Министерство образования и науки Российской Федерации

САНКТ–ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Приоритетный национальный проект «Образование» Национальный исследовательский университет

К.Д. АНДРЕЕВ, С.Ю. ОЛЕННИКОВ, В.Г. ПОЛИЩУК, В.А. РАССОХИН, Н.П. СОКОЛОВ

РАБОЧИЕ ПРОЦЕССЫ ГАЗО- И ПАРОТУРБИННЫХ УСТАНОВОК ТЕПЛОВЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ

РАБОЧИЕ ПРОЦЕССЫ ГАЗОТУРБИННЫХ УСТАНОВОК

Санкт-Петербург Издательство Политехнического университета 2010 ББК 31.363я73 Э 651

Рецензент: Доктор технических наук, профессор Санкт-Петербургского государственного политехнического университета *В.В. Сергеев*

Рабочие процессы газо- и паротурбинных установок тепловых электрических станций. Рабочие процессы газотурбинных установок: Учеб. пособие / К.Д. Андреев, С.Ю. Оленников, В.Г. Полищук, В.А. Рассохин, Н.П. Соколов – СПб.: Изд-во Политехн. ун-та, 2010. – 227 с.

Рассматриваются три группы процессов, характерных для газотурбинных установок тепловых электрических станций: переменные режимы работы, вредные выбросы и методы их подавления, а также охлаждение элементов высокотемпературных газовых турбин.

Учебное пособие предназначено для студентов вузов, обучающихся по магистерским программам «Энергоэффективные и энергосберегающие технологии в теплоэнергетике и теплотехнике» и «Паровые и газовые турбины» направлений подготовки магистров «Теплоэнергетика и теплотехника» и «Энергомашиностроение» соответственно. Пособие может быть полезно для студентов, обучающихся по другим направлениям, а также в учреждениях дополнительного профессионального образования.

Работа выполнена в рамках реализации программы развития национального исследовательского университета «Модернизация и развитие политехнического университета как университета нового типа, интегрирующего мультидисциплинарные научные исследования и надотраслевые технологии мирового уровня с целью повышения конкурентоспособности национальной экономики»

Печатается по решению редакционно-издательского совета Санкт-Петербургского государственного политехнического университета.

© Андреев К.Д., 2010 © Санкт-Петербургский государственный политехнический университет, 2010

				6
1		• • • • • • • • • • • •		7
1.				10
	1 1	••••		10
	1.1.		••••••••••••••••••••••••••••••	10
	1.2. 1.3.		•••••	11
				17
	1.4.			21
	1.5.			35
	1.6.			40
2.				57
	2.1.			57
	2.2.			59
	2.3.			60
		2.3.1.		60
		2.3.2.		62
	2.4.		NO _x	62
	2.5.			64
3.				69
	3.1.			
				69
		3.1.1.		69
		3.1.2.		70
		3.1.3.		75
		3.1.4.		81
		3.1.5.		
				88
		3.1.6.	-	
				91
		3.1.7.		
		210		96
		3.1.8.		
				113

3.2.		100
	3.2.1.	 126
	2.2.2	 126
	3.2.2.	 131
	5.2.5.	135
	3.2.4.	 155
	3.2.5.	 136
		 137
	3.2.6.	
3.3.	2 2 1	 139 148
	3.3.1.	1 / 0
	3.3.2.	 140
		 153
	3.3.3.	
	3.3.4.	 163
2.4		 167
3.4.	2 4 1	 174
	3.4.1.	 174
	J. 4 .2.	1.5.4

..... 176

3.4.3.		
3.4.4.		178
3.5.		182
3.5.1.		188
3.5.2.		188
3.5.3.	-	190
		194
3.6.1.		195
3.6.2.		195
		207 226

, ,

() , . .

,

. _____, ____, ____, ____, ____,

· - -•

, -, . , -_

· , , , , , , , , , , (), -, ⁻ ,

; , ____,

, -, .

, , <u>;</u>

; « »

:

» •

-

1.2.

,

,

,

,

.

.

. 1.1.

•

,

, 2 5 4,

()

1

3

.

,

,

,

11

-

•

_

•

,

G

. 1.2

. V .

,

(),

·

М, -

$$M_{z} = c_{z} / \sqrt{kRT} \qquad M_{u} = u / \sqrt{kRT} , \qquad ,$$

$$G \sqrt{T^{*}} / p^{*} , \qquad z.$$

,

 M_u , - $n/\sqrt{T^*}$.

, $(T^* = 288$,

 $p^* = 1$ 100):

-

 $V / \sqrt{T^*}$

$$G = G \frac{100}{p^*} \sqrt{T^*/288}, n = n\sqrt{288/T^*}.$$

$$-$$

$$:$$

$$\overline{G} = G p^* \sqrt{T^*} / (G p^*), \overline{n} = (n/n_p) \sqrt{T^* / T^*}.$$

$$. 1.3$$

$$.$$

(. 1.3

•

,

,

,

_

,

,

).

(

. 1.3.

)

. 1.4.

•

, . -

1.3.

:

,

1 - , 2 -

,

$$\begin{split} \Delta p &= \zeta \quad \rho_2 \ {}_2^2/2. \\ \Delta p &= \Delta p \quad _0 (\ _2/ \ _{20}) (\ _{20}/ \ _2) (G_B/G_{B0})^2. \\ , \\ \Delta p &= \rho_2 (\ _2^2/2) \chi (\ _3/ \ _2 - 1), \end{split}$$

,

,

,

18

•

:

$$= const$$

$$\Delta p_{H} = \Delta p_{H0} \frac{T_{2}}{T_{20}} \frac{p_{20}}{p_{2}} (\frac{G_{B}}{G_{B0}})^{2} \frac{T_{3}/T_{2}-1}{T_{30}/T_{20}-1}.$$

$$\Delta p_{\perp} = \Delta_{\perp 0} \left(K_1 \frac{2}{20} + K_2 \frac{3 - 2}{30 - 20} \right) \frac{\pi_{-0}}{\pi} \left(\frac{G_B}{G_{B0}} \right)^2.$$

$$1 = 0 \left(1 + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} \right) \left(1 + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} \right) \left(1 + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} \right) \left(1 + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} + \frac{1}{20} \right) \left(1 + \frac{1}{20} + \frac{1}$$

,

= 0/ ..0 -

,

2

,

:

,

•

,

$$_1 = 0,65...0,7, _2 = 0,3...0,35.$$

,

$$\Delta p = \Delta = 0 \frac{1 - H_K / \eta_K}{(1 + \overline{H}_K / \eta_K)_0} \frac{\pi_{K0}}{\pi_K} (\frac{G_B}{G_{B0}})^2.$$

4

5.

_

$$_{5} = _{2} + \mu \cdot (_{4} - _{2}). \mu$$

•

$$Q = P \cdot G_B \cdot (T_5 - T_2).$$
 = 4 - 5,

;

,

,

,

$$F = (c_P G_B / k) [\mu / (1 - \mu)].$$

,

$$k = \alpha_1 \alpha_B / (\alpha_r + \alpha_B) ,$$

$$B$$

$$\alpha = 0.023 (\lambda / d) \operatorname{Re}^{0.8} P^{0.4},$$

$$r = r_0 / \left[r_0 + (1 - r_0) (G_B / G_{B0})^{0.2} \right].$$

•

$$(\Delta p = _2 - _5),$$

-

μ

-)

$$(\Delta p = _4 -).$$

:

,

$$\Delta p = \Delta \quad {}_{0} \left[K_{1} \quad \frac{2}{20} + K_{2} \quad \frac{5 - 2}{(5 - 2)_{0}} \right] \times \frac{\pi}{\pi} \left(\frac{G}{G} \frac{1}{9} \right)^{2}.$$

$${}_{1} = 0, 8 \dots 0, 9, \quad {}_{2} = 0, 1 \dots 0, 2.$$

$$\Delta p_{K-T} = \Delta p_{(K-T)0} \frac{1 + \overline{H_K} / \eta_K}{(1 + \overline{H_K} / \eta_K)_0} \frac{\pi_{K0}}{\pi_K} \left(\frac{G}{G_0}\right)^2.$$

1.4.

,

,

$$G_T / G_{T0} = (P_3 / P_{30}) \sqrt{T_{30}} / T_3 \times \sqrt{\left[1 - (P_4 / P_3)_0^2\right]},$$
$$G_T / G_{T0} = (p_3 / p_{30}) \sqrt{T_{30}} / T_3 \beta_T \beta_{T0},$$

:

$$\beta_T = \sqrt{1 - \pi_T^{-2}} - ,$$
(. 1.6); > 6 1.

21

_

$$G_{T} = G_{T0} \frac{P_{3}}{P_{30}} \sqrt{\frac{T_{30}}{T_{3}}} \times \sqrt{\frac{(\pi - 4)^{2} - (\pi - \pi - 2)^{2} / \pi^{2}}{(\pi - 4)^{2} - (\pi - \pi - 2)^{2} / \pi^{2}}},$$

,

,

. 1.6.

,

:

> 0

.

,

•

22

>

8...10 %.

,

,

Ζ

0

1/

Z

, k_n .

:

,

,

 $x_{opt} = 0,75 -$

,

,

$$\begin{split} G_{T,B} \,/\, G_{T.B0} &= \begin{pmatrix} p_{3B} \,/\, p_{3B0} \end{pmatrix} \sqrt{T_{3B0} \,/\, T_{3B}} \,\beta_{T.B} \,/\, \beta_{T.B0}; \\ G_{T,} \,\,/\, G_{T,0} &= \begin{pmatrix} p_{3} \,\,/\, p_{3 \,\,0} \end{pmatrix} \sqrt{T_{3 \,\,0} \,/\, T_{3}} \,\beta_{,} \,\,/\, \beta_{T,0}; \end{split}$$

:

$$\frac{\pi}{\pi}, \frac{1-\eta}{1-\eta}, \frac{\eta}{1-\eta}, \frac{\beta}{\beta}, \frac$$

. 1.8.

. •

$$\begin{split} H_{T0} &= c \quad (\ _{0}^{*} - \ _{2t}); h_{c0} = (T^{*}_{0} - T_{1t}) \\ h_{P0} &= c_{P} \quad (T_{1t} - T_{2t}), \\ & : \\ \rho_{T} &= (\pi_{p}^{\ m} \ -1)/(\pi^{\ m} \ -1); \\ \pi_{p} &= (1 + \rho_{T} \pi_{T}^{\ m} \ \overline{H_{T}})^{1/m} \ ; \pi \ = \left[1 \ -(1 - \rho_{T})\overline{H_{T}}\right]^{-1/m} \\ m &= (k - 1)/k; \overline{H_{T}} = 1 - \pi_{T}^{-m} \quad - \\ & \cdot \\ & : \end{split}$$

.

,

•

•

$$\overline{H_T} = \lambda^2 (k-1)/(k+1);$$
$$\overline{H_T} \Big[M^2 (k-1/2) \Big] / \Big[1 = M^2 (k-1)/2 \Big],$$
$$\sqrt{\overline{H_T}}$$

$$\overline{h_c} = (1 - \rho_T)\overline{H_T} \times \overline{h_p} = \rho_T \overline{H_T} \pi_c^m .$$

$$G_{T} = G_{T0} (P_{0}^{*} / P_{00}^{*}) \sqrt{T_{00}^{*} / T_{0}^{*}} (\beta_{c} / \beta_{c0}),$$

$$- ,$$

$$;$$

$$\beta = \frac{\sqrt{\varphi^{2} \overline{h_{c}}}}{(1 - \varphi^{2} \overline{h_{c}}) \pi_{c}} = \frac{\sqrt{\varphi^{2} (1 - \varphi_{T}) \overline{H_{T}}} [1 - (1 - \varphi_{T}) \overline{H_{T}}]^{1/m}}{[1 - \varphi^{2} (1 - \varphi_{T}) \overline{H_{T}}] \pi_{c}},$$

*

,

 φ -

. . 1.9.

