. Изучение ИХ спектроскопических характеристик в зависимости от концентрации и состава стекла при условии их неоднородного распределения позволит оптимизировать составы стекол, использование которых возможно при создании планарных волноводов, конверторов излучения и усилителей для средств телекоммуникации. Таким образом, необходимость установления влияния активаторов на структуру, спектроскопические и физико-химические свойства стекол является актуальной. <u>**Цель настоящей работы**</u> – установить закономерности формирования микроструктуры активированных стеклообразных материалов на основе фторидов и фосфатов, обусловленной пространственным распределением ионов редкоземельных элементов ( $Tb^{3+}$ ,  $Eu^{3+}$ ).

### Научная новизна

Показано, что анализ зависимостей числа центров окраски от концентрации вводимых активаторов служит инструментом для определения смены локального окружения активаторов в стеклообразных материалах на основе фторидов и фтор-, ниобий- и свинецсодержащих фосфатов.

Установлены максимальные концентрации ионов тербия во фторалюминатном стекле, при которых они располагаются вблизи структурных единиц, содержащих кислород.

Установлено, что электронный парамагнитный центр  $PO_3^{2-}$ , ответственный за полосу в области 370 нм (27 000 см<sup>-1</sup>), образуется при разрыве P-O-P связи под воздействием  $\gamma$ -облучения.

Установлено, что распределение ионов активаторов  $Eu^{3+}$  и  $Tb^{3+}$  в стеклах составов 95MgCaSrBaAl<sub>2</sub>F<sub>14</sub> · 5Ba(PO<sub>3</sub>)<sub>2</sub> и 60MgCaSrBaAl<sub>2</sub>F<sub>14</sub> · 40Ba(PO<sub>3</sub>)<sub>2</sub> до концентраций 0,01 и 0,05 мол. % происходит независимо друг от друга.

Проведена идентификация номенклатуры радиационных центров окраски в свинцовофосфатных стеклах, дающих полосы поглощения в видимой области спектра.

Установлено, что в стеклообразных материалах на основе фторидов и фтор-, ниобий- и свинецсодержащих фосфатов локализация ионов европия и тербия, концентрации которых не превышают величины 0,5 мол. % в зависимости от состава матрицы, происходит вблизи фосфатных группировок.

**Практическая ценность результатов.** Полученные закономерности пространственного распределения ионов активаторов во фторалюминатных, фторофосфатных, ниобиевофосфатных и свинцовофосфатных стеклах в зависимости от состава стекол и концентрации активаторов могут быть использованы при разработке радиационно-стойких стекол с заданными оптическими свойствами. На основе стекол указанных систем могут быть разработаны конверторы излучения, планарные волноводы и усилители для средств телекоммуникации.

### Основные положения, выносимые на защиту

1. Предложенный подход, основанный на анализе параметров радиационных явлений, позволяет выявить особенности микронеоднородной структуры

- активированных стекол с различным содержанием фосфатов в тех случаях, когда применение структурно-чувствительных методов не дает результата.
- 2. При введении ионов РЗЭ (Eu<sup>3+</sup> и Tb<sup>3+</sup>) в концентрациях, не превышающих 0,5 мол. % в зависимости от состава матрицы стекла во фтор-, ниобий- и свинецсодержащих фосфатных стеклообразных материалах, образуются кластеры, включающие указанные ионы и фосфатные структурные единицы.
- 3. Радиационные дырочные центры  $PO_4^{2-}$  формируются как на одиночных тетраэдрах, так и при разрыве P-O-P связи, в то время как электронные центры  $PO_3^{2-}$  в основном при разрыве P-O-P связи.
- 4. Пространственное распределение ионов тербия во фторалюминатных стеклах состава 36 мол. %  $AlF_3 12,5$  мол. %  $YF_3 51,2$  мол. %  $RF_2$ , где R = Mg, Ca, Sr, Ba зависит от его концентрации и при его содержании, не превышающем 0,01 мол. %, характеризуется кластерообразованием. Ионы  $Tb^{3+}$  стабилизируют электронные центры окраски.
- 5. Распределение ионов  $Eu^{3+}$  и  $Tb^{3+}$  во фторофосфатных стеклах составов 95 MgCaSrBaAl<sub>2</sub>F<sub>14</sub>·5 Ba(PO<sub>3</sub>)<sub>2</sub> и 60 MgCaSrBaAl<sub>2</sub>F<sub>14</sub>·40 Ba(PO<sub>3</sub>)<sub>2</sub> является независимым вплоть до концентрации 0,01 и 0,05 мол. % соответственно.

