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ELEUSIS: PERFECT RECALL FOR INDUCTIVE REASONING

This paper formalizes a variant of inductive game Eleusis. A model of the game is an interpreted system 
with perfect recall agents for the players and the dealer. The pecularity of Eleusis multi-agent system is that 
the agents have to guess the behavior of the system, rather than some static information about the system. 
We express some Eleusis rules and properties of the system by the formulas of propositional knowledge logic 
and branching time Act-CTL-Kn.

MULTIAGENT SYSTEMS; EPISTEMIC LOGIC; ELEUSIS; PERFECT RECALL; INTERPRETED 
SYSTEMS.

Н.О. Гаранина

ЭЛЕВСИН: АБСОЛЮТНАЯ ПАМЯТЬ ДЛЯ ИНДУКТИВНОГО ВЫВОДА

Формализован вариант индуктивной карточной игры Элевсин. Моделью игры является интер-
претированная система с агентами с абсолютной памятью, реализующими игроков и раздающе-
го. Особенностью мультиагентной системы Элевсин является то, что агенты должны вычислить 
поведение самой системы, а не какую-либо статическую информацию. Некоторые правила игры 
Элевсин и свойства построенной мультиагентной системы выражены формулами логики знаний и 
действий Act-CTL-Kn.

МУЛЬТИАГЕНТНЫЕ СИСТЕМЫ; ЛОГИКА ЗНАНИЙ; ЭЛЕВСИН; АБСОЛЮТНАЯ ПА-
МЯТЬ; ИНТЕРПРЕТИРОВАННЫЕ СИСТЕМЫ.

There are a lot of puzzles that give clear 
comprehension of various notions from a theo-
ry of epistemic logics. For example, the Coor-
dinated Attack Problem [3] shows unreachabil-
ity of common knowledge in the environment 
with time gaps; in Muddy Children Puzzle [3] 
knowledge is based on the quantity of observa-
tions, while in Dining Cryptographers Problem 
[9] knowledge is based on the quality of ob-
servations; Mars Robot Puzzle [14] illustrates 
knowledge taken by double-checking obser-
vations; False Coin Puzzle [11] demonstrates 
knowledge acquisition. In the last two puzzles 
and in the puzzle from this paper perfect recall 
for agents is crucial1.

To the best of our knowledge, epistemic 
logics was not used for a definition of inductive 
knowledge of agents before. In this paper we 
formalize inductive game Eleusis. This game 
was introduced by Robert Abbot in 1956. We 

give a description of the first variant of the 
game from [4]:

Eleusis (pronounced ee-loo-sis) is a game 
for three or more players. It makes use of the 
standard deck of playing cards. Players take 
turns at being the dealer, who has no part in 
the actual play except to serve as a kind of 
umpire. He deals to the other players until 
one card remains. This is placed face up in 
the center of the table as the first card of the 
«starter pile». To make sure that players receive 
equal hands, the dealer must remove a certain 
number of cards before dealing. For three 
players (including the dealer, who of course 
does not get a hand) he removes one card; for 
four players, no cards; five players, three cards, 
and so on. The removed cards are set aside 
without being shown. 

After the cards are dealt and the «starter 
card» is in place, the dealer makes up a secret 
rule that determines what cards can be played 
on the starter pile. It is this rule that corresponds 
to a law of science; the players may think of the 
dealer as Nature, or, if they prefer, as God. 
The dealer writes his rule on a piece of paper, 

1 For the Dining Cryptographers this notion is not 
so important because substantial information (even 
or odd number of differences) could be coded by a 
boolean variable.
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which he folds and puts aside. This is for later 
checking to make sure that the dealer does not 
upset Nature’s uniformity by changing his rule. 
For each player the object of the game is to 
get rid of as many cards as possible. This can 
be done rapidly by any player who correctly 
guesses the secret rule.

An example of a very simple rule is: «If the 
top card of the starter pile is red, play a black 
card. If the top card is black, play a red card».

There are many studies of this game, but they 
refer to such aspects as induction algorithms 
for players discovering the rule [2], machine 
learning technique [10] or the computational 
complexity of various decision problems that 
arise in Eleusis [7]. Multi-agent systems and 
epistemic logics were not in the focus of the 
game researchers before.