. 1.9.

$${}_1f_c / \upsilon_1 = \omega_2 f_p / \upsilon_2.$$

27

:

$$\frac{w_1^2}{n^2} + \frac{\rho_T}{\varphi^2 (1 - \rho_T)} = \left(\frac{f_c \upsilon_2}{f_p \upsilon_1 \psi}\right)^2;$$
$$\frac{\upsilon_2}{\upsilon_1} = \left(\frac{p_1}{p_2}\right)^{1/n} = \pi^{1 - \psi^2 m_u},$$
$$(n-1)/n = \psi^2 (k-1)/k,$$

$$\left(\frac{u/c_0}{\varphi \sqrt{1 - \rho_T}} - \cos \alpha_1 \frac{1}{\dot{j}}^2 + \sin^2 \alpha + \frac{\rho_T}{\varphi^2 (1 - \rho_T)} \right) = \\ = \left(\frac{d_1 l_c}{d_2 l_p} \frac{1}{\dot{j}}^2 \frac{\sin^2 \alpha_1}{\psi^2 \sin^2 \beta_2} (1 + \rho_T \pi_T^m \overline{H_T})^2 \frac{[k/(k-1) - \psi^2]}{\psi^2 \sin^2 \beta_2} \right),$$

_

.

$$G = f / \upsilon_{2} = f _{2} / (RT_{2}).$$

$$T_{2} = T_{2} \left[1 + (\pi^{m} - 1) / \eta \right],$$

$$\overline{G} = G / G_{0} = \frac{\frac{2}{2} \frac{0}{0} \left(1 - \phi^{2} \overline{h_{c}}\right)_{0} \left(1 - \phi^{2} \overline{h_{p}}\right)_{0} \left[\frac{1}{(\pi^{m} - 1)/\eta}\right]_{0}}{\frac{1}{0} \frac{2}{20} \frac{1}{0} \left(1 - \phi^{2} \overline{h_{c}}\right) \left(1 - \phi^{2} \overline{h_{p}}\right) \left[\frac{1}{(\pi^{m} - 1)/\eta}\right]},$$

$$\pi = \frac{2}{2} / \frac{2}{2} - \frac{1}{2} + \frac$$

η - ; -

 $G / G_0 = G_T / G_{T0}$ -

$${}_{2} = {}_{2} \left\{ \left(1 - \eta_{-}\right) + \left[\pi_{-}^{m} \left(1 - \eta_{-}\right)\right]_{0} - \frac{\pi_{-}}{0} \times \frac{\pi_{-}}{\pi_{-}} \sqrt{\frac{0}{0}} \frac{\pi_{-}}{0} \left(1 - \varphi^{2} \overline{h_{c}}\right)_{0} \left(1 - \psi^{2} \overline{h_{p}}\right)_{0} \eta_{-} \beta_{-}} \right\}^{-1/m},$$

$$\pi_{-} = {}_{0}^{*} / {}_{2} - \frac{\pi_{-}}{0} - \frac{\pi_{-}}{0} \left(1 - \varphi^{2} \overline{h_{c}}\right)_{0} \left(1 - \psi^{2} \overline{h_{p}}\right)_{0} \eta_{-} \beta_{-}} \right]^{-1/m},$$

$$\frac{2}{20} = \sqrt{\frac{w_2^2 + u_2^2 - 2w_2u_2\cos\beta_2}{(w_2^2 + u_2^2 - 2w_2u_2\cos\beta_2)_0}},$$
$$w_2 = \psi \left\{ 2\rho_T H_{T0} + \left[2H_{T0}(1 - \rho_T)\varphi^2 + u_1^2 - 2\sqrt{2H_{T0}(1 - \rho_T)\varphi^2}u_1\cos\alpha_1 \right] \right\}^{0.5}.$$

$$\rho , H_{T0}, \bar{h}_c, \bar{h}_p, \\
x = u/c_0, \\
\eta = 2x [\rho \cos \alpha_1 + \psi(\rho \cos \alpha_1 - x) - x], \\
\rho \quad \psi \\
, \\
\eta \quad = 2x [\rho \cos \alpha_1 + \psi(\rho \cos \alpha_1 - x) - x], \\
\rho \quad \psi \\
, \\
\eta \quad = 0^* \quad \psi \\
, \\
\eta \quad = 0^* \quad 0^* \quad$$

_

,

.

_

_

• •

:

i-

,

$$\pi_{1i} = p_{0i} / p_{1i}$$
 $\pi_{2i} = p_{1i} / p_{2i}$
 $\pi_{1i}^{*} = p_{0i}^{*} / p_{1i}$ $\pi_{2i}^{*} = p_{1i}^{*} / p_{2i}$;

$$h_{01i} = c_p T_{0i} \left(1 - \pi_{1i}^{(k-1)/k} \right) = c_p T_{0i} \overline{h}_{1i}$$

$$h_{02i} = c_p T_{1i} \left(1 - \pi_{2i}^{-(k-1)/k} \right) = c_p T_{1i} \overline{h}_{2i}$$

$$h_{01i}^* = c_p T_{0i}^* \overline{h}_{1i}^* \qquad h_{02i}^* = c_p T_{1i}^* \overline{h}_{2i}^*.$$

$$\vdots$$

$$c_{1i} = \sqrt{2c_p T_0} \left[\phi^2 \overline{h}_1 + \phi^2 c_{2(-1)}^2 / (4c T_0) \right]$$

$$w_{2i} = \sqrt{2c_p T_{1i} \left[\psi_i^2 \overline{h}_{2i} + \psi_i^2 w_{1i}^2 / (4c_p T_{1i}) \right]}.$$

:
$$v_{1i} = RT_{0i} \left(1 - \overline{h}_{1i} \varphi_i^2 \right) \pi_{1i} / p_{0i}$$

$$v_{2i} = RT_{1i} \left(1 - \overline{h}_{2i} \psi_i^2 \right) \pi_{2i} / p_{1i} .$$

$$\begin{split} \frac{\varphi_{i}^{2}\overline{h}_{1i}+\varphi_{i}^{2}c_{2(i-1)}^{2}/(4c_{p}T_{0i})}{\left[\varphi_{i}^{2}\overline{h}_{1i}+\varphi_{i}^{2}c_{2(i-1)}^{2}/(4c_{p}T_{0i})\right]_{0}} \approx \frac{\varphi_{i}^{2}\overline{h}_{1i}}{\varphi_{i0}^{2}\overline{h}_{1i0}}\\ \frac{\psi_{i}^{2}\overline{h}_{2i}+\psi_{i}^{2}w_{1i}^{2}/(4c_{p}T_{1i})}{\left[\psi_{i}^{2}\overline{h}_{2i}+\psi_{i}^{2}w_{1i}^{2}/(4c_{p}T_{1i})\right]_{0}} \approx \frac{\psi_{i}^{2}\overline{h}_{2i}}{\psi_{i0}^{2}\overline{h}_{2i0}}, \end{split}$$

$$\begin{split} \frac{G_{1i}}{G_{1i0}} &= \frac{p_{0i}}{p_{0i0}} \sqrt{\frac{T_{0i0}}{T_{0i}}} \frac{\beta_{1i}}{\beta_{1i0}}, \\ \frac{G_{2i}}{G_{2i0}} &= \frac{p_{1i}}{p_{1i0}} \sqrt{\frac{T_{1i0}}{T_{1i}}} \frac{\beta_{2i}}{\beta_{2i0}}, \\ \beta_{1i} &= \sqrt{\varphi_i^2 \overline{h_{1i}}} / \left[\left(1 - \varphi_i^2 \overline{h_{1i}} \right) \pi_{1i} \right] \quad \beta_{2i} = \sqrt{\psi_i^2 \overline{h_{2i}}} / \left[\left(1 - \psi_i^2 \overline{h_{2i}} \right) \pi_{2i} \right]. \\ G_{1i} / G_{1i0} &= G_{2i} / G_{2i0}, \end{split}$$

$$\frac{\beta_{2i}}{\beta_{2i0}} = \frac{1i}{1i0},$$

- .

$$\frac{1}{1i} = \pi_{1i} \sqrt{\varphi_i^2 \bar{h}_{1i}} / (1 - \varphi_i^2 \bar{h}_{1i}),$$

$$\frac{\beta_{1(i+1)}}{\beta_{1(i+1)0}} = \frac{2i}{2i0}$$

$$\ll - \gg$$

$$\vdots$$

$$\frac{\beta}{\beta_0} = \frac{2z}{2z0},$$

$$\beta = \sqrt{(\pi^{m} - 1)/\eta} / [1 + (\pi^{m} - 1)/\eta] \pi .$$

$$() 2z,$$

$$() 2z,$$

$$2z.$$

$$2z.$$

$$2z.$$

$$2z.$$

$$1z = 1z0. 2z/ 2z0,$$

$$1z$$

$$1z$$

$$2(z-1)$$

$$11.$$

$$= 11^{\circ} 21^{\circ} 22^{\circ} 2z^{\circ}$$
4. $p_0^* p_2^{\circ}$, .
5.

,

$$\Delta h \quad _{.i} = \Delta h \quad _{.0} \times \left(\frac{G_{i}}{G_{i0}} \frac{1}{J} \right)$$

,

$$\eta = \frac{\sum_{i=1}^{z} (u_1 c_1 \times \cos \alpha_1 - u_2 c_2 \times \cos \alpha_2)_i}{c_p T_0^* \overline{H}} \xrightarrow{2z}_{i=1} \Delta h_i$$

$$\overline{x} = \frac{X}{X_0} = \frac{\sqrt{\sum_{i=1}^{z} \frac{u_i^2}{2H_0}}}{\sqrt{\left(\sum_{i=1}^{z} \frac{u_i^2}{2H_0}\frac{1}{2H_0}\frac{1}{j_0}\right)}}.$$

$$\eta = \eta_0 \times \left(2\overline{X} - \overline{X}^2 \right).$$

 $_0 < _{\max}$,

$$\eta = \eta_{0} \frac{2\overline{X}_{opt} - \overline{X}_{opt}^{2}}{\left(2\overline{X}_{opt} - \overline{X}_{opt}^{2}\right)_{0}},$$

$$\overline{X}_{opt} = \frac{\sqrt{\sum_{i=1}^{z} \frac{u_i^2}{2H_0}}}{\sqrt{\left(\sum_{i=1}^{z} \frac{u_i^2}{2H_0}\frac{1}{j_{opt}}\right)}}.$$

«opt»

max•

-

_

() :

$$\psi = \psi_0 \sqrt{1 - A(i)^2}$$
,
 $\psi_0 - i = 0; - - i$,
0,15 -

,

-

_

-

$$N = N_{0} \frac{p_{0}^{*}}{p_{00}^{*}} \sqrt{\frac{\overline{H}}{\overline{H}_{0}}} \frac{n}{n_{0}} \frac{\beta}{\beta_{0}} \frac{\eta}{\eta_{0}}.$$

$$\eta = 1 - (1 - \eta_{0}) \frac{N_{0}}{N} \left(\frac{n}{n_{0}} \right)^{a},$$

= 1,5...1,8,

•

1.5.

•

$$G = G + G - G - G$$
,
 $G - , G - ,$

,

•

•

:

_

G	(0,04	.0,10)G					
		, (3	(0,0100,015)G			
		,	G	(0,0100,025)G			_
						•	_
,		G - G		,	,		_

,

•

$$\sum_{i=1}^{n} G_{i} \times H_{i} \times \eta \qquad -\sum_{j=1}^{m} G_{j} \times H_{j} = 0.$$

$$\sum_{i=1}^{n} G_{i} \times H_{i} \times \eta \qquad -\sum_{j=1}^{m} G_{j} \times H_{j} = N ,$$

,

•

,

•

,

,

.