### Апробация работы

Результаты, вошедшие в диссертационную работу, докладывались и обсуждались на 1<sup>st</sup> International Simposium on Innovations in Advanced Materials for Electronics and Optics (ISAMEO-1-La Rochelle), La Rochelle, Franse (June 14 – 17, 2006); Tenth International Workshop on New Approach to High-Tech: nondestructive Testing and Computer Simulations in Science and Engeneering (NDTCS-2006), Olsztyn, Poland (5-8- July, 2006); 8th International Otto Schott Colloquium, Jena, Germany (23-27 July 2006); III и V Межвузовской конференции молодых ученых (Санкт-Петербург, 2006 и 2008 гг.); Eleventh International Workshop on New Approach to High-Tech: Nano Design, Technology, Computer Simulations (NDTCS-2007), Bayreuth, Germany (17-21 September 2007); Всероссийских научно-технических конференциях «XXXV Неделя науки СПбГПУ» и «XXXVI Неделя науки СПбГПУ» и «XXXVII Неделя науки СПбГПУ» (Санкт-Петербург 2006, 2007 и 2008 гг.), I и III Всероссийском форуме студентов, аспирантов и молодых ученых «Наука и инновации в технических университетах» (Санкт-Петербург, 2007 и 2009 гг.); XIV Международной конференции «Диэлектрики-2008» (Санкт-Петербург, 2008); 12<sup>th</sup> International Workshop on New Approach to High-Tech: Nano Design,

Тесhnology, Computer Simulations (NDTCS-2007), Minsk, Belarus (23-27 June 2008); Международная молодежная научная конференция «XVIII Туполевские чтения» (Казань, 26-28 мая 2010 г.); XIV Всероссийская конференция по проблемам науки и высшей школы «Фундаментальные исследования в технических университетах» (Санкт-Петербург, 2010).

<u>Публикации.</u> По материалам диссертации опубликовано 27 печатных работ, в том числе 11 статей (6 статей в журналах перечня ВАК), 16 публикаций в трудах конференций.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав и раздела, посвященного основным результатам и выводам, а также оглавления, списка сокращений и списка цитируемой литературы. Оригинальный материал изложен в третьей и четвертой главах, которые включают полученные результаты и их обсуждение. Материал диссертации изложен на 159 страницах, содержит 61 рисунок, 11 таблиц. Список литературы включает 116 наименований.

### ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

**Введение.** Обоснована актуальность темы, определены объекты исследования и их практическая значимость, сформулирована цель работы, приведены основные положения, выносимые на защиту.

Первая глава. Аналитический обзор. Первая глава диссертации носит обзорный характер. На основании анализа публикаций приводятся основные представления о неупорядоченной и неоднородной структуре стеклообразных материалов, обсуждается применимость понятия «дефект» к неупорядоченным твердым телам. Рассматривается структура стеклообразных материалов на основе фторидов и фосфатов, механизмы образования и основные типы радиационных дефектов в них. Анализируется роль ионов переменной валентности в радиационных процессах и границы применимости моделей объема захвата и эффективного объема захвата свободных носителей ионами активатора.

Показано, что распределение ионов активаторов в стеклообразных матрицах, указанных составов, при изучении радиационных и пострадиационных процессов, протекающих в стеклообразных материалах под воздействием ионизирующего излучения, не является статистическим – явление сегрегации активатора.

На основании проведенного анализа публикаций сформулированы основные задачи исследований.

Вторая глава. Методика эксперимента. Исследование микронеоднородной структуры стеклообразных материалов проводилось в основном косвенным методом — изучались радиационные процессы, то есть процессы, протекающие под воздействием γ-излучения, и дополнялось (подтверждалось) прямыми методами, такими как спектроскопия комбинационного рассеяния, релеевская и мандельштам-бриллюэновская спектроскопия, изучение физико-химических свойств и др. Облучение образцов проводилось на источнике <sup>60</sup>Со при комнатной температуре.

В главе 2 обосновывается выбор составов стеклообразных материалов и виды активаторов, приводятся составы исследованных серий образцов и описание примененных методов исследования.

# <u>Третья глава. Экспериментальные результаты исследований стеклообразных материалов на основе фторидов и их обсуждение</u>

 $\mathbf{C}$ точки зрения физики протекания радиационных процессов стеклообразные материалы с существенными добавками фосфатов можно считать хорошо изученными, однако до сих пор нет устоявшейся точки зрения на механизмы образования радиационных центров. Подход, основанный на изучении совокупности параметров радиационных явлений, протекающих в стеклах под воздействием у-излучения, их анализ с применением модели эффективного объема захвата и установление корреляции полученных результатов с результатами исследований физико-химических свойств и спектроскопических характеристик, может быть использован как инструмент исследования микронеоднородной структуры активированных стекол.

