На правах рукописи

Швецов Алексей Валерьевич

Структурно-динамическое моделирование и нейтронная спектроскопия мультимолекулярных комплексов ДНК-трансфераз

03.01.02 – биофизика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата физико-математических наук

Санкт-Петербург – 2013

Работа выполнена в лаборатории биофизики макромолекул Отделения молекулярной и радиационной биофизики Национального исследовательского центра «Курчатовский институт» Федерального государственного бюджетного учреждения «Петербургский институт ядерной физики им. Б.П. Константинова» (г. Гатчина).

Научный руководитель:	кандидат физико-математических наук
	Исаев-Иванов Владимир Васильевич.
Официальные оппоненты:	Сергей Борисович Вахрушев,
	доктор физико-математических наук,
	профессор, ФГБУН «Физико-технический
	институт им. А.Ф. Иоффе РАН»;
	Даринский Анатолий Анатольевич,
	доктор физико-математических наук,
	ФГБУН «Институт высокомолекулярных со-
	единений РАН».
Ведущая организация:	Объединенный институт ядерных исследова-
	ний, Дубна.

Защита состоится 23 декабря 2013 г. в 16 часов на заседании диссертационного совета Д 212.229.25 при ФГБОУ ВПО «Санкт-Петербургский государственный политехнический университет», по адресу: 195251, Санкт-Петербург, ул. Политехническая, д. 29, корпус 2, ауд. 265.

С диссертацией можно ознакомиться в фундаментальной библиотеке ФГБОУ ВПО «Санкт-Петербургский государственный политехнический университет».

Автореферат разослан «____» ноября 2013 г.

Ученый секретарьдоктор физико-математических наукдиссертационного советаВласова Ольга Леонардовна

Общая характеристика работы

Актуальность исследования

Современный арсенал методов, доступный для биологических исследований, позволяет ответить на многие вопросы, касающиеся функционирования белков и их комплексов. Однако далеко не все методы позволяют исследовать структуру и динамику белка в его нативном состоянии в растворе. Особенно это сложно сделать для крупных нуклеопротеидных комплексов, например, таких, которые образует семейство белков RecA на онДНК и днДНК.

Белок RecA, принадлежащий к классу ДНК-трансфераз, – это один из основных белков, ответственный за гомологичную рекомбинацию и репарацию ДНК у бактерий. RecA осуществляет реакцию гомологической рекомбинации: перенос гомологичных нитей ДНК, что позволяет исправлять двунитевые разрывы ДНК или другие повреждения, вызванные, например, воздействием ионизирующего излучения. Белки RecA в растворе функционируют в виде гомофиламентов или же в виде филаментов, образованных на он- или днДНК. На протяжении последних 20 лет стали известны несколько десятков кристаллических структур филаментов белков семейства RecA [14]. Белок RecA состоит из трёх доменов: С-концевого, N-концевого и P-домена. Образование филаментов происходит за счёт взаимодействия β -листов P- и N- доменов соседних мономеров. Недавно стала известна структура комплекса белка RecA с онДНК и с днДНК [15]. Но, несмотря на это, остаётся нераскрытым вопрос: какие именно конформационные изменения ответственны за перенос нитей ДНК в реакции гомологической рекомбинации ДНК.

Белки RecA, а также их нуклеопротеидные комплексы исследовались в растворе с помощью методов малоуглового рассеяние нейтронов (МУРН) и малоуглового рассеяния рентгена (МУРР). Эти методы позволяют получать структурно-динамическую информацию о сложных нуклеопротеидных комплексах в нативном состоянии, и это их преимущество, но, с другой стороны, они являются методами низкого разрешения. В силу последнего обстоятельства решение обратной задачи – получение из экспериментальных спектров структурно-динамических параметров исследуемого комплекса при использовании этих методов – требует точного знания структуры и внутренней динамики исследуемого нуклеопротеидного комплекса. Так как исследуемый комплекс находится в растворе и имеет ненулевую конформационную подвижность, в большинстве случаев теоретические кривые МУРН, полученные с использованием только одной статической структуры, не в состоянии адекватно описать экспериментальные данные [1]. Таким образом, разработка методов структурно-динамического молекулярного моделирования сложных нуклеопротеидных комплексов, в том числе мультимолекулярных комплексов ДНКтрансфераз, которые могут являться основой для расчёта спектров МУРН и МУРР с учетом конформационной подвижности нуклеопротеидных комплексов в растворе, является актуальной задачей.