,

,

,

•

,
$$1 \cdot 2 \cdot \dots \cdot m \cdot = 1 \cdot 2 \cdot \dots \cdot n,$$

$$v = (1 - \xi)(1 - \xi_1) \times \dots \times (1 - \xi_z) / (1 + \xi) - \dots + (1 - \xi_z) - \dots + (1 - \xi_z) + (1 - \xi_z$$

•

,

,

=

,

,

$$p_1 = p -\Delta p = p \times (1 - \xi).$$

•

$$\Delta p = \Delta p_{-0} \frac{p_{10}}{p_1} \frac{T_1}{T_{10}} \left(\frac{G}{G_0} \frac{1}{J} \right)^2.$$

$$G = G_{0} \frac{p_{1}}{p_{10}} \sqrt{\frac{T_{10}}{T_{1}}} \left(\frac{n}{n_{0}}\right)^{1,25}_{\frac{1}{2}},$$

•

$$\Delta p = \Delta p_{0} \frac{p_{1}}{p_{10}} \left(\frac{n}{n_{0}} \frac{1}{\frac{1}{2}} \right)^{2,5}$$

37

•

•

,

:

_

$$p_{1} = p \quad \frac{1 - \xi_{0}}{1 - \xi_{0}} \times \left(1 - \left(\frac{n}{n_{0}} \frac{1}{\xi_{0}}^{2,5} \frac{1}{\xi_{0}} \right)^{2,5} \frac{1}{\xi_{0}} \right)$$

$$\xi = 1 - \frac{1 - \xi_{0}}{1 - \xi_{0}} \sqrt{1 - \left(\frac{n}{n_{0}}\right)^{2,5}} \frac{1}{\cdot}$$

,

ξ

$$p_{1} = p_{2} \frac{1 - \xi_{\dots} - \dots}{1 - \xi_{\dots} - \dots} \left\{ 1 - \left(\frac{n_{\dots}}{n_{\dots} 0} \right)^{2,5} \frac{1}{2}; \\ 1 - \xi_{\dots} - \dots \right\} \left\{ 1 - \left(\frac{n_{\dots}}{n_{\dots} 0} \right)^{2,5} \frac{1}{2}; \\ 1 - \xi_{\dots} - \dots - \xi_{\dots} - \dots - 1 - \xi_{\dots} - \dots - 1 - \xi_{\dots} - \dots - \xi_{\dots} - \dots - 1 - \xi_{\dots} - \dots - \xi_{\dots} - \xi_{\dots} - \dots - \xi_{\dots} - \dots$$

$$\xi_{\ldots - \ldots} = \frac{\Delta p_{\ldots - \ldots}}{p_2}.$$

$$\xi = \xi_{-0} \times \left[K_1 \frac{T_2}{T_{20}} + K_2 \frac{T_3 - T_2}{(T_3 - T_2)_0} \right] \frac{\pi_0}{\pi} \left(\frac{G}{G_0} \frac{1}{\frac{1}{2}} \right)^2,$$

1, ₂ – . . 1.3.

$$\Delta p = \xi - \frac{\rho_4 c_4^2}{2}, \qquad 4 = 4 - 4$$

•

$$\Delta p = \Delta p \quad {}_{0} \times \frac{p_{3}}{p_{30}} \frac{\pi}{\pi} \left(\frac{\beta}{\beta} \frac{1}{0} \frac{1}{2} \frac{1}{2} \frac{1}{(1 - \pi^{-m})\eta} \frac{1}{p_{30}} \frac{1}{2} \frac{1}{(1 - (1 - \pi^{-m})\eta)} \frac{1}{p_{30}} \frac{1}{p_{30}} \frac{1}{2} \frac{1}{(1 - (1 - \pi^{-m})\eta)} \frac{1}{p_{30}} \frac{1$$

$$\xi = \xi \quad {}_{0} \times \frac{p_{3}}{p_{30}} \frac{\pi}{\pi} \left(\frac{\beta}{\beta} \right)^{2} \frac{1}{p} \frac{1 - (1 - \pi^{-m})\eta}{(1 - (1 - \pi^{-m})\eta)_{0}}.$$

,

$$_{4} = \cdot (1 +).$$

,

39

-

-

-

1.6.

,

•

10...12 %;

:

,

. 1.12.

$$\eta = f(\overline{N})$$

:

. 1.13.

(.1.14).

•

•

,

,

,

. 1.14.

· • -• -• -

,

$$: . . 1 = . .1 \cdot . .1;$$

$$2^{2} - 2^{2$$

()

$$\ldots = \ldots : (\ldots 1.4).$$

. 1.15.

2.

(

3.

 $(G_{..1}, G_{..2}, G_{..3})$

(.1.16,).

-

. 1.16.

. 1.17.

•

:

$$M \dots -\Delta M \dots = 0;$$

$$M \dots = f(p_3, T_3, p_3, \omega);$$

$$M \dots = f(\omega, p_2, p_1);$$

$$a_{11}\psi_3 + a_{12}\tau_3 + a_{13}\psi_3 + a_{14}\psi_1 + a_{15}\varphi = 0.$$

$$\vdots$$

$$M\Delta \dots -M \dots -\Delta M = 0$$

,

•

$$M_{\dots} = f(p_3, T_3, \omega);$$
$$M_{\dots} = f(\omega, p_2);$$
$$M_{\dots} = f(\omega, L);$$

 $a_{21}\psi_3 \ + a_{22}\tau_3 \ + a_{23}\varphi \ + a_{24}\psi_2 \ = a_{25}\lambda \,.$

. 1.17.

:

$$\mathbf{\mathfrak{G}} \quad -\Delta G \quad = 0;$$

$$G \quad = f(\omega, p_2);$$

$$G_{..} = f(\omega, p_2, p_1);$$

$$a_{31}\psi_2 + a_{32}\psi_2 + a_{33}\psi_1 + a_{34}\varphi + a_{35}\varphi = 0.$$

:

$$\mathbf{G} \dots -\Delta G \dots = 0;$$

$$G \dots = f(p_3, T_3, p_4);$$

$$a_{41}\psi_3 + a_{42}\varphi + a_{43}\psi_1 + a_{44}\psi_4 + a_{45}\tau_3 = 0.$$

$$\mathbf{G} \quad -\Delta G \quad = 0;$$

$$G \quad = f(p_3, T_3);$$

:

$$a_{51}\psi_3 + a_{52}\tau_3 + a_{53}\psi_3 + a_{54}\tau_3 = 0.$$

:

•

$$Q_1 -\Delta Q_2 = 0;$$

 $Q_1 = f(G , \omega, p_2, p_1);$
 $Q_2 = f(p_3, T_3, p_4);$

 $a_{61} \varphi + a_{62} \psi_3 + a_{63} \psi_1 + a_{64} \tau_3 + a_{65} \psi_4 = a_{66} q \quad .$

$$Q_1 \quad -\Delta Q_2 = 0;$$

-

$$Q_1 = f(G , p_3, T_3, p_4);$$

 $Q_2 = f(p_3, T_3);$

$$a_{71}\psi_3 + a_{72}\tau_3 + a_{73}\psi_3 + a_{74}\tau_3 = a_{75}q$$

 a_{11}, a_{21}, \dots

,

,

:

,

$$\begin{split} \psi = \Delta p / p', \quad \tau = \Delta T / T', \quad \varphi = \Delta \omega / \omega', \quad q = \Delta G \quad / G' \quad , \\ \lambda = \Delta L / L', \qquad p', \ T', \ \dots \ - \qquad , \end{split}$$

$$\varphi = 0 \quad q \quad (\qquad \qquad q \quad q \quad).$$

,

,

,

.

,

$$\omega'' = \omega' \times (1 + \varphi), \ T_3'' = T_3' \times (1 + \tau_3), \ \dots, \qquad \omega', T_3' = \omega'', T_3'', \ \dots - - - - -$$

$$\mathbf{M} \quad \dots \quad -\Delta M \quad \dots = \delta_1;$$

$$\mathbf{G} \quad \underline{\quad} \quad -\Delta G \quad \underline{\quad} = -\delta_2;$$

•••,

1, 2, ... -
, :

$$a'_{11}\psi'_3 + a'_{12}\tau'_3 + a'_{13}\psi'_3 + a'_{14}\psi'_1 + a'_{15}\varphi' = \delta_1,$$

 $a'_{11}, a'_{12}, \dots -$,
,
; $\psi'_3, \tau'_3, \dots -$,
,
 $p_3^0 = p'_3 \times (1 + \psi'_3); T_3^0 = T'_3 \times (1 + \tau'_3); \dots,$
 $p_3^0, T_3^0, \dots -$.
1.

, ...,

•

 a_{11}, a_{12}, \dots 2. q, 3.

•

,

 p_3^0, T_3^0, \ldots

,

•

-

_

_

.

 p_3^0, T_3^0, \dots

« ».

,

•

•

 $G = G \times \sqrt{T} / p$, $n = n / \sqrt{T}$ π .

,

,

$$G = af p_3\beta \ \sqrt{T_3},$$

•

:

•

,

$$\frac{T_3}{T_{.}} = \frac{T_3}{T} = const,$$

,

•

, .

-

$$T_3$$
.

,

,

,

,

$$\frac{G}{p T} = \frac{G}{p T} = const.$$

$$\frac{N}{p T} = \frac{N}{p T} = const.$$

 T_3 , T_3 . _

:

T

,

•

. 1.18). (

-

•

-

,

,

.

,

,

2.1.

 NO_x

,

•

,

,

,

,

560 . NO_x 350 .

,

:

,

 $NO + O_3 \rightarrow NO_2 + O_2$

 $NO_2 + O \rightarrow NO + O_2$.

,

1990

NO.

:

$$1 \quad {}^{3}($$
,)
 $1 \quad {}^{3}.1 \quad {}^{3}-1 \quad {}^{3},$ 0°
0,1013 ;

,

-

_

_

:

:
$$1 \text{ ppm} = 10^{-4} \%$$
 $= \mu \cdot 10^{-3}/22,4 / {}^{3},$
 $\mu -$. p:

,

$$1 ppm = \frac{\mu \times 10^{-3} \times T}{22.4 \times T} \times \frac{P}{P}, \quad / ^{3}.$$

, 15 %. 21–15

$$c_i^{15} = c_i \frac{21 - 15}{21 - O_2},$$

 c_{i}^{15} c_{i} -, 2 _ • . 1 2.1

1		,	/ 3	31,8
2		,	/ 3	0,02
3			/ 3	0,036
4 5	2	1 ³ ,	% / ³	1,0 0,001

6 SO₂

2.2.

,

,

,

NO_x

_

15 ppm

,

,

,

	. ,	-	NO _x		25 ppm, 9 ppm.
350	/ ³ .	220 1 ³	21199 / ³ (- 2	- - 15 %), -
	,	, NO _x ,	,		-
	2.3	3. 2.3.1.			
		(NO _x)			, -
	NO	•	, _	NO. NO ₂ ,	, NO ₂
		NO		,	
	1800 .	NO			·
	-	NO NO, ;	:		
	- ;	NO, NO,	_		

NO.
,
NO.

$$O_2 \rightarrow 2O$$
.
 $O + N_2 \rightarrow NO + N$.
;
 $N + O_2 \rightarrow NO + O$.
;
NO.
;
NO.
;
NO.

α,

.

,

:

,

61

_

_

_

_

:

NO. , , ,

2.3.2.

« » .

2

, _____, ____, ____, ____, ____,

2.4.

NO_X

, _____

NO_x

,

,

NO_x

-

,

NO_x.

_

,

_

$$NO = \left(3,7 \times 10^{12} \times \sqrt{O_2} \times N_2 e^{\frac{-129000}{RT}} \stackrel{]}{\stackrel{]}{\stackrel{}}{\stackrel{}}{\stackrel{}}{\underset{\alpha=1,1}{\stackrel{}}} \times \tau \quad \times \frac{1,15}{\sqrt{\alpha_1 \alpha}} \times k \right),$$

:

$$NO = \frac{16p_2 - 0.23}{6p_2 + 0.77}.$$

,

,

1800

,

,

2 2

:

NO (,

2,

•

,

,

63

.).

_

,

,

,

,

_

$$NO_x = (NO_x)_0 \times \left(\frac{T_3}{T_{30}}\right)_{\frac{1}{2}}^a,$$

,

,

:

$$(NO_x)_0, _{30} -$$

, $a = 3,5,$
, $a = 6.$

,

NO_x,

•

NO_x,

,

η

•

NO 25 ppm, 5 ppm.

,	NO _x	2 ppm. NO _x ,
:	• •	(
-); ;	X
-		;
	NO _x	

,

,

,

:

,

NO_x -

	Carantina	
1570		0,45

NO_x 1 ppm.

2

,

,

:

Siemens

,

,

,

,

,

:

NO_x

9...10 ppm.

:

: 1 %

•

NO_x

;

-

240 .

1,62

NO_x

;

,

NO_x : $6NO + 4NH_3 = 5N_2 + 6H_2O$, $6NO_2 + 8NH_3 = 7N_2 + 12H_2O$.

,

:

180200°	NO _x	-
9899 %.		

;

3.

,

.

•

3.1.

3.1.1.