We study Eleusis in trace-based synchronous 
perfect recall multi-agent systems. In such 
systems agents have memory: their knowledge 
depends on the states passed and on the previous 
actions. We can describe this kind of agents 
because semantics of knowledge is defined 
on traces, i. e. finite sequences of states and 
actions, and every agent can distinguish traces 
with different sequences of information available 
for it. Each element of the trace represents a 
state of the system at some moment of time. A 
model of this game differs from other multi-
agent systems as in this system the agent has 
complete information about the system and 
tries to guess modus operandi of another agent 
or of the environment.

For formalization of Eleusis world we 
use a Propositional Logic of Knowledge and 
Branching Time Act-CTL-K

n [12] and a notion 
of an interpreted system [6, 3] enriched by 
perfect recall [8]. Properties of these systems 
could be checked by some model checker of 
multi-agent systems with perfect recall, for 
example, MCMAS [9].

Background Logics and Models

First, we would like to give definitions to 
combined Propositional Logic of Knowledge and 
Branching Time Act-CTL-Kn from [12] briefly. 
This logic is a fusion of Propositional Logic 
of Knowledge (PLK) [3] and Computational 
Tree Logic (CTL) [1] extended by action 
symbols. Usually, semantics of Act-CTL-Kn is 

defined in terms of a satisfiability relation |= in 
environments that are a special kind of labeled 
transition systems. In this paper we prefer to 
use interpreted systems which are a specific 
form of environments.

Let us reformulate the definition of 
interpreted systems from [6]. We denote a set of 
agents by A = {1, …, n} (n ∈ N), for each agent 
i ∈ A a set of local states by Li and possible 
actions by Actsi, and a set of local states and 
actions for the environment by Le and Actse 
respectively. Let Act = Acts1×…×Actsn×Actse be 
the set of joint actions. We assume that a set of 
protocols Pi : Li → 2Actsi, for i ∈ A, represents 
the behavior of every agent, and a protocol  
Pe : Le → 2Actse for the environment.

A formal definition of interpreted systems 
is as follows:

Definition 1. (of interpreted systems). Given 
a set of agents A = {1, …, n} an interpreted 
system is a tuple M = (G; t; P; ~1, …, ~n; ι; V), 
where

(1) G is the set of the global states for the 
system G = L1×…×Ln×Le; ι ∈ G is the initial 
state;

(2) a transition function t : G × Act → G 
models computations in the system;

(3) a joint protocol P : G → 2Act defines the 
behavior of the system such as P = 〈P1, …, Pn, 
Pe〉, where Pi and Pe are protocols of agents and 
environment;

(4) ~i ⊆ G ×G (i ∈ A) is an epistemic 
indistinguishability relation for each agent  
i ∈ A defined by s ~i s’ iff li(s’) = li(s), where 
the function li : G → Li returns the local state 
of agent i from a global state s;

(5) V : G → 2Prp is a valuation function for 
a set of propositional variables Prp such as true 
∈ V(s) for all s ∈ G. V assigns to each state a 
set of propositional variables that are assumed 
to be true at that state.

For every a ∈ Act an a-run is a maximal 
sequence of states gs = s1…sjsj+1… such as  
t(sj, a) = sj+1 for all j > 0.

Every indistinguishability relation expresses 
the fact that an agent has incomplete information 
about system states.

Definition 2. (of Act-CTL-Kn syntax). Syntax 
of Act-CTL-Kn consists of formulas that are 
constructed from Boolean constants {true, 
false}, propositional variables, connectives ¬, 
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∧, ∨, and the following modalities. Let i ∈ A, 
a ∈ Act, ϕ and ψ be formulas. Then formulas 
with the modalities are: 

knowledge modalities:  • Kiϕ and Siϕ (they 
are read as `an agent i knows’ and `an agent i 
supposes’);

action modalities:  • AXaϕ, EXaϕ, AGaϕ, 
EGaϕ, AFaϕ, EFaϕ, AϕUaψ, and EϕUaψ (A is 
read as `for all futures’, E – `for some futures', 
X – `next time', G – `always', F – `sometime', 
U – `until', and a sup-index a – `in a-run(s)').

Syntax of Act-CTL-Kn combines modalities 
of PLK [3] and CTL [1] with action symbols. 
Semantics of Act-CTL-Kn follows semantics of 
these logics.