С другой стороны, конформационная подвижность, или внутренняя динамика нуклеопротеидных комплексов в растворе может быть явно исследована с помощью метода нейтронного спин-эхо (НСЭ). В основе метода НСЭ лежит метод МУРН на пучке поляризованных нейтронов, в котором измеряется релаксация поляризации нейтронов за счёт квазиупругого рассеяния их на образце. Время релаксации поляризации напрямую связано с эффективной диффузией рассеивающего объекта, которая складывается из диффузии комплекса как целого и внутренней динамики нуклеопротеидного комплекса. В силу сказанного решение обратной задачи в данном методе зависит не только от точного знания структуры исследуемого комплекса, но и от точного знания динамики этой структуры на временах измерения релаксации поляризации (1-200 нсек).

Таким образом, разработка методов структурно-динамического молекулярного моделирования нуклеопротеидных комплексов, являющихся базой для расчёта спектров НСЭ также является актуальной задачей.

Цели и задачи исследования

Целью настоящей работы является разработка методов структурно-динамического молекулярного моделирования и методов верификации полноатомных моделей с помощью МУРН и НСЭ при исследовании мультимолекулярных комплексов ДНК-трансфераз.

Для достижения этой цели были поставлены следующие задачи:

- разработать метод построения полноатомных молекулярных моделей филаментной структуры мультимолекулярных комплексов ДНК трансфераз из *Escherichia coli* и *Deinococcus radiodurans*, а именно: гомополимер RecA, RecA::oнДНК::ATФ, RecA::днДНК::ATФ, RecA::тнДНК::ATФ; и комплексов из *E. coli*: RecX::oнДНК, RecA::RecX::oнДНК::ATФ;
- рассчитать методами молекулярной динамики (МД) зависимость от времени (МД траектории) построенных полноатомных филаментных структур мультимолекулярных комплексов ДНК трансфераз из *E. coli* и *D. radiodurans*: гомополимер RecA, RecA::oнДНК::ATФ, RecA::днДНК::ATФ, RecA::rнДНК::ATФ; и комплексов из *E. coli*: RecX::oнДНК, RecA::RecX::oнДНК::ATФ;
- разработать метод расчёта спектров МУРН на основе структур мультимолекулярных комплексов ДНК-трансфераз, полученных путём молекулярного моделирования, с возможностью усреднения спектра МУРН по МД траекториям;
- 4. разработать метод расчёта спектров НСЭ на основе структур мультимолекулярных ком-

4

плексов ДНК трансфераз, рассчитанных методами МД (по МД-траекториям);

- провести регистрацию экспериментальных спектров МУРН нативных растворов мультимолекулярных комплексов *E. coli*: гомополимер RecA, RecA::oнДНК::ATФγS, RecX::oнДНК и RecA::RecX::oнДНК::ATФγS;
- провести сравнительный анализ теоретических спектров МУРН и НСЭ на структурах, полученных путем молекулярного моделирования, и экспериментальных спектров на предмет верификации разработанных методов моделирования мультимолекулярных комплексов ДНК-трансфераз.

Научная новизна

- Разработан новый метод решения прямой задачи построение спектров МУРН на основании данных траекторий полноатомной МД филаментных структур мультимолекулярных нуклеопротеидных комплексов, позволяющий учитывать конформационную подвижность этих структур в растворах.
- Разработан новый метод решения прямой задачи построение спектров НСЭ на основании данных траекторий полноатомной МД филаментных структур мультимолекулярных нуклеопротеидных комплексов.
- 3. Впервые построена полноатомная структура комплекса белка RecX с онДНК.
- 4. Впервые построена полноатомная структура комплекса белка RecA в комплексе с белком RecX в присутствии онДНК, описывающая экспериментальные данные МУРН.