	(,)
	100°	, , 20, 25 %	
510 %	<i>.</i> 0.	2025 /0	
()	
	,	, , 2030	
	(6,	-7)	
?	800850 C.		
	,	,	

•

_

,

, . ,

, • ,

•

3.1.2.

					,	-
	(Т		p)	-
		,				
,						-
,						-
						-
,						-
				,		
						-
	•					
						-
		,	:			
-						-
	,					
,			;			

70

,

71

, , ,

_

_

•

(. 3.1).

,

:

,

,

,

.

,

. 3.1.

•

,

,

•

.

, , T_2 c_p . , (= 15...20 π 700...800 K) c_p 1 % , 2 % 0,5 % (.). 2. (, ,). , 10...100 (< 600 C T > 1300 C). , Na, K

,

(0,56 Na + 0,44 K), (, -). -

,

,

,

3.

_

,

,

,

;

,

$$(c_p \cong 2c_p);$$

,

,

,

,

,

,

:

;

,

•

,

•

3.1.3.

,

75

_

в

Полузамкнутые системы охлаждения (ПЗСО)

BTO

г

TTO

, , (. . 3.2,). , . 3.2,). (. _ , , , , • • 2. , () (). , , ,

•

-

,

,

_

•

•

,

,

(.3.2,)

,

,

,

,

,

,

,

,

,

,

•

•

, (.3.2,) .

•

,

-

-

. 3.2, ,

,

,

•

,

3.1.4.

:

q

,

;

)

:

,

-

•

,

,

. (-) (.3.7).

:

,

.

 $\eta = (T - T_{\times})/(T - T_{o}),$ (3.2)

,

,

Τ –

,

(. . 3.5).

$$=f(m, \bar{x}, Re, T/T),$$
 (3.3)

η

:

- ;
$$Re_o = (\rho w_o)h/\mu_o - ; \alpha_o - -$$

-

() -

_

. 3.8.

,

,

(2...4) -(d = 0,25), -

,

_

3.1.5.

$$\theta = (T - T)/(T - T_o).$$

α α, • : $=\frac{T - T}{T - T} = \frac{T - T}{T - T + T - T} = \frac{q}{q/ + q/} = \frac{1}{1 + q/}, (3.4)$ θ , (α₀) (α). , , , G G₀, , , (3.4) = (G /G)= (\overline{G}), θ \overline{G} . $= f(\overline{G})$. 3.9 , , • Т , To , , T = 1250 C

 $T_o = 250 C$

89

_

$$T_{\rm C} = 850 \ {\rm C}$$

 $\theta = (1250 - 850)/(1250 - 250) =$

:

400/1000 = 0,4,

- внутреннее конвективное охлаждение с продольными каналами;
- 2 внутреннее конвективное охлаждение с поперечными каналами;
- 3 конвективно-пленочное охлаждение;
- 4 пористое проникающее охлаждение

$$= \frac{T - T_{C}}{T - T} = \frac{T + T - T_{C} - T_{C}}{T + T - T} =$$

$$= \frac{(T - T_{C})/(T_{C} - T) + (T - T)/(T - T)}{1 + T/(T - T_{o})} = \frac{+(T - T_{C})/(T - T)}{1 + T/(T - T)},$$

$$+\frac{T}{T-T} = +\frac{T}{T-T} - \frac{T_{C}}{T-T}; \Delta T_{C} = (1 - \theta)\Delta T . \qquad (3.5)$$
,
$$(\theta = 0),$$

 $\Delta T = \Delta T_{\rm C}.$

,

,

,

(

•

,

(3.5),

,

$$\begin{split} \theta &= 0,2; & \Delta T &= \Delta T_C / (1-0,2) = 1,25 \Delta T_C; \\ \theta &= 0,5; & \Delta T &= \Delta T_C / (1-0,5) = 2 \Delta T_C; \\ \theta &= 0,8; & \Delta T &= \Delta T_C / (1-0,8) = 5 \Delta T_C. \end{split}$$

:

θ,

•

 ΔT

,

,

,

 $\Delta T_{\rm C}$,

_

_

_

3.1.6.

U 0

,

,

(), δ. -

:

,

$$q_{\rm w} = \lambda \left(\frac{\partial T}{\partial z} \right) \Big|_{z=0} , \qquad (3.6)$$

Z- , . . , . , , , ,

(1.6)

,

q_w, T T. - ,

,

 q_{w}

(T - T):

 $q_w = \alpha \ (T - T),$ (3.7)

_

α –	•	(3.6) -	,
:	α	-	
(T - T)	,		

,

, .

			,
	_	,	_

20...30 %

_

, , , , ,), () . ,

,

,

,

,

,

(

3.1.7.

-25 , 80-		(.)
	(. 3.10),		-
	27-26,	12-13	- 13-26
	· ,		13-24-26 13-14
			14-15-18 -
1-2			2, -
2-11		11	
	,	11-16 11-22	-
		11-16, 11-17 11-22.	2-5, -
	, 6-7,	,	7-8 - 8-9
	9		

-

T = 765 C		-
	250 C 0,75 %	1,05 %.
, 450 C, 0,30 % 490 C.		, _
701G1, Westinghouse (), Mitsubishi (,) Fiat Avio	, (),
501F, 701F 501G, 701G.	,	, -
, , ,	, 4-	, -
. $17-$, $\pi = 18,5,$		701G1 - -
6-,11-14-		-
, 701G,	, 15	% -

•

. 3.10.

,

,

-25

(. 3.11).

,

,

-

701G1

,

,

.

,

,

.

,

:

700...800 C.

-

_

GT8C ABB 1994 . - GT8, - GT8, - N = 52.6

,

$$G = 179 / T_{\times}^{*} = 1100 C$$

$$T^{*}_{\times} = 517 C.$$

$$\pi = 15,7$$

$$\eta = 34,2 \%.$$

$$n = 6210 / ,$$

,

,

•

99

.

•

,

	70IGI	
Westinghouse/Mitsubishi	255	
	1500	

GT8C

,

•

;

GT8.

,

,

GT8C

GT8.

,

101

		GT1	10,			ABB
80-	,			25		-
			3000) /	•	-
			T = 1110 C			
		$\pi = 13,6$				

32,1 %.

,

(

(. 3.12).

(

•

,

)

. 3.12.

).

GT10

25

1110°

(. . 3.12).

,

•

•

,

(. . 3.12). V94.2 -80- ,

,

,

_

Siemens / KWU

	N = 155		
	T = 1125 C		
	$\pi = 10,9.$,
			,
	, V64.2 V84.2,		-
		60	106
	· · · · · · · · · · · · · · · · · · ·		
	16=		
	?	,	
		,	
		•	
		-	
	(3.13)		
	(. 5.15).		
			,
(``		
()		
	,		-
	, , , , , , , , , , , , , , , , , , , ,		
	- (3.13).		
		,	
	,		
	,		
	-		
	. –	—	
		,	
	,		

(.	. 3.13).				
				Siemens/KWU	
80-			V64.3		
62,5				,	-
		,		V84.3 V94.3	-
		142 204			
		0,333,			
185	/,			$\pi = 16$	
		1050	C		

.

•

,

,

,

_

,

,

,

	1230 C.	
17—		4-
,	,	

•

.

,

,

1125

,

155

14-

150 C.

,

,

,

,

,

,

,

,
,

 $\eta = 0.85.$ -009

,

 $\overline{\mathrm{G}}_{\mathrm{o}}$ = 5,5 %.

16- (). – , , ,

Ø50

,

•

.

,

(

100 C 5°.

72 Ø8

,

)

330° C.

,

,

•

000	
_009	-
-()())	

2,4...2,5 / ,

	45	/	5,55,6 %.	
		4,0 %	, ,	
	2,8 %	,	2,0 %	-
0,45 % -			0.85 % -	,
, ,				
		1 15 0/		
		1,15 %.		
0,65 %,				-
		0,50 %.		
		0,43 %	<i>.</i>	-

-

•

•

,

,

,

,

,

•

:

3.1.8.

-

_

_

-

150...200°.

(. . 3.14,).

,

. 3.14.

•

(. 3.15).

(. 3.16).

,

,

,

,

,

•

_

,

.

.

,

. 3.15.

-009

»

«

118

.

,

,

(. 3.17).

,

γ

,

,

,

,

_

,

$$m = (\rho x w)_{o} / (\rho x) = 0.5.$$

,

,

,

,

,

(

,

122

,

,

,

,

,

,

,

,

,

,

,

,

. 3.18).

) -

(

.

(

,

0,5)

,

,

(

,

) Lamilloy (. 3.19). (0,3), • ,

(

-

Lamilloy,

. 3.18.

()

,

, •

,

, , ,

3.2.

3.2.1.

,

,

•

,

,

,

,

,

, ,

,

, , , , ,

3,

,

. ,

,

x . .

, , ,

,

_

δ,

(3.7).

α

•

,

(. 3.20).

α

•

α

_

· ,

, -

,

: 1. () -

, ; 2. ()

; 3. ()

> -.

3.2.2.

-

$B_Z, S -$	-			;
α , α_1 – ; R	$e_1 = (\rho c)_1 B/\mu(T)$) —	,	
B.	(3.9)			-
	(00)			-
Re $_{1} = 10^{5}$	$.10^{6}$, S = 1,36	$5, T / T^* =$	= 0,51,2, Tu	: = 1,52,0 %,
$M_1 < 0,9, i$	= 0	±10 %.	, , , ,	
		(3.9), Re,		-
05 08			(
0,30,8,),		(-
38-				-
((3.8)	А		n, -
		:		
A =	$= 0,00165 / (\delta / B)^2$	$(\sin \alpha_1 / \sin \alpha_2)$	$(\alpha_{o})^{0.86} (S / B)^{2,26}$; (3.10)
	$n = 1,21(\delta / B)$	$^{0,35}(\sin \alpha_1 / \sin \alpha_1)$	$(n\alpha_{o})^{0,15} (S / B)^{0,15}$	27,
			:	-
	$\delta/B =$	0,170,37,	δ-	
$sin\alpha_1/sin\alpha_o$; = 0,261,0,			
S/B = 0,45	0,89.		(3	5.10) -
$\overline{c} = (c_0)$	$\pm 10 \%,$ $(+c_1) /2, \bar{p} = (p_0)$	$Re = \overline{c}$ $p_{0} + p_{1}) / 2, \overline{T}$	$B/(T, \overline{p}) = (T_0 + T_1)/2.$	501000) ×10 ³ ,

,

:

_

. :

$$_{i} = 0.97 + 0.78(\bar{i} - 0.2)^{2},$$
 (3.12)

:

$$\bar{i} = i/_{0} - ,$$

- 0,4...0,5.

, ,

,

$$_{\rm U} = 1.1 \times 10^{-4} \, \text{Re}^{-0.5} \, \text{Tu}(\ /\)^{0.5} / (\sin_{1}/\sin_{0})^{0.7}.$$
 (3.13)

$$\begin{split} \psi &= T \ /T \\ M &= c_1/a_1 \\ . \ 3.21. \end{split}$$

. 3.21.

$$=1+0.8S_{u}^{0.8}, \qquad S_{u}=ul_{K}/w_{2} D, \qquad (3.14)$$

 w_2 –

:

,

:

(3.8).

,

$$\overline{\text{Nu}}_{\times} = 3,25 \times 10^{-3} \text{Re}_{1}^{0,93}, \text{ Re}_{1} = (\rho)_{1\times} \times d /\mu(T_{1})$$
(3.16)

Re $_{\rtimes} = (3...30) \times 10^3$, M₁ < 0,9.

$$\overline{\text{Nu}}_{\times} = 2.6 \times 10^{-3} \text{Re}_{1}^{0.69}$$
 (3.17)

:

Re
$$_{A} = (0, 5...10) \times 10^{3}$$
.

-

_

Nu $_{\times}$ (Nu $_{\times}$) = A $_{\times}$ Re^{0.68} $_{\times}$, Re $_{\times}$ = (ρc) $_{\times} B/\mu(T_{\times})$, (3.18)

:

(

_

3.2.4.

,

Re_X

•

•

,

,

•

,

$$\varepsilon_{Tu} = 1 + k(Tu \lambda_{C1(2)})^{0.5},$$
 (3.20)

,

,

,

,

:

$$k \, = \, 0,\!67 \qquad \qquad k \, = \, 1 \label{eq:k}$$
 $Tu_{\lambda C1(2)} \, = \, 0,\!2 \dots 30.$

3.2.5.