Definition 3. (of Act-CTL-Kn semantics). 
A satisfiability relation |= between interpreted 
systems, states, and formulas is defined 
inductively with respect to a structure of 
formulas. For Boolean constants, propositional 
variables, and connectives a satisfiability 
relation is standard. For the action modalities 
semantics is almost the same as for the standard 
CTL-modalities, but is formulated for a-runs. 
For the knowledge modalities we define the 
semantics as follows. Let s ∈ G, i ∈ A, ϕ be a 
formula, then

s  • |=M (Kiϕ) iff for every s' : s ~i s' implies 
s' |=M ϕ;

s  • |=M (Siϕ) iff for some s' : s ~i s' and  
s' |=M ϕ.

Semantics of a formula ϕ in an interpreted 
system M is the set of all worlds of E that 
satisfies this formula ϕ: M(ϕ) = {s |s|=M ϕ}.

Further we consider just Act-CTL-Kn 
normal formulas in which negation is used 
in literals only. Every Act-CTL-Kn formula is 
equivalent to some normal formula due to «De 
Morgan» laws.

We use trace-based perfect recall 
synchronous (PRS) interpreted systems 
generated from background interpreted systems. 
In PRS environments (1) states are sequences 
of states of initial interpreted systems with a 
history of generating actions; (2) there are 
transitions from one sequence to another with 
an action a made by extending the sequence 
with a state reachable by a from the last state 
of the sequence; (3) perfect recall protocols 
take into account local traces of agents when 
modelling their actions; (4) an agent does not 

distinguish such sequences if the background 
system performs the same sequence of actions, 
and the agent cannot distinguish the sequences 
state by state; (5) propositional variables are 
evaluated at the last state of sequences with 
respect to their evaluations in the background 
interpreted systems.

Definition 4. (of a PRS-system). Let M be 
an interpreted system M = (G; t; P; ~1, …, ~n; 
ι; V). A trace-based Perfect Recall Synchronous 
interpreted system generated by M is another 
interpreted system prs(M) = (Gprs; tprs; Pprs; ≈1, 
…, ≈n; ιprs; Vprs )

2:
(1) Gprs is the set of all pairs (gs, as), where 

non-empty gs ∈ G*, as ∈ Act*, |gs| = |as| + 1,  
and t(gsj, asj) = gsj+1 for every j ∈ [1..|as|];  
lsi(gs) ∈ Li

 * is a sequence of local states of 
agent i ∈ A with (lsi)j = li(gsj); ιprs ∈ Gprs is the 
initial state; 

Let us assume that (gs, as), (gs', as' ) ∈ Gprs:
(2) a transition function tprs : G

prs×Act → Gprs 
is defined as follows: for every a ∈ Act: tprs((gs, 
as), a) = (gs', as' ) iff as' = as^a, gs' = gs^s', and 
t(g|gs|, a) = s’; 

(3) a joint protocol Pprs(M) : Gprs → 2Act such 
as Pprs = 〈(P1)prs, …, (Pn)prs, (Pe)prs〉, where every  
(Pi)prs: Li

 * → 2Actsi does not depend on Pi
3 and  

(Pe)prs : Le
 * → 2Actse such as (Pe)prs(lse ^ se) = Pe(se);

(4) for every i ∈ A: (gs, as) ≈i (gs', as' ) iff  
as = as' and gsj ~ i gs'j for every j ∈ [1..|gs|];

(5) for every p ∈ Prp: (gs, as) ∈ Vprs(p) iff 
gs|gs| ∈ V(p).

In PRS-systems agents have some kind 
of memory because an awareness expressed 
by an indistinguishability relation depends on 
the history of the system evolution. Actions 
of perfect recall agents are knowledge-based 
because protocols of agents take into account 
the previous states and actions.

Eleusis Model

In order to define the background 
Eleusis interpreted system E-M we have to 
determine the following features: (1) agents 
and an environment; (2) their local states and 

2 In the definition, for every set S let S* be the set of 
all finite sequences over S and the operation ^ stand 
for the concatenation of finite words.
3 We model behavior according to information 
history, but not to the single local state.
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generated global states; (3) local agent actions 
and generated global actions; (4) a transition 
function; (5) protocols of agents and the 
environment; (6) indistinguishability relations 
for agents; (7) propositional variables and their 
evaluation.

(1) Agents and an environment. Let players 
of the game and the dealer be agents. The 
environment may not be specified in our case. 
Without loss of generality, we consider two 
players – Alice and Bob, and the dealer Clare.