Теоретическая и практическая значимость

Полученные в рамках траекторий полноатомной МД филаментные структуры мультимолекулярных нуклеопротеидных комплексов ДНК трансфераз могут быть использованы при решении прямой задачи в рамках других методов исследования, например в методе FRET (Forster Resonance Energy Transfer).

Разработанные методы расчёта спектров МУРН по полноатомным траекториям молекулярной динамики, позволяющие учитывать конформационную подвижность нуклеопротеидных комплексов в растворе, могут быть также использованы для расчёта спектров МУРН других молекулярных комплексов, таких как гликопротеины и другие сложные многокомпонентные молекулярные системы. Разработанный метод расчёта спектров НСЭ по полноатомным траекториям молекулярной динамики позволяет использовать его для расчёта спектров НСЭ других сложных многокомпонентных молекулярных систем.

Основные положения, выносимые на защиту

- 1. Новый метод решения прямой задачи расчёт спектров МУРН по полноатомным траекториям МД, позволяющий учитывать конформационную подвижность нуклеопротеидных мультимолекулярных комплексов в растворе.
- Новый метод решения прямой задачи расчёт спектров НСЭ по полноатомным траекториям МД филаментных структур мультимолекулярных нуклеопротеидных комплексов в растворе.
- 3. Спектры МУРН, рассчитанные предлагаемым методом для гомополимера белка RecA и нуклеопротеидных комплексов ДНК-трансфераз из *E. coli* и *D. radiodurans*, удовлетворительно описывают экспериментально наблюдаемые спектры МУРН.
- 4. Спектры НСЭ, рассчитанные предлагаемым методом для гомополимера белка RecA и нуклеопротеидных комплексов ДНК-трансфераз из *D. radiodurans* качественно согласуются с экспериментальными данными.

Апробация работы

Основные результаты диссертации докладывались на следующих конференциях: РНИКС (2010 [2] и 2012 [3]); РСНЭ-НБИК 2011 [4]; БИОЛОГИЯ – НАУКА XXI ВЕКА: 15-я Международная Пущинская школа-конференция молодых ученых [5]; Sweedish Neutron Scattering Society 14th Annual Meeting [6]; 5th European Conference on Neutron Scattering [7]; The Eleventh International Conference on Surface X-ray and Neutron Scattering SXNS-11 [8]; FEBS Congress [9, 10].

Публикации

По материалам диссертации опубликовано 13 печатных работах, из них 4 статьи в рецензируемых журналах [1, 11–13], 9 тезисов докладов [2–10].

Личный вклад автора

Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами, причем вклад диссертанта был определяющим. Все представленные в диссертации результаты, кроме экспериментальных данных МУРН и НСЭ, получены лично автором.

Структура и объем диссертации

Диссертационная работа изложена на 115 страницах машинописного текста и включает введение, три главы (обзор литературы, методы, результаты и обсуждение) и выводы. Материал иллюстрирован 58 рисунками и 3 таблицами. Библиографический указатель содержит 123 источника.

Содержание работы

Во введении обоснована актуальность диссертационной работы, сформулирована цель и аргументирована научная новизна исследования, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

1. Обзор литературы

Обобщены современные представления о структуре различных комплексов белков RecA из различных организмов. На основе анализа литературы был сделан вывод о том, что достаточно хорошо изучены только комплексы гомополимеров белков RecA, а также комплексы RecA::онДНК и RecA::днДНК. В то же время вопросы, касающиеся динамики таких комплексов, а также молекулярных механизмов взаимодействия RecA с его регуляторными белками, также как и молекулярного механизма поиска гомологии, остались не освещены. Описаны основные принципы МУРН и НСЭ, а также современные методы расчёта спектров по имеющимся структурным данным. Описан современный арсенал методов молекулярного моделирования.