,

. .

. 3.2.4

,

,

-

_

Re =
$$2,8 \times 10^6 \text{k}_{\text{Tu}} \text{k}_{\text{M}} \text{k}_{\psi} \text{k}_{\text{f}},$$
 (3.21)

:

,

,

$$Tu = \frac{1}{U} \sqrt{\frac{1}{3} \left[\left(\overline{u'} \right)^2 + \left(\overline{'} \right)^2 + \left(\overline{w'} \right)^2 \right]}, \qquad M,$$
$$= \frac{T}{T^*} \qquad f = \left(\frac{*2}{U} \right)^2 + \left(\overline{u'} \right)^2 + \left(\overline{$$

,

 $\frac{\underline{)}dU}{\overline{j}dx}$

(3.21): $\operatorname{Re}_{XH} = \frac{A\left(1+1,3M_{\min}^{1.7}\right)\left(1+0,38M_{o}^{0.6}\right)}{_{0.2}},$ (3.22)

,

:

$$M \ < 3,5, \ Tu = 0,02...3,0 \ \%, \ \psi = 0,5...2,8.$$
 x ,

•

$$r = \frac{\text{Re}_{K}}{\text{Re}},$$

. .

r

,

,

,

3.2.6.

,

α -25, ()

 $(\ .\ 3.22): \qquad B = 98 \ , \\ L = 100 \ , \qquad -\alpha = 47^{\circ}, \\ \alpha = 90^{\circ}, \qquad - \\ \alpha_1 = 22^{\circ}, \qquad S = 63,5 \ , \\ R = 8 \ , \\ R = 1,5 \ , \\ a = 21 \ . \end{cases}$

_

$$\begin{array}{ll} T^{*} &= 790 &, \\ p_{0} &= 138580 &; \\ G_{-1} &= 0,343 & / \ , \\ \end{array} \\ p_{1} &= 103110 \end{array}$$

$$c_1 = 450$$
 / -

:

_

_

-

,

$$M_{C1} = 0,74.$$

Re
$$_{1} = \frac{c_{1} B}{(T_{1})} = \frac{450 \times 98 \times 10^{-3}}{115,4 \times 10^{-6}} = 382000.$$

c =
$$\sqrt{2k/(k+1)RT_0^*} = \sqrt{2 \times 1.35/(1+1.35) \times 288 \times 1063} = 593$$
 / ,

k = 1,35 R = 288 / × -

:

,

c₀ :

$$c_0 = \frac{G_1}{0 f_0} = \frac{G_1 \times R \times T_0}{p'_0 \times S \times L} = \frac{0.343 \times 288 \times 1063}{138580 \times 63.5 \times 100 \times 10^{-6}} = 119 - .$$

. 3.22.

$$\begin{array}{cccccccc} \lambda_{0} = & _{0} \; / & = 119/593 = 0,200 & , & & , & & \\ \pi = \; f(\lambda) & & & & \\ \pi(\lambda_{C0}) = \; \pi(0,200) = \; 0,9774, \end{array}$$

$$p_0^* = p_0 / (c_{C0}) = 141785$$

_

,

,

_

,

,

•

_

,

-

:

,

,

,

•

•

$$Nu = Re_{0}^{0.5},$$
 (3.23)

Re
$$_{0} = \rho_{o}c_{o}2R /\mu(T_{0}) -$$

Re $_{0} = (5...50) \times 10^{3}$.
Re $_{0}$

Nu

_

,

:

$$Re_{0} = \frac{(xc)_{0} 2R}{\mu(T_{0}^{*})} = \frac{G_{1}2R}{f_{0} \times \mu(T_{0}^{*})} = \frac{G_{1}2R}{S \times L \times \mu(790c)} = \frac{0.343 \times 2 \times 8 \times 10^{-3}}{63.5 \times 100 \times 10^{-6} \times 44 \times 10^{-6}} = 18,905; \quad Nu = 18,905^{0.5} = 137,5,$$

$$=\frac{\mathrm{Nu}\times\left(\mathrm{T}_{0}^{*}\right)}{2\mathrm{R}}=\frac{137.5\times71.3\times10^{-3}}{2\times8\times10^{-3}}=613\frac{1}{2}\times10^{-3}$$

α,

:

,

:

$$Nu_X = 0.52 Re_X^{0.5},$$
 (3.24)

$$\begin{array}{l} x\\ (x=0) \end{array},$$

c.

-

-

-

-

$$33 (x = 0),$$

:

	•	30	31	32	34	35	36
$x \times 10^3$		11,0	7,0	3,6	3,6	7,0	11,0
λ	-	0,455	0,377	0,215	0,215	0,351	0,385
С	/	270	223	123	123	208	229
Re _X	-	22,006	11,580	3,395	3,395	10,783	18,626
Nu _X	-	77,1	56,0	30,3	30,3	54,0	71,0
α	/ 2	500	570	600	600	550	460

•

. 3.23.

$$(-) (-) -$$

Nu –

S :

$$S = \frac{\sin \alpha}{\sin \alpha} \sqrt{\frac{2B_z}{S\sin(\alpha + 1)\cos^2[(\alpha - 1)/2]}} - 1 =$$

$$= \frac{\sin 90^{\circ}}{\sin 22^{\circ}} \sqrt{\frac{2 \times 69}{63.5 \times \sin(90^{\circ} + 22^{\circ})\cos^2[(90^{\circ} - 22^{\circ})/2]}} - 1 =$$

$$= \frac{1}{0.375} \sqrt{\frac{2.173}{0.927 \times 0.690}} - 1 = \frac{1.56}{0.375} = 4.16,$$

:
$$Nu = 0,206 \operatorname{Re}^{0.66}/S^{0.58} = 0,206 \times 382^{0,66}/4.16^{0,58} = 0,206 \times 382^{0,66}/4.16^{0,66}$$

$$\alpha = \text{Nu } \lambda(\text{T}_{1})/\text{B} = 435 \times 3,2 \times 10^{-3}/98 \times 10^{-3} = 325 \ / \ ^{2} \ , \qquad -$$

$$\alpha = 325 \ / \ ^{2} \ \alpha = 0,85 \times 325 = 276 \ / \ ^{2} \ . \qquad (3.22)$$

$$. 3.24 \qquad \qquad \lambda -$$

,

,

,

(3.16), (3.17),

•

,

,

147

,

_

,

,

,

(

,

•

(. . 3.24).

,

,

. .)

•

,

3.3.

3.3.1.

$$\sum_{j=1}^{j=m} G_{ij} = 0 \qquad i = 1, 2, 3 \dots n, \qquad (3.25)$$

i, j - ; $G_{ij} -$
i-j, ; $m -$,
i- .

,

(),

,

,

,

:

,

,

.

,

,

149

,

_

,

_

.

,

•

,

•

-

-

ij,

-

-

$$p_{ij}^* = p_i^* - p_j^* = p^* \pm p^* + p^*,$$
 (3.26)

$$p_{i}^{*}, p_{j}^{*} -$$

 $i \quad j:$
 $p^{*} = _{ij} {}^{2} \left(R_{i}^{2} - R_{j}^{2} \right) / 2$ (3.27)

(

,

,

,

$$p^* = 4(T_i - T_j)/(T_i + T_j)$$
 (3.28)

,

T_{oi} - T_{oj}.

 $\zeta,$ $p^* = {}_{ij} (w^2/2)_{ij},$ (3.29)

 ρ w –

,

,

ij.

-

,

,

,

,

,

,

,

,

,

$$p^* = (w^2/2) = (L/d)(w^2/2).$$
 (3.30)

,

,

(3.29).

,

,

$$i \qquad j, \qquad G_{ij}$$

$$(3.26) \qquad : \qquad G_{ij}$$

$$p_{ij}^{*} = p^{*} = p \qquad + p \qquad + p \qquad = \qquad \left(\frac{w^{2}}{2}\frac{j}{j_{i}} + \frac{w^{2}}{2}\frac{j_{i}}{j_{i}} + \frac{w^{2}}{2}\frac{j_{i}}{2}\frac{j_{i}}{j_{i}} + \frac{w^{2}}{2}\frac{j_{i}}{2}\frac{j_{i}}{j_{i}} + \frac{w^{2}}{2}\frac{j_{i}}{2}\frac{j_{i}}{2}\frac{j_{i}}{2}\frac{j_{i}}{2}\frac{j_{i}}{2}\frac{j_{i}}{2}\frac{j_{i}}{2$$

151

 p_{ij}^{*} :

 $G_{ij} = (\times w \times f)_{ij} = (\times f)_{ij} \sqrt{\frac{2\Delta p_{ij}^*}{(\times)_{ij}}} = f_{ij} \sqrt{2\left(\frac{\times p}{\frac{1}{j}}\right)_{ij}}, \quad (3.32)$ $p_{ij} \quad (3.26)$

,

,

,

153

ζ

 $f \quad \ \ \bar{f} = f \ /f \quad <1 \qquad \qquad Re>10^4$

f

$$= {}_{r} \left(1 - \bar{f} \right) + {}_{l} \left(1 - \bar{f} \right)^{1.5}, \qquad (3.33)$$

,

, ,

:

_

η_r			-
r		d ,	-

 η_l –

l/d:

r/d	≤ 0,22	> 0,22
η_r	$0,541 - 7,64(r/d) + 39,2(r/d)^2 - 6,94(r/d)^3$	0,0125
<i>l/</i> d	< 2	≥2
η_l	$1,5-1,53(l/d) + 0,39(l/d)^2$	0

(*l*/d > 2,0)

,

(r/d = 0)

 $(\bar{f} = f / f \rightarrow 0)$ 0,5.

ζ

:

f $\bar{f} = f / f$, Re = (4...50)10³

$$=1,13-2,04\bar{f}+\bar{f}^{2}$$
(3.34)

$$=1,05-2,03\bar{f}+\bar{f}^{2}.$$
 (3.35)

:

 $\bar{\mathbf{f}}$

$$(f < 1,0)$$

= 0,5 $(1 - \bar{f}) + 1,4(1 - \bar{f})^{1.5}$. (3.36)

ζ

ζ

$$\bar{f}$$
 $(\bar{f} < 1,0)$:
= $(1 - \bar{f})^2$. (3.37)

	(D)	(H/B < 1,0)
$Re < 2,3 \times 10^3$	$\xi = 64/Re$	$\xi = \frac{64}{\text{Re}}$
		$= 1,5 - 1,5(H/B) + 0,895(H/B)^{2}$
$\text{Re} = (2, 3 \dots 4, 0) \times 10^3$	$\xi = 0.043$ lgRe $- 0.113$	(3.38)
$\text{Re} > 4 \times 10^3$	$\xi = 0,3164/\text{Re}$	$\xi = - x0,3164/\text{Re}$
		$= 1,1 - 0,18(H/B) + 0,085(H/B)^{2}$

,

_

L B/H > 1
B/H > 1

$$\zeta = \zeta + \zeta$$
, (3.39)
 $\zeta - \zeta$, (3.30, 3.38); $\zeta - \zeta$, (3.39)
 $\zeta - \zeta$, (3.30, 3.38); $\zeta - \zeta$, (3.39)

Re =

_

 $G x\! d \ / \mu x\! f$,

Re =
$$3.9 \times 10^4 \times \overline{S}^{0.275} \times \overline{H}^{0.24} / n^{0.22}$$
. (3.40)

:

Re < Re :

=1,45Re^{-0.34}
$$\overline{\mathrm{H}}^{0.25}\overline{\mathrm{S}}^{-1.45}\exp[0,564(\mathrm{n}-1)-0,0513\overline{\mathrm{S}}],$$

: $\overline{H} = H/d = 0,25...1,0; \ \overline{S} = S /d = 0...1,4;$ $\overline{S} = S /d = 2...13; \ Re = (10...120) \times 10^3.$

. 3.25.

$$\zeta = [0,067(L/H)^{0.9} + \eta_{\rm S}\eta_{\rm H}]/\operatorname{Re}^{0.21-1.89(h/H)^{1.15}}$$
(3.42)
$$\eta_{\rm S} = 1,22/(h/S)^{0.4}; \quad \eta_{\rm H} = 0,37 + 2,61(h/H) - 1,68(h/H)^2,$$

 $\pm 5,2$ % : h/S = 0,02...0,08; h/H = 0,20...0,80; Re = GL/ μ BH = = (30...200)×10³.