На рисунке 1 представлены спектры наведенного оптического и ЭПР поглощения серии фторалюминатных стекол состава 36 мол. %  $AlF_3$  – 12,5 мол. %  $YF_3$  – 51,2 мол. %  $RF_2$ , где R=Mg, Ca, Sr, Ba, из которых видно, что всю совокупность спектров можно разделить на две группы. Стеклам с содержанием  $Ba(PO_3)_2$  до 1 мол. % соответствуют спектры наведенного оптического поглощения, типичные для облученных фторалюминатных стекол, а спектры ЭПР поглощения характеризуются радиационными центрами, связанными с одиночными тетраэдрами  $[PO_4]$  и дефектами фторалюминатной матрицы. Вторая группа спектров, отвечающих составам с долей метафосфата бария, превышающей 1 мол. %, имеет вид, характерный для спектров

фосфатных стекол. Предполагается, что спектры (рисунок 1 a) представляют собой суперпозицию полос наведенного поглощения (ПНП) с максимумами ~18800 см<sup>-1</sup>, ~25000 см<sup>-1</sup> и ~27000 см<sup>-1</sup>, за которые ответственны дырочные  $PO_4^{2-}$  и  $PO_3^{2-}$  и электронный  $PO_3^{2-}$ центры. В силу малой концентрации электронных центров  $PO_3^{2-}$  и перекрытия полос, точная идентификация затруднена. Однако разложение на гауссовы составляющие, а также процедура дифференцирования спектров позволяют выявить ПНП и установить положения максимумов выявленных полос. Спектры наведенного ЭПР поглощения (рисунок 1  $\delta$  –  $\epsilon$ ) характеризуются парамагнитными центрами (ПМЦ), связанными с радикалами  $PO_4^{2-}$  и  $PO_3^{2-}$ .

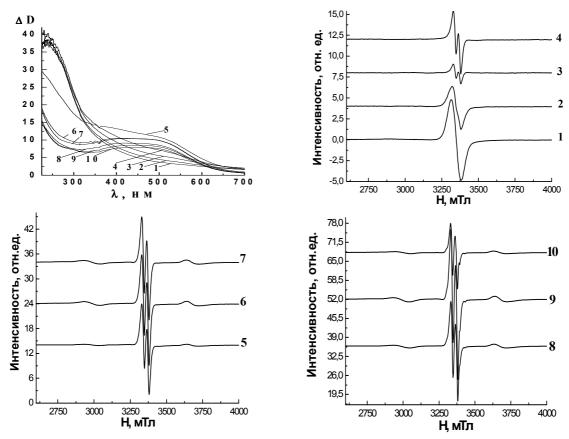



Рисунок 1 — Спектры наведённого оптического (а) и ЭПР (б — г) поглощения стёкол состава MgCaSrYBaAlF $_{14}$  с содержанием Ba(PO $_3$ ) $_2$ , мол. %: 0 (1); 0,1 (2); 0,2 (3); 0,5 (4); 1,0 (5); 2,0 (6); 3,0 (7); 5,0 (8); 7,5 (9); 10,0 (10). Доза облучения  $2 \cdot 10^6$  Р

Из сравнения полученных результатов с результатами анализа спектров комбинационного рассеяния (КР), представленных на рисунке 2, и зависимостей основных физико-химических свойств можно заключить, что образование центров  $PO_3^{2-}$  имеет место, только при формировании в стекле

пирофосфатных группировок, тогда как центры  $PO_4^{2-}$  могут быть сформированы как на одиночных тетраэдрах, так и при разрыве P—O—P связи.

Поскольку ранее были исследованы радиационные явления во фторстеклах указанного модельного состава В присутствии электронной ловушки (активатор – европий), то представляет интерес исследовать фторалюминатные стекла того же состава, активированные тербием (ТьГ<sub>3</sub>). В результате у-облучения, интенсивность полос, расположенных в видимой области меняется незначительно при введении тербия, а в ближней УФ области растет с увеличением концентрации вводимого TbF<sub>3</sub> как вследствие роста интенсивности полосы исходного Tb<sup>3+</sup>, так и радиационно-восстановленного  ${\rm Tb}^{(3^+)^+}$ . В спектре  ${\rm ЭПР}$  регистрируется центрально-резонансный интенсивность которого уменьшается с ростом концентрации Предположительно, ПМЦ, ответственные за данный сигнал, представляют центры, в состав которых входит кислород, например  $[OF_n]^{m-}$ .