2. Методы

2.1. Молекулярное моделирование

Рассмотрены подходы к построению макромолекулярных комплексов белков RecA и RecX на основании имеющихся данных рентгеновской кристаллографии, криоэлектронной микроскопии и литературных данных. На основании известных кристаллических структур мономеров белков RecA из *E. coli* (PDB:2REB [14]) и *D. radiodurans* (PDB:1XP8 [16]) были построены модели гомополимеров белков RecA различной длины (тримеры и додекамеры). При этом недостающие фрагменты кристаллической структуры мономеров, а именно подвижные петли L1, L2 и LAL, были достроены с использованием методов молекулярного моделирования и программного пакета ICM [17, 18]. С использованием данных рентгеновской кристаллографии по структуре комплексов химерного белка RecA из *E. coli* с онДНК и днДНК были построены модели филаментов RecA на онДНК и днДНК для белка RecA из *E. coli*. Для белка RecA из *D. radiodurans* модели комплексов с онДНК и днДНК были построены с использованием методов гомологического моделирования. Также были построены модели комплексов, имитирующие переходное состояние в реакции гомологической рекомбинации, а именно комплекс белков RecA с тнДНК. Для тнДНК использовался вариант хугстиновских [19] водородных связей между нуклеотидами в тнДНК. Исходя из структуры мономера белка RecX (PDB:3C1D [20]) из *E. coli* были построены возможные варианты филаментов белка RecX как в варианте гомополимера, так и в двух различных вариантах на онДНК (рис. 1). Также исходя из данных криоэлектронной микроскопии с помощью методов молекулярного докинга была построена серия моделей комплексов белка RecX с филаментом RecA, содержащего онДНК (рис. 2).

Рис. 1. Структуры возможных комплексов RecX::онДНК из *E. coli*. Возможнаяя структура комплекса филамента белка RecX, покрывающего онДНК с одной стороны (а) и структура сандвич-подобного типа (б)

2.2. Молекулярная динамика

Были произведены расчёты траекторий молекулярной динамики для всех моделей, построенных в предыдущем пункте. Для расчётов МД использован программный пакет GROMACS [21–25]. Для белков и ДНК использовано поле amber99sb-ildb [26], для явно заданной воды использовался набор параметров tip3p [27]. Все системы были уравновешены в периодическом водном боксе (расстояние от стенок бокса до молекулярного комплекса составляло не менее 15 Å) в течение 10 нс при постоянной температуре 310 К и давлении 1 атм. Затем были получе-

Рис. 2. Структура комплекса RecA::RecX::oнДНК::ATФ из E. coli с соотношением RecA:RecX 12:5

ны траектории длиной от 50 нс до 100 нс при тех же условиях, что были заданы для уравновешивания системы для каждого комплекса, которые затем были подвергнуты анализу.

2.3. Моделирование спектров МУРН

Для расчета спектров МУРН использован метод расчета, основанный на методе Дебая:

$$S(\vec{q}) = \int G(\vec{r})e^{i\vec{q}\vec{r}}d\vec{r},\tag{1}$$

где $G(\vec{r})$ является парной корреляционной функцией. Предполагая, что все ориентации биомакромолекулы равновероятны и будут равноценно представлены в растворе, с помощью формулы Дебая формулу (1) можно переписать следующим образом:

$$S(q) = \int G(r) \frac{\sin(qr)}{qr} dr.$$
 (2)

Для удобства расчёта спектра по фреймам молекулярной динамики парную корреляционную функцию можно записать в виде суммы по частицам (3), используя в качестве коэффициентов когерентные длины рассеяния b_i и b_j [28]:

$$G(r) = \sum_{\substack{i,j \\ r = \|\vec{r_i} - \vec{r_j}\|}} b_i b_j.$$
 (3)

Тогда формулу (3) можно представить в виде гистограммы с заданной шириной бина dr, что будет предпочтительней для вычисления на компьютере. Для получения I(q) нам нужно использовать дискретный вариант формулы (3), который будет выглядеть следующим образом:

$$I(q) = \sum_{r} G(r) \frac{\sin(qr)}{qr}.$$
(4)

Метод был расширен для того, чтобы было возможно реализовать усреднение расчёта спектров по траектории МД. Для этого было произведено усреднение функции G(r) по всей траектории. Методы были реализованы в виде модуля g_sans для программного пакета GROMACS.