. 3.26.

B/H > 1 L

-

:

, S, S, b β (. 3.27), $\xi = \zeta/(L/B),$ -

/

$$= \frac{B}{Re^{n}}, \frac{B = 3,65(H/S) + 150^{-2} - 120^{-} + 21,15}{n = (H/S)/6 + 1,80^{-2} - 2,0^{-} + 0,55},$$
(3.43)

:
$$=2 / =1/6...1/1$$
; H/S = 0,5...1,5; Re = (4...40)×10³.
d w

$$d = \frac{4V_{o}}{F} = \frac{2H(1 - b/S)}{1 + (H/S) + (H/B)(1 - b/S) - 2(b/S)^{2}},$$

$$w = \frac{G}{\times f} = \frac{G \times L}{\times V_{o}} = \frac{G}{\times BH(1 - b/S)},$$
(3.44)

,

,

,

:

$$V - ,$$

, $F_{\Sigma} - ;$
; $f = V_o/L -$

:

 Δp

,

,

$$\zeta = 2\Delta p / (\rho w^2)_o = 3.65 - 1.05 \, \text{lgRe} + 0.20 \, \text{lg}^2 \text{Re}, \qquad (3.45)$$

_

.

$$(\rho w^{2})_{0}/2 - , Re = (\rho wd)_{0}/\mu - ,$$

$$d_{0}.$$

$$G , , G ,$$

$$G , , G ,$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

$$() = -2.35 + 9.60\overline{G} () -5.75\overline{G} (),$$

. 3.27.

. 3.28.

. 3.29.

3.3.3.

. 3.3.1,

,

,

•

(3.25)

:

•

iy:

$$\left(p_{i} + \frac{\times w_{i}^{2}}{2} \frac{1}{\dot{j}} \left(p_{j} + \frac{\times w_{j}^{2}}{2} \frac{1}{\dot{j}} = _{ij} \frac{\times w^{2}}{2}, \quad (3.47)\right)$$

,

,

$$G = \rho x x x, \qquad (3.32),$$

,

,

$$G_{ij} = f_{ij} \sqrt{2 \left(\frac{\times p}{j} \right)_{ij}}, \quad \sum_{j=1}^{m_i} G_{ij} = 0, \quad i \neq j,$$
 (3.48)

$$i, j = 1,2,...n -$$
;
 $m_i -$ () i-

-

(3.48)

_

_

$$/ G_{ij} = f(p , p) p_i = f(p , p). - (3.48)$$

,

,

> , , . COLD

GIDRA,

TERM,

(3.48).

,

3.3.4.

,

. 3.3.3 _

,

. 3.30). (

(. . 3.30).

,

,

,

_

,

_

(. 3.31): 1-2 –				
2-3 2-4 –		;		
3-5 4-6 –			;	
4-7-5 —	•			
, 7-8 –				
•				

•

8-9 -

•

. 3.3.1

. 3.30.

. 3.31.

$$(1-2-3-4),$$

(3.21) 1-2,

,

,

2-3 2-4 $\zeta = 0,4,$

,

,

(1-2).

$$z = 12$$

 $d_o = 3,5$, -
 $S = 6,5$,

 $f_o = z \pi x d_o^2 / 4 = 12 x 9,62 = 115$ ².

14)

,

_

-

, :

$$f = z B H = 6 A 4 0, 8 = 66$$
 ², $z = 6 -$

,

(. . 3.30);
$$= z \mathscr{L}(B + H) = 6 \mathscr{L}(14 + 0.8) \cong 6 \mathscr{L}0 = 180$$
 ;

,

d = 4f
$$_{1}/_{1} = 4 \times 1/30 = 1,5$$

В

$$G_{\rm C}/G_{\rm K}=\sqrt{K/C}.$$

•

Н

$$\begin{split} \zeta_{\rm K} \ / \ \zeta_{\rm C} &\cong \ l_{\rm K} \ / \ = \ 39/52 = 0.75 \qquad - \\ G_{\rm C} \ / \ G_{\rm K} &= \ \sqrt{0.75} \ = \ 0.866 \ \cong \ 0.9. \qquad , \\ G_{\rm C} \ + \ G_{\rm K} &= \ G, \qquad \qquad ; \\ G_{\rm C} \ + \ G_{\rm K} &= \ G, \qquad \qquad ; \\ G_{\rm C} \ - \ G_{\rm K} &= \ G \ - \ G/1.9 = \ G(1 - 1/1.9) = 0.96/1.9. \end{split}$$

:

,

(3.46)

$$\begin{split} \zeta &= -2,35 + 9,6(G_C/G) - 5,75(G_C/G)^2 = -2,35 + 4,55 - 1,29 = 0,91. \\ \zeta_K &= -2,35 + 9,6(G_K/G) - 5,75(G_K/G)^2 = -2,35 + 5,05 - 1,59 = 1,11. \end{split}$$

7-8,

$$d = 5$$
, $H = 1,5$
 $S_X = 5$, $S = 11$, $-$

$$f' = B H' = 100 2 = 200^{-2} - \frac{1}{2}$$

$$i' = 2(B' + H') = 2(100 + 2) = 204^{-2},$$

$$() (i' = 20/4 + 1) = 2(100 + 2) = 204^{-2},$$

$$(i' = 20/4 + 1) = 2(100 + 2) = 204^{-2},$$

$$d' = 4f' - \frac{1}{2} = 4 \times 200/204 \approx \frac{1}{2}$$

$$H = H/d = 1,5/5 = 0,3,$$

$$\overline{K} = \overline{K} = \frac{1}{2} = 11/5 = 2,2$$

•

_

•

Re < Re :

$$\zeta = 1,45 \operatorname{Re}^{-0.34} \mathfrak{H}, 3^{0.25} \mathfrak{L}, 2^{-1.45} \exp[0,564(3-1) - 0,0513 \mathfrak{A}] = 1,45 \operatorname{Re}^{-0.34} \mathfrak{H}, 74 \mathfrak{H}, 319 \exp(1,04) = 104/\operatorname{Re}^{0.34};$$

Re > Re :
$$\zeta = 5,5 \times 0,3^{0.25} \times 2.2^{1.6} \exp[0,564(3-1) - 0,0513 \times 4] = 5,5 \times 0,74 \times 3,53 \exp(1,04) = 40,7.$$

ζ					
ζ	ζ	(3.3)	(3.:	39),	-
	((3.38)		8-9))	_
8×2(6,5 + 1) = 120	:f ,d =4f /	= $z \times B \times H = 8 \times 6,5 \times 1 =$ (3.30), = $4 \times 52/120 = 1,7$	52 ² , = $z \approx 2($, , $l/d = 10$,	z = 8 B + H) /1,7 = 6	
$\overline{\mathbf{f}} = \mathbf{f} / \mathbf{f} = 0,$	ζ =	1,05.	(3.35)		-
$\zeta = \zeta + \zeta$.					-
)			(-
3.4.					
3.4.1.					

_

,

, ,

3.4.2.

,

:

,

 $T_{\rm C}$

,

,

,

,

,

,

,

,

,

,

Τ.

,

_

_

Nu = $\alpha x d / \lambda$, Re = w x d / v Pr = v/a, :

•

$$Nu = A \Re e^{m} \Re r^{n}, \qquad (3.49)$$

•

_

, , Re = w d /v< 2500, : $Nu = 1,4\epsilon_L Pr^{1/3}(Red /L)^{0.4}(Pr/Pr)^{1/4},$ (3.50)d = 4f/ f L, $\epsilon_{\rm L}$ • • Red /L > 15 (), : $\varepsilon_{\rm L} = 0.6(\text{Red }/\text{L})^{0.143}[1 + 2.5/(\text{Red }/\text{L})].$ (3.51) Red /L < 15 (), Nu $2,5 \times 10^3 < \text{Re} <$, 10×10^3 , : Nu = 26,6 L (Pr ×d /L)^{1/3} ×(Re/2500)^{lg(L/d)}, (3.52) ϵ_{L} _ : $\epsilon_L~=1+(2{,}33lgRe-8{,}85){\mbox{\sc s}g}(2L{/}100d~).$ (3.53)

(Re ≥ 2500)

$$Nu = 0,0212 \Re r^{0.43} \Re e^{0.8} \varepsilon_{LT}.$$
 (3.54)

$$\epsilon_{LT} : 1 \le (L/d) \le 4: (L/d) > 4$$

$$LT = 1 + \frac{1.7}{\left(\frac{L}{d}, \frac{1}{j}\right)^{0.25}}; LT = 1 + \frac{4.2}{\left(\frac{L}{d}, \frac{1}{j}\right)^{0.9}}. (3.55)$$

:

$$Nu = 3.6 \times 10^{-2} \text{Re}^{0.8} n^{0.22} / \overline{\text{H}}^{0.18} \overline{\text{S}}^{0.35}, \qquad (3.56)$$

n - () -
;
$$\overline{H} = H/d$$
, $\overline{S}_y = S_y/d$ - d (. . 3.25).

Re= $(5,5...55) \times 10^3$; $\overline{H} = 0,25...2,0$; $\overline{S}_x = 1,5...9,0$; $\overline{S}_y = 1,5...3,25$; n=1...6.

B/H > 1 -

_

$$Nu = (0,03 + 0,1\eta_{\rm S}\eta_{\rm H})Re^{0.8}, \qquad (3.57)$$

:

 $\eta_{\rm H} = 1,03 - 0,07(h/H) - 0,26(h/H)^2$, $\eta_{\rm S} = -1,04(h/s) - 10,4(h/s)^2$,

: Re= $(30...300) \times 10^3$;

-

•

h/s = 0,02...0,08; h/H = 0,25...0,80.

B/H > 10 L
B, , ,
S, b
$$\beta$$
 (. . . 3.27), ,
. .
Nu = ARe^m; $A = 0.40 - 0.185(H/S) - 0.30^{-}$, (3.58)
m = 0.305 + 0.16(H/S) + 0.63^{-}, (3.58)
Re = (4...40)×10³, H/S = 0.5...1, 15,
d - w (3.44).
(3.3), d

,
:

d

:

 $Nu = \frac{c \times Pr^{0.43} \times Re_{L}^{0.98}}{\left(\frac{L}{b} \frac{1}{J}\right)^{0.6}}, Re_{L} = \frac{w_{o}L}{\frac{w_{o}L}{J}},$ (3.59)

L
(. . . 3.28); b =
$$\frac{\times d^2}{2S}$$
 -
; d -
; S -
(d/B) < 0.27 c= 0.0294; B -
(. . . 3.28).

x $/h = 2,25 \times 10^{-2} \overline{h}^2 - 1,55 \times 10^{-2} \overline{h} + 0,6$, (3.60)

α

Xo

,

Re_L –

:

Nu

(. 3.4.3)

•

. 3.3.4

-

_

_

_

•

. 3.2.6

(

b *l* (*l*/b) H = 4 -

$$b = \pi x d^{2}/2S = \pi x 3.5^{2}/2x 6.5 = 2.96,$$

$$Re_{o} = G x b /\mu f_{o} = 7.29 \times 10^{-3} x 2.96 \times 10^{-3}/22 \times 10^{-6} \times 15 \times 10^{-6} = 8515,$$

$$Nu_{o} = 0.016 Re_{o}^{0.98} / (H/b)^{0.6} = 0.016 \times 815^{0.98} / (4/2.96)^{0.6} = 62.5,$$

$$\alpha_{o} = Nu_{o} \lambda_{B} / 2b = 62.5 \times 2 \times 10^{-3}/2 \times 2.96 \times 10^{-3} = 675 / {}^{2}xC,$$

$$\mu \qquad \lambda \qquad -$$

(

26...29)

,

(

,

,

, 36), 30, 31, 32, 34, 35,

37, 38)

(4.2, 4.4, 4.6).

•

,

,

(

183

-

20...25

:

•

$$\overline{\mathrm{Nu}} = 0,121 \mathrm{Re}^{0.67 (\mathrm{l/d})^{0.05}} / (\mathrm{l/d})^{0.50}, \qquad (3.62)$$

,

,

,

,

$$l/d = 52/1,5 = 35$$
 $l/d = 39/1,5 = 26$

,

Re	<i>l</i> /d	Nu	_,	$\mathbf{\epsilon}_l$	$-\mathbf{x}_l$
			/ ² ×		
3290	35	13.4	315	1.17	370
3650	26	15.3	360	1.10	395

(3.55).