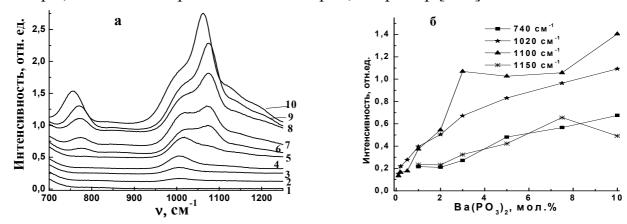



Рисунок 2 — Спектры комбинационного рассеяния стекол состава MgCaSrYBaAlF<sub>14</sub> с содержанием Ba(PO<sub>3</sub>)<sub>2</sub>, мол. %: 0 (1); 0,1 (2); 0,2 (3); 0,5 (4); 1,0 (5); 2,0 (6); 3,0 (7); 5,0 (8); 7,5 (9); 10,0 (10) (a); зависимости относительного числа орто- и пирогрупп от концентрации Ba(PO<sub>3</sub>)<sub>2</sub> (б)

Концентрационная зависимость относительной интенсивности ЭПР поглощения ПМЦ анализировалась с использованием модели эффективного объема захвата, параллельно проводился анализ спектров КР, физико-химических свойств и др. Оцененное значение параметра объем захвата  $3,6\cdot10^{-20}\,\mathrm{cm}^3$ , соответствующее диапазону концентраций до  $0,005\,\mathrm{mon}$ , превышает более чем в три раза объем захвата центров  $\mathrm{PO_4}^{2-}$  в фосфатном стекле по отношению к ионам  $\mathrm{Tb}^{3+}$ . Ранее аналогичный результат был получен для ионов  $\mathrm{Eu}^{3+}$ . Следовательно, можно предполагать, что места, где локализуются ионы обоих типов,

размещаются от предшественников центров окраски (ЦО) и ПМЦ на расстоянии меньше среднестатистического. По-видимому, число таких мест ограничено.

Изучалось влияние различных концентраций ионов тербия на кинетику распада ЦО, ответственных за полосы поглощения, расположенные в видимой области спектра. На рисунке 3 представлены результаты кинетики распада ЦО, ответственных за полосу поглощения в области 575 нм. Скорость распада электронных ЦО уменьшается, это означает, что введение их стабилизации.  $TbF_3$  приводит к Экспериментальные кинетические зависимости аппроксимируются двумя экспонентами. Хорошая корреляция с экспериментальными данными наблюдается при условии, что постоянные  $\tau_1$  и  $\tau_2$ в показателе экспоненты отличаются на два порядка. В области концентраций  $TbF_3$  до 0,005 мол. % постоянная  $\tau_1$  в противоположность общей тенденции к снижению резко увеличивается. Это может быть связано с резким изменением локального окружения ионов Tb<sup>3+</sup>. Можно ожидать, что ионы тербия распределяются в благоприятных местах фторалюминатный матрицы, повидимому, связанных с присутствием кислорода.

#### Интенсивность,

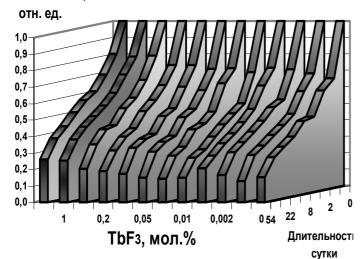



Рисунок 3 — Кинетика распада центров окраски, ответственных за полосу поглощения с максимумом в области 575 нм в стеклах состава МаСаSryBaALE.

 $MgCaSrYBaAl_2F_{14}$ , активированных  $TbF_3$ .

Таким образом, можно сделать вывод о том, что примененный к фторалюминатным стеклам подход, то есть анализ совокупности параметров, характеризующих радиационные явления, может быть применен для уточнения микронеоднородной структуры фосфатсодержацих стеклообразных материалов.

В качестве объектов исследования представлялись целесообразными составы 95 MgCaSrBaAl $_2$ F $_{14} \cdot 5$  Ba(PO $_3$ ) $_2$  и 60 MgCaSrBaAl $_2$ F $_{14} \cdot 40$  Ba(PO $_3$ ) $_2$ , представляющие практический интерес: для первого состав характерно значительное снижение рассеяния света при введении ионов РЗЭ, а стекла

второго состава обладают наиболее стабильной структурой. В качестве ионов активаторов использовались ионы европия и тербия. Ион  $\mathrm{Tb}^{3+}$  является дырочной ловушкой в отличие от иона европия, являющегося электронной ловушкой.

Анализ спектров наведенного оптического поглощения стекол состава 95MgCaSrBaAl<sub>2</sub>F<sub>14</sub>·5Ba(PO<sub>3</sub>)<sub>2</sub>, активированных тербием, оказался затруднен, ввиду того, что спектры представляют собой суперпозицию полос наведенного поглощения, обусловленных ЦО как фосфатной, так и фторалюминатной матрицы. Однако разложение спектров на гауссовы составляющие и изучение зависимостей интенсивности выявленных ПНП от концентрации вводимого  $TbF_3$ , выявило два интервала концентраций – (0-0.01) мол. % и (0.01-0.05) мол. % – величины объема захвата для которых составляют  $V=38.3\cdot10^{-20}$  см<sup>3</sup> и  $V=1.9\cdot10^{-20}$  см<sup>3</sup> соответственно. Большая величина объема захвата для диапазона (0-0.01) мол. % означает, что ионы  $Tb^{3+}$  сосредоточены преимущественно вблизи фосфатных группировок. Критическая концентрация, при которой происходит смена характера локального окружения ионов тербия составляет 0.01 мол. %.