2.4. Моделирование спектров НСЭ

Для расчёта спектров НСЭ использован метод, сходный с методом расчёта спектров МУРН, с той лишь разницей, что для спектров НСЭ требуется также учитывать временные корреляции. Измеряемый сигнал является промежуточной функцией рассеяния $I(\vec{q}, \tau)$, которую можно записать следующим образом:

$$I(\vec{q},\tau) \propto \langle \sum_{i}^{N} \sum_{j}^{N} e^{-i\vec{q}(\vec{r}_{i}(t)-\vec{r}_{j}(t+\tau))} \rangle_{t}, \qquad (5)$$

где $\langle \rangle_t$ соответствует усреднению по ансамблю, что эквивалентно усреднению по времени *t*. В случае если рассматриваемая нами частица находится в растворе и может свободно вращаться как целое, то, усредняя по ориентациям, выражение (5) можно переписать с использованием формулы Дебая:

$$I(q,\tau) = \int G(r,\tau) \frac{\sin(qr)}{qr} dr,$$
(6)

где $G(r, \tau)$ является пространственно-временной кросс-корреляционной функцией:

$$G(r,\tau) = \sum_{\substack{i,j \\ r = \|\vec{r}_i(t) - \vec{r}_j(t+\tau)\| \\ \tau = \|t_i - t_j\|}} b_i b_j.$$
(7)

где b_i , b_j – длины рассеяния на частицах *i* и *j* соответственно. При этом удобнее вместо функции $G(r, \tau)$ использовать функцию $P(r, \tau)$, которая является нормированной версией $G(r, \tau)$. Нормировку можно записать следующим образом:

$$P(r,\tau) = \frac{G(r,\tau)}{\int_0^\infty G(r,\tau)dr}.$$
(8)

Как следствие из нормировки (8) также получается нормировка функции $I(q, \tau)$:

$$\lim_{q \to 0} I(q,\tau) = 1. \tag{9}$$

Метод был реализован в виде модуля g_nse для программного пакета GROMACS.

3. Результаты и обсуждения

3.1. Анализ траекторий комплексов белков RecA

Анализ средней конформационной подвижности показал, что при взаимодействии белков RecA с ДНК происходит стабилизация комплексов. При этом во всех случаях средняя конформационная подвижность белка RecA из *D. radiodurans* оказалась выше, чем у белков RecA их *E. coli*. Дальнейший анализ выявил, что стабилизация в комплексах RecA с ДНК происходит за счёт того, что петли L1 и L2 взаимодействуют с ДНК. Также с помощью метода анализа принципиальных компонент [29] движения была выявлена скоррелированность движений N- и C-концевых доменов как у белка RecA из *E. coli*, так и у белка RecA из *D. radiodurans*. При этом C-концевой домен совершал повороты на угол до 80° у белка RecA из *D. radiodurans* и на угол до 50° у белка RecA из *E. coli*.

3.2. Анализ траекторий комплексов белка RecX

Анализ конформационной подвижности комплексов белка RecX как в форме гомополимера, так и в форме комплексов с онДНК показал снижение конформационной подвижности комплексов в ряду гомополимер, комплекс на онДНК, сандвич-подобный комплекс на онДНК. Используя карты контактов (рис. 3), было выявлено также, что белок RecX взаимодействует с онДНК в основном за счет кулоновских взаимодействий (во взаимодействии преимущественно участвуют полярные аминокислоты R17 R20 R25 H27 R33 K35 R91 R93 R150 и их окружение). Была обнаружена также способность сандвич-подобного комплекса белка RecX вытягивать онДНК до 5,5 Å на основание (в случае В-формы – это 3,3 Å на основание, вытянутая же S-форма в комплексе RecA::oнДНК – это 5,0 Å на основание).