-

-

(12...21) 44...49).

:

 $\varepsilon_{\rm X} = 2,7/({\rm x}/{\rm d}~)^{1/3},$ (3.63)

H = 0,8)

 $\alpha = - \varepsilon_l \varepsilon_X. -$

:

		22	23	24	25	26	27	28	29	30
Х		29.5	26.0	22.5	19.5	16.5	14.0	11.5	9.0	6.5
$\epsilon_{\rm X}$	-	1.01	1.04	1.095	1.16	1.22	1.30	1.38	1.49	1.63
α	/ 2	375	385	405	425	450	480	510	550	600

:

,

,

,

(

	•	43	42	44	40	39	38	37	36
Х		30.5	27.0	23.5	20.0	16.5	13.0	10.0	8.0
$\epsilon_{\rm X}$	-	1.01	1.06	1.10	1.17	1.25	1.36	1.46	1.54
α	/ 2	395	415	430	455	490	530	570	600

ε_l,

(

•

$$(\alpha_{o} = 675 / 2)$$

7-8 (. . 3.31),

(3.56),
$$\overline{H} = 0,3,$$

 $\overline{S} = 2,2, n = 3$

Nu = $3.6 \times 10^{-2} \operatorname{Re}^{0.8} 3^{0.22} / 0.3^{0.18} 2.2^{0.35} = 4.15 \times 10^{-2} \operatorname{Re}^{0.8}$.

-

$$Re = G \times d / \mu LH = 5050,$$

$$T = 275 C$$
7-8,
$$:$$

$$\alpha = Nu \lambda / d = 4,15 \times 10^{-2} Re^{0.8} \lambda / 2H = 470 [/ ^{2}].$$

 $T_{B} = 310 \text{ C}$ $\alpha = \text{Nu}\lambda/d = 0,018\text{Re}^{0.8}\lambda/2\text{H} = 0,018\lambda(\text{G} \times 2\text{H}/\mu \times 1 \times \text{H})^{0.8}/2\text{H} = 645 \quad \text{/}^{2} \text{ .}$ 1, 2, 3 $57, 58, 59 \qquad .$

,

,

. 3.24.

-

3.5.

,

•

,

,

3.5.1.

,

,

w, T_o

w , T

_

,

-

Х

,

,

•

,

,

,

T_{aw} -

,

 $T^* = T_{aw},$

η,

•

$$\begin{aligned} \text{Re} &= \rho \; \text{ws h}/\mu \; - \\ &; \; m = (\rho w)_o / (\rho w) \; - \\ &; \; \Delta = (h + \delta + \delta^*) / h. \\ & \quad A < 3: \; \eta_o = 1, \\ & \quad 3 < A < 11: \; \eta_o = (3/A)^{0.285}, \quad (3.68) \\ & \quad A > 11: \qquad \eta_o = (7,43/A)^{0.95}. \\ & \quad \Delta \; = \; 1,10...1,35; \end{aligned}$$

 $m = 0, 3...1, 3/\psi$; Re =820...2550; $\psi = 0, 87...1, 17$.

,

,

:

		,	-
(3.67)	η_o		-

,

•

$$\varepsilon = 1 - \Delta \eta / \eta_o, \qquad (3.69)$$

,

,

,

,

(3.67)

-

$$()$$

h = $\pi d^2/4S$, $\Delta \eta$ –

. 3.32.

. 3.32.

,

 w_0 / w_r

 $(\alpha < \pi/4)$

,

_

_

m.

$$\label{eq:alpha} \begin{split} \alpha < 30^\circ &: \quad \epsilon_\alpha = \cos(0.8\alpha), \\ \alpha > 30^\circ &: \quad \epsilon_\alpha = (1+2\,\cos^2\alpha)/3. \end{split} \tag{3.70}$$

,

$$m < 1$$

 η , $m < 1$
 $-$, $m > 1$ -
 $m < 1$
 $-$.
 $m < 1$ -
 $-$.
 $m < 1$ -
 $-$.
 $m > 1$ -
 $m > 1$ -
 $m < 1$ -
 $m > 1$ -
 $m < 1$ -
 $m > 1$ -
 $m >$

$$_{\rm R} = \left[1 + \sqrt{\frac{**}{\rm C}/\rm R} \right]^{-0.8}, \qquad (3.71)$$

R, = 9 -

,

-

-

$$\frac{\delta_C^{**}}{S} = \frac{0.036}{\text{Re}^{0.2}} \left(\frac{w_1}{w}\right)^{3.3} \left[\int_{0}^{X} \left(\frac{w}{w_1}\right)^{3.86} \frac{dx}{S}\right]^{0.8}, \quad (3.72)$$

= - 20

:

,

,

•

Β.

,

-

_

: $\eta = \eta_0 \varepsilon_{\alpha} \varepsilon \ \varepsilon \ \varepsilon_R. \tag{3.73}$

 $\alpha = \alpha \epsilon \epsilon_{m}. \qquad (3.74)$

,

α

$$= \left[1 - \left(\frac{x}{x + x}\right)^{0.9}\right]^{-1/9} - ,$$

•

_

_

ε_m,

. 3.33.

Х

 ϵ_m :

$$_{\rm m} = 8,95 {\rm m}^{6,15} {\rm Re}_{\rm X}^{0,66(1/{\rm m}^{0,55-1.2.1})},$$
 (3.75)

$$Re_{X} = (\rho w)_{o} x/\mu_{o} - T_{aw}.$$

: m= 0,20...1,05; Re_o=
$$(5...40) \times 10^3$$
; ψ = 1,0...1,2.

3.6.

3.6.1.

, :

$$c \frac{\partial T}{\partial t} = div(gradT) = \forall \nabla T),$$
 (3.76)

,

-

_

()

()

,

-

(t)

(\mathbf{T})		(x, y, z),		
(- <i>)</i> ;	2)	((
)	. (3.76)	:	q	, -
	q :	$= \lambda$ grad T $= \lambda \nabla$ T.		(3.77)

α

-

-

•

:

λ₂.

:

,

,

,

•

•

,

,

.

•

:

$$T_{F1} = T_{F2},$$
 (3.82)

,

 λ_1

,

,

,

, ,

_

$$\lambda_1 (\partial T / \partial n)_{F1} = \lambda_2 (\partial T / \partial n)_{F2}.$$
(3.83)

,

,

,

--, -, -

, ,

-

,

,

_

,

,

(

(3.76),

,

,

,

,

,

,

,

,

•

.

•

•

,

.

, , _

. . , ,

_

_

, _

,

,

,

,

:

, ,

,

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0; \quad -(T - T) = \frac{\partial T}{\partial n} |; \quad -(T_{x0} - T) = \frac{\partial T}{\partial n} |, (3.84)$$
$$T \quad \partial T / \partial n -$$

. (

,

:

-

),

:

$$T = \frac{1}{2} \oint_{L} \left[T \quad \frac{\partial}{\partial n} (\ln r) - \frac{\partial T}{\partial n} \right] \quad \ln r dL, \qquad (3.85)$$

() -
$$M(x, y)$$

 $M(x, y)$ - $r^2 = (x - x)^2 + (y - y)^2$. -

$$\frac{\partial}{\partial n}(\ln r)dL = \frac{\partial(\ln r)}{\partial r}\frac{dr}{dn}dL = \frac{1}{r}\cos(r, \Lambda n)dL = \frac{1}{r}\frac{rd\varphi}{dL}dL = d\varphi, \qquad d\varphi - - -$$

$$- , \qquad M \qquad dL (. . . 3.34), \qquad -$$

,

(3.84)
$$\partial T / \partial n | = \alpha (T - T).$$
,
(3.85) :

,

•

$$T = \frac{1}{2} \left[\oint_{L} T \, d\varphi - \frac{1}{2} \oint_{L} (T - T) \ln r dL \right].$$
(3.86)

,

,

,

.

(3.86)

,

Τ,

:

:

_

			Ν			-
	ΔL ,		- N _o			ΔL_{o}
(3.34).				ΔL	ΔL_{0} -
`	,			-		-
						-
	,					
		()
		(,	,	•	•)•
		,				
						_
					_	,
			,			
	,					•
				,		
	~ -	",				_
						-
			,			-
	•	,				
			,			-
	•		—			, –
						-
			•		,	-
	•					-
			•			
		,				
					,	
	. 1)					-
	: 1)					;2) -
			4		; 3)	
		, ,	, 4)			-

3.6.2.

,

,

.

,

$$\begin{cases} \frac{\partial T}{\partial t} = \frac{1}{c \times \nabla^2 T} = a \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right), \\ - \frac{\partial T}{\partial n} \Big|_{F0} = \left|_{o} \left(T_{C \times 0} - T_{o}^* \right), - \frac{\partial T}{\partial n} \right|_{F} = \left(T^* - T_{\times} \right), \end{cases}$$
(3.87)

,

207

$$(q = 0)$$

 $(\partial/\partial t = 0)$, $\frac{d^{2}T}{dx^{2}} = 0, \quad \frac{dT}{dx}\Big|_{F0} = \left|_{0}\left(T - T_{0}^{*}\right)_{0}, \quad \frac{dT}{dx}\Big|_{F} = \left(T^{*} - T\right)_{\delta}.$ (3.88) (3.88) . :

•

(3.88),

$$\frac{dT}{dx} = C_1, \quad T = C_1 x + C_2,$$
 (3.89)

:

$$C_1 \quad C_2$$

(3.88):

:

$$\begin{array}{rcl} x = 0: & C_{1} = & {}_{o} \left(C_{1} \times 0 + C_{2} - T_{o}^{*} \right), & C_{2} = & C_{1} / & {}_{o} + T_{o}^{*} \\ x = & : & C_{1} = & \left(T^{*} - C_{1} & - C_{2} \right) = & \left(T^{*} - C_{1} & - & C_{1} / & {}_{o} - T_{o}^{*} \right) = \\ = & T^{*} - & \times \times C_{1} - & \times \times C_{1} / & {}_{o} + & T_{o}^{*} \\ & {}_{1} = \frac{\left(T^{*} - T_{o}^{*} \right)}{+ & \times + & / & {}_{o}} = \frac{T^{*} - T_{o}^{*}}{\left(1 / & + & / + 1 / & {}_{o} \right)} = \frac{T^{*} - T_{o}^{*}}{k} \end{array}$$

$$_{2} = --\frac{T^{*} - T_{o}^{*}}{k} + T_{o}^{*} \quad T = \frac{T^{*} - T_{o}^{*}}{k}x + \frac{T^{*} - T_{o}^{*}}{ok} + T_{o}^{*} =$$

$$=\frac{T^{*}-T_{o}^{*}}{k}\left(x+\frac{1}{o}\frac{1}{2}+T_{o}^{*}, \frac{dT}{dx}=\frac{T^{*}-T_{o}^{*}}{k}; \frac{d^{2}T}{dx^{2}}=0. \quad (3.90)$$

$$\begin{aligned} \mathbf{x} &= 0: \quad \frac{\mathrm{dT}}{\mathrm{dx}} \bigg|_{0} = \left| \frac{\mathbf{T}^{*} - \mathbf{T}_{0}^{*}}{\mathbf{k}} \right|_{0} = \left| \frac{\mathbf{T}^{*} - \mathbf{T}_{0}$$

$$T = \frac{T^* - {}^*}{\lambda k} \left(x + \frac{\lambda}{\alpha_o} \frac{1}{j} + T_o^* \right)$$

 $= 0 = \delta,$

•

$$T(x=0) = T_{c.o} = \frac{q}{\alpha_o} + T_o^*, \qquad (3.91)$$

:

$$T(x=\delta) = T_{c.} = * -\frac{q}{\alpha_o}.$$
 (3.92)

(α)

. 3.3.4 -

•

:

-

_

-

G_C G

. 3.35.

,

.

,

,

n (, 60)

$$\cdot$$

n
 Δx δ ,

:

_

-

$$k = \frac{L}{\frac{1}{\left(\frac{1}{k} + \frac{2B_{i}}{1+k}, \frac{1}{j} + \frac{1}{B}\right)}},$$
(3.93)

$$k = \Delta x / \Delta x - ; Bi = \frac{\times}{-}$$

$$\lambda = 20$$
 / \times

•

•

)

 Δx ,

•

$$Q = k(T - T)\Delta x_B;$$
 (3.94)

,

,

:

)

$$T_{\times} = T_{-} - \frac{Q}{\times L \times x}, T_{\times} = T_{+} - \frac{Q}{\times L \times x_{B}};$$
 (3.95)

$$T_{\rm B} = \frac{Q}{c_{\rm p}G_{\rm B}}.$$
 (3.96)

6 (. . 3.31),

.