(2) Local and global states. It is not 
reasonable to fix special local states for agents 
because they have complete information about 
the system. We define the global state using the 
following local variables:

Value = {2, 3, 4, 5, 6, 7, 8, 9, 10, Kn, Q, K, 
A} is a set of card values;

Suit = {♠, ♣, ♦, ♥} is a set of suits;
Cards = Value × Suit is a set of cards;
Obs ∈ Cards is the last observable card in 

the dealer’s pile;
Prt ∈ Cards ∪ {∅} is a pretender card to 

satisfy the rule put by some player;
DeckA, DeckB ⊂ Cards are the decks of Alice 

and Bob which they have to get rid of;
Turn ∈ {A, B} determines whose move is 

next;
Moves ∈ [0..n] is a number of dealer replies. 

Let n be big enough to discover the rule by 
players.

Then every global state is (Obs, Prt, DeckA, 
DeckB, Turn, Moves) ∈ G, where G = Cards×  
×(Cards ∪ {∅})×2Cards×2Cards×{A, B}×[0..n].

We set ι = (Obs, ∅, DeckA, DeckB, Turn, 0),  
where Obs ∈ Cards, DeckA, DeckB ⊂ Cards\
{some card}4 as initial state, and Turn ∈ {A, B}.  
Further we use the following notation: for every 
card C ∈ Cards let C.Val be a value of C and 
C.Suit be a suit of C.

(3) Local and global actions. Let us define 
the following actions of agents: 

turn is an action of agent-players. The result 
of this action is a new pretender card;

accept is an action of the agent-dealer used 
for validation that the pretender card satisfies 
the rule. The result is a new observable card 

and a decreased deck of a player that gives the 
pretender;

reject is an action of the agent-dealer used 
for disproof that the pretender card satisfies the 
rule. The result is passing the move.

Let us note that in this system agents cannot 
act parallelly because their actions depend on 
each other. Hence global actions are rather a 
PDL-program [5] of actions move = turn;(accept∪ 
reject) (to make an experiment then to give 
a result) than a product turn×{accept, reject}.  
It is easy to make a product by the PDL-
program move introducing lazy action skip 
which does nothing for every agent.

(4) A transition function. The transition 
function for actions is given in terms of pre- 
and post-conditions of local state variables: 
(pre1, …, pre5) → (post1, …, post5), where for 
every j ∈ [1..5] (1) prej is a precondition for 
the corresponding variable; the precondition of 
omitted variable means that the corresponding 
variable has any value; (2) postj is a 
postcondition for the corresponding variable; 
the postcondition of omitted variable means 
that the corresponding variable has the same 
value as in the precondition. Let card ∈ Cards 
and other_cards ⊂ Cards. We describe turn and 
reject for Alice only, because for Bob these 
actions are similar.

1. turn:
(Prt = ∅, DeckA = {card} ∪ other_cards,  

Turn = A) → (Prt = card, DeckA = other_cards);
2. accept:
(Prt = card) → (Obs = card, Prt = ∅,  

Moves = Moves + 1);
3. reject:
(Prt = card, DeckA = other_cards;  

Turn = A) →
(Prt = ∅, DeckA = {card}∪ other_cards, 

Turn = B, Moves = Moves + 1).
(5) Protocols of agents. In our model 

protocol for players is easy: they perform any 
action in the state. They try an arbitrary card 
they have. We choose this simple behavior 
of players because the definition of actions 
corresponds to reasoning too cumbersome for 
this short paper. This is a topic for our future 
work. Nevertheless, it is possible to formulate 
and analyse some interesting properties of the 
Eleusis system.

4 In order to provide our agents with an equal 
quantity of cards, the dealer has to remove one card 
from the initial deck.
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The protocol for dealer actions depends 
very much on the chosen rule. In many cases 
it must be a perfect recall protocol because the 
dealer relies on the previously accepted cards 
when accepting or rejecting cards. Some of 
these protocols are given in next section.

(6) Indistinguishability relations. As game 
agents have complete information about the 
system in our variant of Eleusis, we assume that 
every indistinguishability relation is equality.

(7) Propositional variables and their 
evaluation. In our case a set of propositional 
variables strictly depends on formulas to be 
verified. Hence we define them later using 
values of local variables. Thus a valuation 
function V is defined naturally.

The corresponding perfect recall interpreted 
system for Eleusis E-prs(M) can be made from 
E-M by Definition 4. Perfect recall is really 
needed for agent-players because in order to 
discover the rule they have not only to consider 
accepted cards, but to remember rejected cards. 
Several perfect recall protocols for the dealer 
depending on the rules are given in the section 
below.