Рис. 3. Средняя карта контактов между белком RecX и онДНК для сандвич-подобного комплекса RecX::онДНК из *E. coli*

Рис. 4. Средняя карта контактов между белком RecX и онДНК для комплекса RecA::RecX::онДНК из E. coli

Рис. 5. Средняя карта контактов между белками RecX и RecA для комплекса RecA::RecX::онДНК из E. coli

3.3. Анализ траекторий комплексов RecA::RecX::онДНК

Анализ траекторий комплексов RecA::RecX::oнДНК с различной стехиометрией позволил установить, что белок RecX имеет примерно те же наборы контактов с онДНК, что и в сандвичподобном комплексе с онДНК (рис. 4). Также было выявлено, что с белком RecA белок RecX взаимодействует в основном в районе петель L1 и L2 (аминокислотные остатки белка RecA 150-160 и 195-210 соответственно), взаимодействующих с онДНК. Интересным является также тот факт, что белок RecX имеет контакты в районе межмономерного интерфейса белка RecA (конец первой α -спирали – аминокислотные остатки 10–25, α -спираль 7 – аминокислотные остатки 122–135 и в районе петли LAL). Примечательно, что контакты между белком RecX и белком RecA возникают в подвижных областях белка RecA, таких как петли L1, L2 и LAL, за счет чего конформационная подвижность мономеров RecA снижается (рис. 5).

3.4. Анализ спектров МУРН комплексов белков RecA и RecX

Рис. 6. Сравнение спектров, рассчитанных с помощью CRYSON и g_sans, с экспериментом для гомополимера белка RecA из *D. radiodurans*

Применение метода расчёта спектров МУРН с учётом конформационной подвижности путём усреднения по траектории даёт лучшее согласование с экспериментом, чем для спектров МУРН, рассчитанных по единичному фрейму (рис. 6 и 7). Метод МУРН был также использован для экспериментальной верификации моделей комплексов белков RecA::RecX::oнДНК и комплексов RecX::oнДНК (рис. 8).

3.5. Анализ спектров НСЭ комплексов белков RecA

Для гомополимера и пресинаптического комплекса белка RecA из *D. radiodurans* были измерены экспериментальные спектры НСЭ и проведено сравнение спектров с модельными,

Рис. 8. Экспериментальные и модельные спектры МУРН для комплексов RecA::RecX::oнДНК::ATФ из *E. coli* с различным соотношением RecX:RecA (а) и для комплексов RecX::oнДНК из *E. coli* (б)

Рис. 9. Экспериментальные спектры НСЭ для гомополимера белка RecA (слева) и комплекса RecA::онДНК::АТФуS (справа) из *D. radiodurans*

полученными с МД-траекторий, длиной 100 нс. Как видно из графиков спектров НСЭ для моделей (рис. 10) и экспериментальных данных, модельные спектры НСЭ качественно описывают эксперимент, они имеют те же характерные особенности, что и экспериментальные спектры.

Сравнение модели и экспериментальных данных показывает (рис. 11), что модель качественно согласуется с экспериментом. Модельная система, также как и экспериментальные данные, дают схожую зависимость диффузии от векторов рассеяния как для комплекса гомополимера белка RecA из *D. radiodurans*, так и для пресинаптического комплекса RecA::oнДНК::AT $\Phi\gamma$ S, однако абсолютные значения диффузии, которые дает модель, отличается от эксперимента, что может быть обусловлено тем, что реальные комплексы в растворе имеют гораздо большие размеры по сравнению с модельной системой.

14

Рис. 10. Модельные спектры НСЭ для гомополимера белка RecA (слева) и комплекса RecA::онДНК::АТФуS (справа) из *D. radiodurans*

Рис. 11. Экспериментальный (слева) и модельный спектр МУРН и зависимость диффузии от вектора рассеяния для гомополимера белка RecA и комплекса RecA::онДНК::АТФуS из *D. radiodurans*

4. Основные результаты и выводы

1. Построены полноатомные структуры гомополимера белка RecA из *E. coli* и *D. radiodurans* и его нуклеопротеидных комплексов с онДНК и днДНК в рамках траекторий молекуляр-

15

ной динамики, позволяющие учитывать конформационную подвижность нуклеопротеидных мультимолекулярных комплексов в растворе при решении прямой задачи – расчете спектров МУРН.