Соактивация стекол того же состава ионами  $Tb^{3+}$  и  $Eu^{3+}$  позволила установить взаимное расположение и поведение ловушек противоположного характера в фосфатсодержащих стеклах. Для указанных стекол также определяется критическая концентрация, и в зависимостях физико-химических свойств и спектрах KP также наблюдаются особенности при данной концентрации. Это дает основание предполагать, что в изучаемых стеклах, при критическом значении концентрации ионов активатора наблюдаются структурные перестройки.

Изучение спектров наведенного оптического (рисунок 4) и ЭПР поглощения стекол  $60MgCaSrBaAl_2F_{14}\cdot 40Ba(PO_3)_2$ , активированных тербием, подтверждает сделанный выше вывод о том, что структура стекла зависит от концентрации вводимого активатора, а разложение на гауссовы составляющие позволило надежно идентифицировать дефекты, образующиеся в стекле. Для стекол указанного состава, соактивированных европием и тербием, также были ЭПР получены спектры наведенного оптического поглощения, представленные на рисунке 5. Из рисунка 5 видно, что при концентрации EuF<sub>3</sub>, превышающей 0,02 мол. % интенсивность ПНП в области 18600 см<sup>-1</sup> Отметим, концентрации значительно снижается. что с ростом EuF<sub>3</sub> наблюдается значительный рост интенсивности поглощения в области

 $30\ 000\ {\rm cm}^{\text{-1}}$ , что обусловлено, по-видимому, ростом концентрации как радиационно-восстановленного  ${\rm Eu}^{(3+)\text{-}}$ , так и двухвалентного  ${\rm Eu}^{2^+}$ . При значении волнового числа  $26\ 000\ {\rm cm}^{\text{-1}}$  наблюдается изобестическая точка, что указывает на взаимное влияние двухвалентного европия и дырочных центров  ${\rm PO_4}^{2^-}$ .

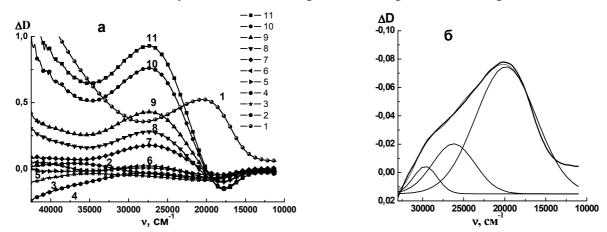



Рисунок 4 — Результаты вычитания спектра неактивированного стекла из спектров активированных стекол состава  $40\text{Ba}(\text{PO}_3)_2 \cdot 60\text{MgCaSrBaAl}_2\text{F}_{14}$ , содержащих 0 (1); 0,001 (2); 0,002 (3); 0,005 (4); 0,01 (5); 0,02 (6); 0,05 (7); 0,1 (8); 0,2 (9); 0,5 (10); 1,0 (11) мол. % Тb<sup>3+</sup>. Доза облучения  $2 \cdot 10^6$  Р. Толщина образцов — 1 мм.(а).Разложение на гауссовы составляющие спектра 2 в области отрицательных значений оптической плотности (б)

Спектр ЭПР исследуемых стекол содержит дублет линий, обусловленный центрами  $PO_4^{2-}$  с константой СТС ( $35\pm1$ ) Гс, и дублетные сигналы, относимые к различным типам  $PO_3^{2-}$  центров. Анализ зависимости относительного числа центров  $PO_3^{2-}$  и  $PO_4^{2-}$  от концентрации  $EuF_3$  показал, что дублеты линий, приписываемые дырочным центрам  $PO_4^{2-}$  и  $PO_3^{2-}$  продолжают существовать в спектрах стекол, содержащих только 0,15 мол. %  $TbF_3$ , несмотря на то, что, в спектрах наведенного оптического поглощения (рисунок 5) при данной концентрации  $TbF_3$  полоса наведенного поглощения, приписываемая дырочным  $PO_4^{2-}$  центрам, практически исчезает. Кроме того, введение  $EuF_3$  в диапазоне концентраций от (0,001-0,02) мол. % не влияет на концентрацию дырочных центров  $PO_4^{2-}$ , при этом концентрация центров  $PO_3^{2-}$  растет. А это означает, что дублетный ЭПР сигнал предпочтительно относить к дырочным ПМЦ, в рамках данного концентрационного диапазона, количество ионов  $Tb^{3+}$ , расположенных в фосфатных областях, остается постоянным. Очевидно, что места локализации ионов  $Tb^{3+}$  и  $Eu^{3+}$  различны.