Eleusis Rules

The most interesting thing in Eleusis and its 
formalization is the accepting rule. We consider 
the rules that use card descriptions only5, i. e.  
their values and suits (colors and faces are 
subsets of suits and values). There are variants 
of Eleusis where rules could be defined as a 
function from sequences to boolean values [7]. 
Time modalities next X, globally G and until U 
are sufficient for a wide class of Eleusis rules6. 
We formulate several rules from [4] using these 
time modalities. The corresponding dealer 
protocols are described too. Let us define the 
following sets of cards: Even = {card | card.Val 
∈ {2, 4, 6, 8, 10, Q}}, Odd = {card | card.Val 
∈ {3, 5, 7, 9, Kn, K, A}}, Black = {card | card.
Suit ∈ {♠, ♣}}, and Red = {card | card.Suit ∈ 

{♦, ♥}}. Let v ∈ Value and s ∈ Suit.
In dealer actions the above PDL-program 

move = turn; (accept ∪ reject) follows the 
Dealer protocol corresponding to the rule of 
the game. The dealer protocol is a function 
from sequences of the system states to a set 
of dealer actions enabled at these sequences. 
For sequences we use the following regular 
notation. Let p be a propositional condition for 
system variables that uses set inclusion, subsets, 
equalities, inequalities of system variables, 
and boolean connectives. For simplicity we 
consider p to be a «propositional» state from 
a set of system states that satisfies with this 
propositional condition p:

a propositional state  • p is a sequence of 
states;

p • ;q is a sequence of states which is 
concatenation of sequences of states from p 
and q;

p • * is a sequence of states which is a finite 
repeat of states from p.

Let state be a propositional state from a 
complete set of system states G. Let us assume 
that by the definition of propositional states in 
sequence state* states can differ. It is easy to 
see that the set of states in which the dealer 
rejects a pretender card is the complement to 
the set of states in which the dealer accepts the 
pretender card. We shall describe both cases.

1) Alternatively even and odd cards:
AGmove((Obs ∈ Even → AXmove Obs ∈ Odd) ∧ 

(Obs ∈ Odd → AXmoveObs ∈ Even)).
The dealer protocol:
state*; ((obs ∈ Even ∧ prt ∈ Odd) ∨ (obs ∈ 

Odd ∧ prt ∈ Even)) → accept;
state*; ((obs ∈ Even ∧ prt ∈ Even) ∨ (obs ∈ 

Odd ∧ prt ∈ Odd)) → reject.
2) The card played must have either the 

same suit or the same value as the card on top 
of the pile:

AGmove((Obs.Val = v ∧ Obs.Suit = s) → 
AXmove(Obs.Val = v ∨ Obs.Suit = s)).

The dealer protocol:
state*; (Obs.Val = prt.Val ∨ Obs.Suit = prt.

Suit) → accept;
state*; (Obs.Val ≠ prt.Val ∧ Obs.Suit ≠ prt.

Suit) → reject.
3) If the top two cards are of the same 

color, play a card from ace to 7. If they are of 
different colors, play a card from 7 to king:

5 It is possible to devise rules taking into account 
some external features like names of players or the 
color of their hair. These rules correspond to the 
experiments in which the effect of a experimenting 
person and his equipment is considerable.
6 We do not need F in future because Eleusis rule 
determines all cards in sequences step by step.
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AGmove(((Obs ∈ Black) → AXmove((Obs ∈ 
Black) ∧ AXmove(Obs.Val ∈ [A..7])) ∨

(Obs ∈ Black) → AXmove((Obs ∈ Red) ∧ 
AXmove(Obs.Val ∈ [8..K]))) ∨ ((Obs ∈ Red) → 
AXmove((Obs ∈ Red) ∧ AXmove(Obs.Val ∈ [A..7])) 
∨ (Obs ∈ Red) → AXmove((Obs ∈ Black) ∧ 
AXmove(Obs.Val ∈ [8..K]))))