- Разработан новый метод решения прямой задачи: расчет спектров МУРН по полноатомным траекториям молекулярной динамики, позволяющий учитывать конформационную подвижность нуклеопротеидных мультимолекулярных комплексов в растворе.
- Разработан новый метод решения прямой задачи: расчет спектров НСЭ по полноатомным траекториям молекулярной динамики филаментных структур мультимолекулярных нуклеопротеидных комплексов в растворе.
- 4. Спектры МУРН, рассчитанные предлагаемым методом для гомополимера белка RecA и нуклеопротеидных комплексов ДНК-трансфераз из *E. coli* и *D. radiodurans*, удовлетворительно описывают экспериментально наблюдаемые спектры МУРН.
- 5. Спектры НСЭ, рассчитанные предлагаемым методом для гомополимера белка RecA и нуклеопротеидных комплексов ДНК трансфераз из *D. radiodurans*, качественно согласуются с экспериментальными данными.
- 6. Впервые построена полноатомная структура комплекса белка RecX с онДНК, согласующаяся с данными МУРН, и предложена модель взаимодействия RecX с онДНК.
- 7. Впервые построена полноатомная структура комплекса белка RecA в комплексе с белком RecX в присутствии онДНК, описывающая экспериментальные данные МУРН.

Список работ, опубликованных по теме диссертации

- Garmay Yu., Shvetsov A., Karelov D. *et al.* Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament // Journal of Physics: Conference Series. 2012. Vol. 340, no. 1. P. 012094.
- Швецов А.В., Гармай Ю.П., Лебедев Д.В. *et al.* Расчет и анализ молекулярной динамики ДНК-связывающих белков для моделирования данных нейтронного рассеяния // XXI Совещание по использованию нейтронов в исследованиях конденсированного состояния (РНИКС-2010). РНЦ «Курчатовский институт», Москва, Россия: 2010.

- Швецов А.В., Лебедев Д.В., Исаев-Иванов В.В. Моделирование данных малоуглового нейтронного рассеяния и нейтронного спинового эха при исследовании биомакромолекул методами молекулярной динамики // XXIII Совещание по использованию нейтронов в исследованиях конденсированного состояния (РНИКС-2012). РНЦ «Курчатовский институт», Москва, Россия: 2012.
- 4. Швецов А.В., Гармай Ю.П., Лебедев Д.В. *et al.* Моделирование данных малоуглового рассеяния нейтронов с помощью методов молекулярной динамики на примере ДНК-трансфераз // VIII Национальная конференция "Рентгеновское Синхротронное излучение, Нейтроны и Электроны для исследования наносистем и материалов. Нано-Био-Инфо-Когнитивные технологии". РСНЭ-НБИК. РНЦ «Курчатовский институт», Москва, Россия: 2011.
- 5. Швецов А.В., Гармай Ю.П., Лебедев Д.В. *et al.* Расчет и анализ молекулярной динамики ДНК-связывающих белков для моделирования данных нейтронного рассеяния // БИОЛОГИЯ НАУКА XXI ВЕКА: 15-я Международная Пущинская школа-конференция молодых ученых. Пущино, Россия: 2011.
- Shvetsov A., Garmay Yu., Lebedev D. *et al.* Molecular dynamics and large-scale conformational flexibility of RecA proteins. // Sweedish Neutron Scattering Society 14th Annual Meeting & Biointerfaces – From molecular understanding to application. International Workshop. Lund, Sweeden: 2010.
- Shvetsov A., Garmay Yu., Lebedev D. *et al.* Molecular dynamics and large-scale conformational flexibility of DNA-transferases // 5th European Conference on Neutron Scattering. Prague, Czech Republic: 2011.
- Ilatovskiy A.V., Garmay Yu.P., Shvetsov A.V. *et al.* Molecular Dynamics and Large-Scale Conformational Flexibility of DNA-binding Proteins // The Eleventh International Conference on Surface X-ray and Neutron Scattering SXNS-11. Evanston, IL, USA: 2010.
- 9. Shvetsov Alexey, Lebedev Dmitry, Baitin Dmitry *et al.* Structure of RecX complex with the presynaptic RecA filament: molecular dynamics simulations and small angle neutron scattering // FEBS Congress, Main Symposia And Workshops. Saint-Petersburg, Russia: 2013.
- Shvetsov Alexey, Lebedev Dmitry, Ivanova Oxana *et al.* Large-scale mobility of RecA protein filaments in solution by molecular dynamics simulation and neutron spin echo // FEBS Congress, Main Symposia And Workshops. Saint-Petersburg, Russia: 2013.