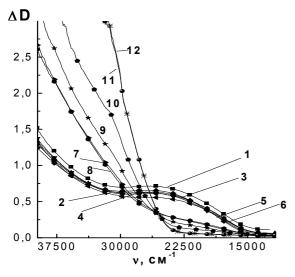



Рисунок 5 Спектры наведенного оптического поглощения ДЛЯ стекол состава 40Ba(PO<sub>3</sub>)<sub>2</sub>·60MgCaSrBaAl<sub>2</sub>F<sub>14</sub>, с концентрацией ТbF<sub>3</sub> 0,15 мол. % и EuF<sub>3</sub>, мол. %: 0,001 (2); 0(1); 0.002(3); 0.005(4); 0.01(5); 0.02(6); 0.05(7); 0,1 (8); 0,2 (9); 0,5 (10); 1,0 (11); 1,2 (12). Доза облучения  $2 \cdot 10^6$  Р.

Толщина образцов – 1 мм

Приведенные выше результаты исследований групп образцов различного состава, активированных ионами тербия и соактивираванных тербием и европием, позволяют утверждать, что ионы РЗЭ оказывают решающее влияние именно на фосфатную составляющую.

# <u>Четвертая глава. Экспериментальные результаты исследований стеклообразных материалов на основе ниобий- и свинецсодержацих фосфатов и их обсуждение</u>

исследования Объектами являлись стекла состава 20 K<sub>2</sub>O·10 Al<sub>2</sub>O<sub>3</sub>·20 PbO·50 P<sub>2</sub>O<sub>5</sub>, активированные малыми концентрациями тербия и олова. В видимой области спектры наведенного оптического поглощения стекол, активированных ионами тербия, представляют собой суперпозицию четырех полос наведенного поглощения. Полоса в области 700 нм по данным литературы приписывается ЦО, в состав которого входит Pb<sup>2+</sup>. При введении тербия интенсивность ПНП в области 740 нм остается практически неизменной, таким образом, она может быть связана с ЦО электронной природы. Это подтверждается тем, что при введении олова наблюдается снижение интенсивности указанной полосы. Заметим, что при этом характер изменения концентрации ЦО дырочной природы зависит от соотношения сечения рекомбинации электронов и дырок и сечения захвата свободных носителей ионами активатора. Введение ионов тербия в стекло фосфатное vказанной серии стекло состава 80 NaPO<sub>3</sub> ·20 La(PO<sub>3</sub>) подтверждает высказанное предположение, так как в первом случае изменения интенсивности ПНП, связываемой с дырочными ЦО практически происходит, а во втором – наблюдается ее рост, что отражено на рисунке 6.

Соответственно места локализации ионов тербия связаны с фосфатными группировками исследуемого стекла.

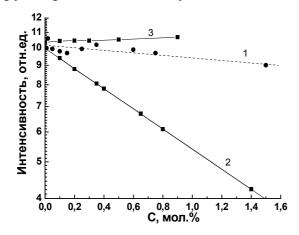



Рисунок 6 — Зависимость относительной интенсивности ПНП с максимумом в области 740 нм от концентрации  $Tb^{3+}$  (1) и  $Sn^{4+}$  (2) для стекол состава  $20 \text{ K}_2\text{O}\cdot 10 \text{ Al}_2\text{O}_3\cdot 20 \text{ PbO}\cdot 50 \text{ P}_2\text{O}_5$  и с максимумом в области 370 нм от концентрации  $Tb^{3+}$  для стекол состава  $80 \text{ NaPO}_3\cdot 20 \text{ La}(\text{PO}_3)$  (3)

Изучение кинетики изотермического обесцвечивания позволило выявить ПНП с максимумом в области 900 нм, а также заключить, что введение олова приводит к снижению скорости распада электронных ЦО, связанных со свинцом и электронных центров  $PO_3^{2-}$ .

В качестве ниобийсодержащего фосфатного стеклообразного материала был выбран состав  $45 \text{ Na}_2\text{O} \cdot 25 \text{ Nb}_2\text{O}_5 \cdot 30 \text{ P}_2\text{O}_5$ . Ранее в стеклах указанного состава, активированных европием, наблюдался интересный эффект, который заключался в увеличении интенсивности люминесценции ионов  $\text{Eu}^{3+}$  в стеклах прошедших термообработку в зависимости от длительности термообработки. Этот факт может быть объяснен исходя из предположения о неравномерном распределении ионов активаторов в матрице стекла. Таким образом, применение предложенного выше подхода к изучению неоднородной структуры стекла было особенно интересно.