The dealer protocol:
state*; obs ∈ Black; (obs ∈ Black ∧ prt.Val ∈ 

[A..7]) → accept;
state*; obs ∈ Red; (obs ∈ Red ∧ prt.Val ∈ 

[A..7]) → accept;
state*; obs ∈ Black; (obs ∈ Red ∧ prt.Val ∈ 

[8..K]) → accept;
state*; obs ∈ Red; (obs ∈ Black ∧ prt.Val ∈ 

[8..K]) → accept;
state*; obs ∈ Black; (obs ∈ Black ∧ prt.Val ∈ 

[8..K]) → reject;
state*; obs ∈ Red; (obs ∈ Red ∧ prt.Val ∈ 

[8..K]) → reject;
state*; obs ∈ Black; (obs ∈ Red ∧ prt.Val ∈ 

[A..7]) → reject;
state*; obs ∈ Red; (obs ∈ Black ∧ prt.Val ∈ 

[A..7]) → reject.
4) If the second card from the top is red, 

play a card with a value equal to or higher than 
this card. If the second card is black, play a 
card of equal or lower value:

AGmove(((Obs ∈ Red ∧ Obs.Val = v) → 
AXmove(Obs ∈ Cards) ∧ AXmove(Obs.Val ≥ v)) ∨ 
((Obs ∈ Black ∧ Obs.Val = v) → AXmove(Obs ∈ 
Cards) ∧ AXmove(Obs.Val ≤ v)))

The dealer protocol:
state*; (obs ∈ Red ∧ Obs.Val = v);  

(prt.Val ≥ v) → accept;
state*; (obs ∈ Black ∧ Obs.Val = v);  

(prt.Val ≤ v) → accept;
state*; (obs ∈ Red ∧ Obs.Val = v);  

(prt.Val ≤ v) → reject;
state*; (obs ∈ Black ∧ Obs.Val = v);  

(prt.Val ≥ v) → reject.
All above rules from [4] are applicable over 

a fixed number of cards. The next rule uses 
indefinite, but finite number of cards.

5) Change the color of cards after an ace:
AGmove((Obs ∈ Black) AUmove(Obs.Val = A ∧ 

AXmove Obs ∈ Red) ∨ (Obs ∈ Red) AUmove (Obs.
Val = A ∧ AXmove Obs ∈ Black)).

The dealer protocol:
(obs ∈ Black)*; (obs ∈ Black ∧ Obs.Val = A);  

(prt ∈ Red) → accept;

(obs ∈ Red)*; (obs ∈ Red ∧ Obs.Val = A); 
(prt ∈ Black) → accept;

(obs ∈ Black)*; (obs ∈ Black ∧ Obs.Val = A);  
(prt ∈ Black) → reject;

(obs ∈ Red)*; (obs ∈ Red ∧ Obs.Val = A); 
(prt ∈ Red) → reject.

After expressing the accepting rule Rule we 
can formulate the features of the Eleusis model. 
For example:

1) AFmove (KARule ∨ KBRule) – there is a 
moment in the future when some player knows 
the rule;

2) AFmove(KARule ∧ ¬KBRule) – there is a 
moment in the future when Alice knows the 
rule earlier than Bob;

3) (Turn = A) → AFmove (KARule ∧ ¬KBRule) –  
if Alice moves first then she is a winner;

4) ¬(KARule ∨ KBRule) AUmove (KARule ∨  
KBRule) ∧ (Moves < m) – the rule can be 
discovered in less than m steps.

Let us define that time complexity of the 
model checking these formulas depends on the 
complexity of the rule. The dealer can take into 
account a finite part of the sequence which 
determines accepting cards: in this case the 
model checking the complexity corresponds to 
the linear complexity of checking Act-CTL-Kn 
formulas in forgetful semantics [13]. But when 
the dealer makes the decision on pretender cards 
considering all sequence, then it corresponds 
to true perfect recall semantics and the model 
checking properties of the system has non-
elementary complexity [12].

In this paper we consider a simple variant 
of the inductive game Eleusis. A model of the 
game is an interpreted system with perfect recall 
agents for the players and the dealer. This is 
an example of a multi-agent system in which 
agents have to guess the behavior of the system 
rather than the information about it. We express 
some Eleusis rules by formulas of branching 
time logic Act-CTL and some properties of 
the system by formulas of Act-CTL-Kn with 
knowledge modalities. Model checking of these 
properties depends on the complexity of the 
Eleusis rule. It can be linear or non-elementary 
according to the size of Eleusis model.

We do not give protocols of players guessing 
the rule because it is too complex for a short 
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paper. In the future we plan to develop a simple 
protocol and try to do model checking of the 
corresponding Eleusis system with some perfect 
recall model checker.
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