,

$T_{\rm B} = \frac{G T_{\rm B} + G_{\rm c} T_{\rm E}}{G_{\rm c} + G}$	<u>3c</u> , (3.97)
С	
(3.93)-(3.95)	- , -

$$:$$
 $O_{a} + O$

•

$$T_{\rm B} = \frac{Q_{\rm c} + Q}{c_{\rm p}G_{\rm B}}.$$
 (3.98)

•

-

-

,

:

Microsoft EXCEL.

, EXCEL Microsoft.

,

,

:

,

)

EXCEL (), . . (, , , D . .) (1, 2, 3, . .),

,

,

(

()

,

,

,

,

214

L[];			
λ[/ Ж];		c _p [/ ⋅K]
	T [C].		
8- ,	(. 3.36).	

× N	hicrosoft Ex	xcel - Книг	a2a.xls											X
:B)) Файл Правка Вид Вставка Формат Сервис Данные <u>О</u> кно <u>С</u> правка Adobe PDF									Введите в	зопрос	• - é	x	
📴 🕞 🖸 🖏 🖬 🛍 ч 🛄 100% 🔹 📲 🛄 🖄 🖄 🖉 😳 🏷 🗇 🖏 🕼 🕬 Ответить с изменениями Законцить провер										проверку.				
Aria	al Cyr	• 10	• Ж А	<u>Ч</u> ање	EEI		9 % 000	4,0 ,00 ,00 ⇒,0 ,00 →,0 ,00 →,0 ,00 →,0 ,00 →,0 ,00 →,0 ,00 →,0 ,00 →,0 ,00 →,0 →,0 →,0 →,0 →,0 →,0 →,0 →,0 →,0) • <u>A</u>	Ω		Ŧ	
	C7	•	<i>f</i> x қДж/кг	К										
	A	В	C	D	E	F	G	Н		J	K	L	М	~
1														
2														
3														_
4		Расчёт ра	спределен	ия темпера	туры стенк	и охлажда	емой лопа:	тки дефлек	сторторного	типа				
5														_
6	L	λη	Срв	Tr										
7	MM	Вт/м К	кДж/кг К	C										
8	0,1	20,00	1,00	790,0										
9	№ точки	0 _f	Χŗ	δ _n	XB	α _θ	К	Q	G	Т	T _B	Тлг	Т _{лв}	
10		Вт/м ² К	10 ⁻³ м	10 ⁻³ м	10 ⁻³ м	Вт/м ² К	Вт/м ² К	Вт	10 ⁻³ кг/с			C		
11														V
H 4	→н∖ли	ст1 / Расч	ёт темпера	атуры / Д	данные рас:	кодные хар	актерисики	/ Gra <					>	
Гото	B0	Вычисля	1ТЬ									NUM] .;;

. 3.36.

Excel

T [C]

,

B -

С

11: F70,

_

-

_

α

,

9 10,

•

,

A

(. . 3.23);

3.2;

),

216

(
)) ((δ; Δx ; D Е F () () Δx), α (3.4. , Ι , . 3.37). G (. 3.3.4 G = 3,46 / G = 3,84 / , G = 7,30 / . , , G11: H70 J11: M70 , (3.93) k ((3.94)Q (G) H), (3.93) k , , 11 : G11:=(1/(B11*C11)+2*D11/(\$B\$8)*(C11+E11)*10^3)+1/(F11*E11))*10^3/\$A\$8, EXCEL \$ • EXCEL, (,

217

).

🖾 Microsoft Excel - Книга2a.xls										
······································	🐏 Файл Правка Вид Вставка Формат Сервис Данные Окно Справка Adobe PDF – – – – – – – – – – – – – – – – – – –									
🗄 🔚 🚆 🖏 🖏 🖾 🐨 🏹 🔝 🏷 🗭 🖏 🖓 🖓 Ответить с <u>и</u> зменениями										
Aria	Arial Cyr - 10 - XK K Y abe ≡ ≡ ≡ ⊠ → Ω 🚆 🖏 🛃 🖏									
	G6	▼	fx -							
	A	В	С	D	E	F	G	Н	~	
13		№ точки	$\alpha_{\rm r}$	Хr	δη	Хв	α _e		-	
14			Вт/м² К	10 ⁻³ м	10 ⁻³ м	10 ⁻³ м	Вт/м² К			
15		1	260,00	3,65	2,0	3,65	645,00			
16		2	265,00	3,65	2,5	3,65	645,00			
17		3	250,00	3,65	3,0	3,65	645,00			
18		4	260,00	3,65	3,0	3,65	470,00			
19		5	265,00	3,65	3,0	3,65	470,00			
20		6	270,00	3,65	3,0	3,65	470,00			
21		7	275,00	3,65	3,0	3,65	470,00			
22		8	280,00	3,65	3,0	3,65	470,00			
23		9	285,00	3,65	3,0	3,65	440,00		≣	
24		10	290,00	3,65	3,0	3,65	420,00			
25		11	300,00	3,65	3,0	3,65	395,00			
26		12	310,00	3,65	3,0	3,65	370,00			
27		13	315,00	3,65	3,0	3,65	370,00			
28		14	325,00	3,65	3,0	3,65	370,00		-	
29		15	330,00	3,65	3,0	3,65	370,00			
30									v	
I4 4	• •∖ли	[cт1/Расч	ёт темпера	туры 🖉 Д	lанныє <			>		
Гото	B0	Вычисли	1ТЬ				NUM		:	

)

(

-

. 3.37.

Excel

,

)

_

•

-

$$(3.95)$$
- (3.98)

24	57				(3.9	96),			
	,		11	23	58	70			- (3.98),
								(5-6-7)	
				-			(7-8)		-
	(8	8-9) (•	. 3.3	1).		Κ		
	(3.96, 3	.98),							

,

,

,

	,		43-	
	,		33,	-
,		(-

	,	
),		EXCEL

(,	57),
-		

,

•

,	,			11,			-
J 60	1	H70	J11: = 7	(H11 + H 70,	70)/(I11*	\$C\$8),	, - -
,							-
()				-
,			·		\Rightarrow		
	,	,		0,01 (. 3.38).		-
	, J		11-	23-	58-	70-	-
						,	-
			,				-

•

,

(H11 + H70)/(I11&C\$8), (H12 + H71)/(I12&C\$8),

,

12,

H71 H69.

11,

J

,

. 3.39.

,

,

.

Параметры			?×				
Международные Сохранение Вид Вычисления Правка	Проверка ошибок Общие Переход	Орфография Списки Диаграм	Безопасность ма Цвет				
Вычисления	<u>^</u>						
 <u>а</u>втоматически автоматически кроме таблиц 	 Вручную Пересчет перед сохранением Пересчет <u>л</u>иста 						
✓ итерации Предельное число итераций: 100	Относительная погрешность: 0,01						
обновлять удаленные ссылки	сохранять	значения внешних связе	эй				
☐ <u>т</u> очность как на экране ☐ система дат <u>1</u> 904	🗌 допускать	названия диапазонов					
		ОК	Отмена				

,

. 3.38.

,

K23 K57, -

(3.97),

J

,

,

•

. 3.39.

,

,

Excel

L M

В	F		-
	Κ		-

α

α,

223

× N	🖾 Microsoft Excel - Книга2a.xls													
:2	<u>Ф</u> айл Пра	вка <u>В</u> ид	Вст <u>а</u> вка	Фор <u>м</u> ат С <u>е</u>	рвис Данн	ые <u>О</u> кно	<u>С</u> правка Ас	lo <u>b</u> e PDF			Введи	те вопрос		đΧ
: 27			B-19	- 144 43	100% -	112 1	1200	200	340	🛛 🖤 🖉 Ответит	ь с изменения	ями Закон <u>ч</u> і	ить проверку	
Aria	Arial Cyr - 10 - X X Y abel 手 吾 吾 国 娿 % 000 % 综门 達 徳 日 - ③ - Δ - Ω _ 1 1 1 11 11 11 11													
Ľ	Q7 v fx													
	A	В	С	D	E	F	G	Н		J	K	L	М	
3														
4		Расчёт рас	спределени	ія темпера	туры стенки	охлаждае	мой лопатки	дефлекторто	рного типа					
5	1	λ	_	т										
7	L 444	∩а Вт/м К	երք Մաշ/տու հն	r ۲										=
8	0.1	20.00	1.00	790.0										
9	№ точки	0r	Xr	δ _n	X _B	α	к	Q	G	Т	T _B	Т _{лг}	Тлв	
10		Вт/м ² К	10 ⁻³ м	10 ⁻³ м	10 ⁻³ м	Вт/м ² К	Вт/м² К	Вт	10 ⁻³ кг/с			с		
11	1	260,00	3,65	2,0	3,65	645,00	15,059	26,3761542	7,30	7,51	392,80	512,06	504,84	
12	2	265,00	3,65	2,5	3,65	645,00	14,929	27,1093594	7,30	7,38	385,29	509,73	500,44	_
13	3	250,00	3,65	3,0	3,65	645,00	15,618	26,3861488	7,30	7,28	377,91	500,84	489,99	-
14	4 E	260,00	3,65	3,0	3,65	470,00	16,//8	24,9955845	7,30	7,10	3/0,63	526,61	516,34	-
15	с 6	265,00	3,65	3,0	3,65	470,00	16,575	26,723740	7,30	7.03	356 61	524,05	510,40	_
17	7	275,00	3,65	3,0	3,65	470,00	16,203	27,1816228	7,30	7,19	349,58	519,20	508,03	_
18	8	280,00	3,65	3,0	3,65	470,00	16,025	27,9318323	7,30	7,30	342,40	516,69	505,22	
19	9	285,00	3,65	3,0	3,65	440,00	16,251	27,9929119	7,30	7,36	335,10	520,90	509,40	
20	10	290,00	3,65	3,0	3,65	420,00	16,381	28,2190005	7,30	7,37	327,73	523,41	511,81	_
21	11	300,00	3,65	3,0	3,65	395,00	16,479	28,4982599	7,30	7,36	320,37	529,74	518,03	-
22	12	310,00	3,65	3,0	3,65	3/0,00	16,653	28,6426005	7,30	7,30	313,00	536,86	525,09	_ v
H 4	▶ н () Лис	ті ДРасчё	т темпера	туры Д	анные расхо	одные харан	стерисики /	Graf / Pacle			j	()(=,,,,=,)(
Гото	B0	Вычисли	ТЪ									NUM		;;

.

. 3.40.

,

,

,

•

Excel

,

,

-

-

-

-

-

(. 3.41).

,

. 3.41.

Excel,

/ 1. . . ; , • , , 1989 — 543 . .: • . 2. [.]; . . : / • , 2004. — 592 . .: .-• . . 3. : / , 2009. – ; .: . . 584 . 4. _ : / • . . . — - , 2008. – 295 . .: . -5. _ / : . , . - ,2008.-223 . .: -. . . –

Андреев Константин Дмитриевич, Оленников Сергей Юрьевич, Полищук Владимир Григорьевич, Рассохин Виктор Александрович, Соколов Николай Павлович

РАБОЧИЕ ПРОЦЕССЫ ГАЗО- И ПАРОТУРБИННЫХ УСТАНОВОК ТЕПЛОВЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ

РАБОЧИЕ ПРОЦЕССЫ ГАЗОТУРБИННЫХ УСТАНОВОК

Лицензия ЛР № 020593 от 07.08.97

Налоговая льгота – Общероссийский классификатор продукции

ОК 005-93, т. 2; 95 3005 – учебная литература

Подписано в печать

. Формат 60×84/16. Печать цифровая

Усл. печ. л. 13. Уч.-изд. л. 13. Тираж 35 экз. Заказ

Отпечатано с готового оригинал-макета, предоставленного авторами в цифровом типографском центре Издательства Политехнического университета:

195251, Санкт-Петербург, Политехническая ул., 29.

Тел. (812) 540-40-14

Тел./факс: (812) 927-57-76