Изучение спектров наведенного оптического поглощения показало, что спектры представляют собой суперпозицию как минимум четырех полос поглощения. На рисунке 7 приведена зависимость интенсивности суперпозиции в области 600 нм от концентрации ионов Eu<sup>3+</sup>. Увеличение интенсивности поглощения, сопровождающееся дальнейшим снижением при увеличении концентрации европия, можно объяснить, сделав следующее предположение: европий, введенный в малых концентрациях, до 0,1 мол. %, областях. фосфатных C ростом концентрации находится европий локализуется в периферийных областях фосфатной структуры, нахождение его вблизи ниобатных группировок становится более вероятным, ранее предположения о неравномерном подтверждает сделанные что распределении ионов активаторов в матрице стекла.

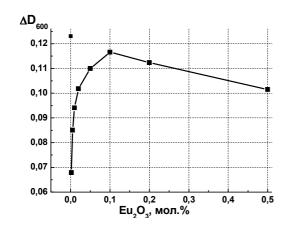



Рисунок 7 — Зависимость интенсивности суперпозиции полос в области 600 нм для стекла состава  $45\mathrm{Na_2O} \cdot 25\mathrm{Nb_2O_5} \cdot 30\mathrm{P_2O_5}$  от концентрации вводимого активатора

### Основные результаты

- 1. Ионы РЗЭ ( $Eu^{3+}$  и  $Tb^{3+}$ ) и переходных металлов ( $Sn^{2+}$ ) при малых концентрациях (до 0,5 мол. %) формируют кислородное окружение в стеклообразных материалах на основе фторидов и фтор-, ниобий- и свинецсодержащих фосфатов.
- 2. Установлено, что окружение ионов  $Eu^{3+}$  и  $Tb^{3+}$  в фторалюминатных, фторофосфатных, ниобиевофосфатных и свинцовофосфатных стеклообразных материалах зависит от состава матрицы и концентрации активатора.
- 3. Продемонстрировано, распределение тербия что ионов BO фторалюминатных стеклах не является статистическим. Вплоть ДО  $\sim 1.1 \cdot 10^{19} \,\mathrm{ион/cm}^3$ 0.005 мол. % или ОНИ сосредоточены В микронеоднородных областях матрицы стекла.
- 4. Показано, что дырочные и электронные центры  $PO_3^{2-}$  ответственны за близко расположенные полосы в области (25 27)· $10^3$  см<sup>-1</sup> во фторалюминатных стеклах с переменным содержанием  $Ba(PO_3)_2$  от 2 мол. % до 10 мол. %.
- 5. Образование центров  $PO_3^{\ 2^-}$ , ответственных за полосу в области 27000 см $^{-1}$ , происходит при разрыве мостиков P-O-P.
- 6. Показано, что в стекле состава  $5Ba(PO_3)_2 \cdot 95MgCaSrBaAl_2F_{14}$  критическая концентрация ионов тербия или европия при постоянной концентрации тербия, при которой происходит изменение характера локального окружения (от кислородного к смешанному) составила 0,005 и 0,01 мол. % или  $1,05\cdot10^{18}$  и  $2,09\cdot10^{18}$  ион/см<sup>3</sup> соответственно.
- 7. Показано, что в стекле состава  $40\text{Ba}(\text{PO}_3)_2 \cdot 60\text{MgCaSrBaAl}_2\text{F}_{14}$  критическая концентрация ионов тербия или европия при постоянной концентрации тербия, при которой происходит изменение характера локального окружения

- (от кислородного к смешанному) составила 0,01 мол. % и 0,05 мол. % или  $1,3\cdot10^{18}$  и  $2,6\cdot10^{18}$  ион/см<sup>3</sup>.
- 8. Места локализация ионов тербия  $Tb^{3+}$  в стеклообразном материале  $20 \text{ K}_2\text{O}\cdot 10 \text{ Al}_2\text{O}_3\cdot 20 \text{ PbO}\cdot 50 \text{ P}_2\text{O}_5$ , связаны с фосфатными группировками.
- 9. Впервые выявлена полоса с максимумом в области 900 нм, предположительно связанная с собственными дырочными центрами окраски, в состав которых входит  $Pb^{(2+)}$ .
- 10.Показано, что ионы  $Eu^{3+}$  в стекле состава  $45Na_2O\cdot25Nb_2O_5\cdot30P_2O_5$  при концентрации не превышающей 0,1 мол. % располагаются в фосфатных областях матрицы стекла, при концентрациях  $Eu^{3+}$  свыше 0,1 мол. % их локализация происходит на периферии фосфатных областей.