- Shvetsov A., Lebedev D., Chervyakova D. *et al.* Structure of RecX protein complex with the presynaptic RecA filament: molecular dynamics simulations and small angle neutron scattering // FEBS Letters. 2013.
- Швецов А.В., Шмидт А.Е., Лебедев Д.В., Исаев-Иванов В.В. Метод расчета спектров малоуглового нейтронного рассеяния по полноатомным траекториям молекулярной динамики // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2013. Т. 12. С. 1–5.
- 13. Дудкина А.В., Швецов А.В., Бахланова И.В., Байтин Д.М. Изменение динамики филаментации белка RecA, вызванное аминокислотной заменой D112R либо замещением ATP на dATP, приводит к устойчивости филамента к действию белка RecX // Молекулярная биология. 2011. Т. 45. С. 546–553.

Цитированная литература

- Story Randall M., Weber Irene T., Steitz Thomas A. The structure of the E. coli recA protein monomer and polymer // Nature. 1992. Vol. 355, no. 6358. P. 318–325.
- 15. Chen Zhucheng, Yang Haijuan, Pavletich Nikola P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures // Nature. 2008. Vol. 453, no. 7194. P. 489–494.
- Rajan Rakhi, Bell Charles E. Crystal Structure of RecA from Deinococcus radiodurans: Insights into the Structural Basis of Extreme Radioresistance // Journal of Molecular Biology. 2004. Vol. 344, no. 4. P. 951–963.
- Abagyan Ruben, Totrov Maxim, Kuznetsov Dmitry. ICM: A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation // Journal of Computational Chemistry. 1994. Vol. 15, no. 5. P. 488–506.
- Abagyan Ruben, Totrov Maxim. Biased Probability Monte Carlo Conformational Searches and Electrostatic Calculations for Peptides and Proteins // Journal of Molecular Biology. 1994. Vol. 235, no. 3. P. 983–1002.
- 19. Hoogsteen K. The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine // Acta Crystallographica. 1963. Vol. 16, no. 9. P. 907–916.

- Ragone Stefania, Maman Joseph D., Furnham Nicholas, Pellegrini Luca. Structural basis for inhibition of homologous recombination by the RecX protein // EMBO J. 2008. Vol. 27, no. 16. P. 2259–2269.
- Berendsen H.J.C., van der Spoel D., van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation // Computer Physics Communications. 1995. Vol. 91, no. 1–3. P. 43–56.
- 22. Lindahl Erik, Hess Berk, van der Spoel David. GROMACS 3.0: a package for molecular simulation and trajectory analysis // Molecular modeling annual. 2001. Vol. 7, no. 8. P. 306–317.
- 23. Van Der Spoel David, Lindahl Erik, Hess Berk *et al.* GROMACS: Fast, flexible, and free // Journal of Computational Chemistry. 2005. Vol. 26, no. 16. P. 1701–1718.
- Hess Berk, Kutzner Carsten, van der Spoel David, Lindahl Erik. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation // Journal of Chemical Theory and Computation. 2008. Vol. 4, no. 3. P. 435–447.
- Pronk Sander, Páll Szilárd, Schulz Roland *et al.* GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit // Bioinformatics. 2013. Vol. 29, no. 7. P. 845–854.
- Lindorff-Larsen Kresten, Piana Stefano, Palmo Kim *et al.* Improved side-chain torsion potentials for the Amber ff99SB protein force field // Proteins: Structure, Function, and Bioinformatics. 2010. Vol. 78, no. 8.
- Jorgensen William L., Chandrasekhar Jayaraman, Madura Jeffry D. *et al.* Comparison of simple potential functions for simulating liquid water // The Journal of Chemical Physics. 1983. Vol. 79, no. 2. P. 926–935.
- Sears Yarley F. Neutron scattering lengths and cross section // Neutron News. 1992. Vol. 3, no. 3.
 P. 26–37.
- Amadei Andrea, Linssen Antonius B. M., Berendsen Herman J. C. Essential dynamics of proteins // Proteins: Structure, Function, and Bioinformatics. 1993. Vol. 17, no. 4. P. 412–425.