Результаты настоящей работы позволяют утверждать, совокупности параметров радиационных явлений может применяться в инструмента для установления характера микронеоднородной структуры стеклообразных материалов с различным содержанием фосфатов, для определения концентраций, при которых происходит смена локального вводимых активаторов, окружения также позволяет проводить идентификацию дефектов, возникающих действием В стекле ПОД ионизирующего излучения.

### Основные публикации по теме диссертации

Публикации в периодических научных изданиях, рекомендованных ВАК:

- 1. **Бочарова**, Т.В. Пространственное распределение ионов Eu<sup>3+</sup> и Tb<sup>3+</sup> во фторалюминатных стеклах [Текст] / Бочарова Т.В., Власова А.Н., Миронов А.М. // Научно-технические ведомости СПбГПУ. 2008. вып. 3 (59). С. 156–163.
- 2. **Власова**, А.Н. О вилянии ионов редкоземельных элементов на структуру фторофосфатных стекол состава Ba(PO<sub>3</sub>)<sub>2</sub> MgCaSrBaAl<sub>2</sub>F<sub>14</sub> [Текст] / Власова А.Н., Бочарова Т.В., Тагильцева Н.О. // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2008. № 58. Оптотехника, оптоинформатика, оптические материалы. С. 70–76.
- 3. **Бочарова**, Т.В. Локальное окружение ионов  $Eu^{3+}$  и  $Tb^{3+}$  во фторофосфатных стеклах системы  $Ba(PO_3)_2 MgCaSrBaAl_2F_{14}$  [Текст] / Бочарова Т.В., Власова А.Н., Карапетян Г.О., Курявый В.Г., Миронов А.М.,

- Тагильцева Н.О. // Физика и химия стекла. 2008. Т. 34. № 5. С. 899–911.
- 4. **Бочарова**, Т.В. Пространственное распределение ионов  $Tb^{3+}$  во фторофосфатных стеклах системы  $Ba(PO_3)_2 MgCaSrBaAl_2F_{14}$  [Текст] / Бочарова Т.В., Власова А.Н., Карапетян Г.О., Тагильцева Н.О. // Известия РГПУ им. А.И. Герцена. вып. 11 (79) Естественные и точные науки: Физика. 2009. С. 107–115.
- 5. **Бочарова**, Т.В. Влияние вторичных термообработок на спектроскопические свойства стекол системы  $Na_2O Nb_2O_5 P_2O_5$  [Текст] / Бочарова Т.В., Власова А.Н., Карапетян Г.О., Миронов А.М. // Неорганические материалы. 2010. Т. 46 вып. 1. С. 81–86.
- 6. **Бочарова**, Т.В. О влиянии малых добавок редкоземельных элементов на структуру фторофосфатных стекол [Текст] / Бочарова Т.В., Власова А.Н., Карапетян Г.О., Масленникова И.Г., Сироткин С.А., Тагильцева Н.О.. // Физика и химия стекла. 2010. Т.36. № 3. С. 350–360.

### Прочие публикации по теме диссертации:

- 7. **Власова**, **А.Н.** Пространственное распределение ионов Тb во фторалюминатных стеклах [Текст] / Власова А.Н., Титов И.Н. // Научно-технический вестник СПбГУ ИТМО Вып. 26. Исследования в области приборостроения. 2006. С. 312–315.
- 8. **Bocharova**, **T.** Manifestation of microinhomogeneous structure of doped fluorophosphates glasses in gamma-induced optical spectra [Текст] / T. Bocharova, G. Karapetyan, N. Tagil'tseva, A. Vlasova // Proceedings of SPIE. 2007. —V. 6597. P. 6597-104–6597-108.
- 9. **Bocharova**, **T. V.** Spatial distribution of rare-earth ions in fluorophosphate glasses of traditional composition [Teκcτ] / Bocharova T.V., Tagil'tseva N.O., Vlasova A.N. // Proceedings of SPAS. 11<sup>th</sup> International workshop on New Approaches to high-tech: NDTCS-2007. 17-21 September, 2007, Bayreuth, Germany. 2007. V. 11. P. 11302-1–11302-6.
- 10. **Тагильцева**, **Н.О.** Спектры оптического поглощения и физико-химические свойства активированных фторалюминатных стекол [Текст] / Тагильцева Н.О., Бочарова Т.В., Власова А.Н. и др. // Известия Санкт-Петербургского государственного технологического института (технического университета). 2008.— № 3(29). С. 22–26.
- 11. **Bocharova**, **T.** Effect of thermal treatment on spectroscopic properties of europium doped niobate phosphate glasses [Текст] / T. Bocharova, A. Vlasova, G. Karapetyan, A. Mironov // Proceedings of SPIE. 2009. —V. 7377 P.73770J-1 –73770J-7.