
Mathematical Modelling: Methods, Algorithms, Technologies

69

UDC 164=111

N.O. Garanina

ELEUSIS: PERFECT RECALL FOR INDUCTIVE REASONING

This paper formalizes a variant of inductive game Eleusis. A model of the game is an interpreted system
with perfect recall agents for the players and the dealer. The pecularity of Eleusis multi-agent system is that
the agents have to guess the behavior of the system, rather than some static information about the system.
We express some Eleusis rules and properties of the system by the formulas of propositional knowledge logic
and branching time Act-CTL-Kn.

MULTIAGENT SYSTEMS; EPISTEMIC LOGIC; ELEUSIS; PERFECT RECALL; INTERPRETED
SYSTEMS.

Н.О. Гаранина

ЭЛЕВСИН: АБСОЛЮТНАЯ ПАМЯТЬ ДЛЯ ИНДУКТИВНОГО ВЫВОДА

Формализован вариант индуктивной карточной игры Элевсин. Моделью игры является интер-
претированная система с агентами с абсолютной памятью, реализующими игроков и раздающе-
го. Особенностью мультиагентной системы Элевсин является то, что агенты должны вычислить
поведение самой системы, а не какую-либо статическую информацию. Некоторые правила игры
Элевсин и свойства построенной мультиагентной системы выражены формулами логики знаний и
действий Act-CTL-Kn.

МУЛЬТИАГЕНТНЫЕ СИСТЕМЫ; ЛОГИКА ЗНАНИЙ; ЭЛЕВСИН; АБСОЛЮТНАЯ ПА-
МЯТЬ; ИНТЕРПРЕТИРОВАННЫЕ СИСТЕМЫ.

There are a lot of puzzles that give clear
comprehension of various notions from a theo-
ry of epistemic logics. For example, the Coor-
dinated Attack Problem [3] shows unreachabil-
ity of common knowledge in the environment
with time gaps; in Muddy Children Puzzle [3]
knowledge is based on the quantity of observa-
tions, while in Dining Cryptographers Problem
[9] knowledge is based on the quality of ob-
servations; Mars Robot Puzzle [14] illustrates
knowledge taken by double-checking obser-
vations; False Coin Puzzle [11] demonstrates
knowledge acquisition. In the last two puzzles
and in the puzzle from this paper perfect recall
for agents is crucial1.

To the best of our knowledge, epistemic
logics was not used for a definition of inductive
knowledge of agents before. In this paper we
formalize inductive game Eleusis. This game
was introduced by Robert Abbot in 1956. We

give a description of the first variant of the
game from [4]:

Eleusis (pronounced ee-loo-sis) is a game
for three or more players. It makes use of the
standard deck of playing cards. Players take
turns at being the dealer, who has no part in
the actual play except to serve as a kind of
umpire. He deals to the other players until
one card remains. This is placed face up in
the center of the table as the first card of the
«starter pile». To make sure that players receive
equal hands, the dealer must remove a certain
number of cards before dealing. For three
players (including the dealer, who of course
does not get a hand) he removes one card; for
four players, no cards; five players, three cards,
and so on. The removed cards are set aside
without being shown.

After the cards are dealt and the «starter
card» is in place, the dealer makes up a secret
rule that determines what cards can be played
on the starter pile. It is this rule that corresponds
to a law of science; the players may think of the
dealer as Nature, or, if they prefer, as God.
The dealer writes his rule on a piece of paper,

1 For the Dining Cryptographers this notion is not
so important because substantial information (even
or odd number of differences) could be coded by a
boolean variable.

70

St. Petersburg State Polytechnical University Journal 1' (188) 2014
Computer Science. Telecommunications and Control Systems

which he folds and puts aside. This is for later
checking to make sure that the dealer does not
upset Nature’s uniformity by changing his rule.
For each player the object of the game is to
get rid of as many cards as possible. This can
be done rapidly by any player who correctly
guesses the secret rule.

An example of a very simple rule is: «If the
top card of the starter pile is red, play a black
card. If the top card is black, play a red card».

There are many studies of this game, but they
refer to such aspects as induction algorithms
for players discovering the rule [2], machine
learning technique [10] or the computational
complexity of various decision problems that
arise in Eleusis [7]. Multi-agent systems and
epistemic logics were not in the focus of the
game researchers before.

We study Eleusis in trace-based synchronous
perfect recall multi-agent systems. In such
systems agents have memory: their knowledge
depends on the states passed and on the previous
actions. We can describe this kind of agents
because semantics of knowledge is defined
on traces, i. e. finite sequences of states and
actions, and every agent can distinguish traces
with different sequences of information available
for it. Each element of the trace represents a
state of the system at some moment of time. A
model of this game differs from other multi-
agent systems as in this system the agent has
complete information about the system and
tries to guess modus operandi of another agent
or of the environment.

For formalization of Eleusis world we
use a Propositional Logic of Knowledge and
Branching Time Act-CTL-K

n [12] and a notion
of an interpreted system [6, 3] enriched by
perfect recall [8]. Properties of these systems
could be checked by some model checker of
multi-agent systems with perfect recall, for
example, MCMAS [9].

Background Logics and Models

First, we would like to give definitions to
combined Propositional Logic of Knowledge and
Branching Time Act-CTL-Kn from [12] briefly.
This logic is a fusion of Propositional Logic
of Knowledge (PLK) [3] and Computational
Tree Logic (CTL) [1] extended by action
symbols. Usually, semantics of Act-CTL-Kn is

defined in terms of a satisfiability relation |= in
environments that are a special kind of labeled
transition systems. In this paper we prefer to
use interpreted systems which are a specific
form of environments.

Let us reformulate the definition of
interpreted systems from [6]. We denote a set of
agents by A = {1, …, n} (n ∈ N), for each agent
i ∈ A a set of local states by Li and possible
actions by Actsi, and a set of local states and
actions for the environment by Le and Actse
respectively. Let Act = Acts1×…×Actsn×Actse be
the set of joint actions. We assume that a set of
protocols Pi : Li → 2Actsi, for i ∈ A, represents
the behavior of every agent, and a protocol
Pe : Le → 2Actse for the environment.

A formal definition of interpreted systems
is as follows:

Definition 1. (of interpreted systems). Given
a set of agents A = {1, …, n} an interpreted
system is a tuple M = (G; t; P; ~1, …, ~n; ι; V),
where

(1) G is the set of the global states for the
system G = L1×…×Ln×Le; ι ∈ G is the initial
state;

(2) a transition function t : G × Act → G
models computations in the system;

(3) a joint protocol P : G → 2Act defines the
behavior of the system such as P = 〈P1, …, Pn,
Pe〉, where Pi and Pe are protocols of agents and
environment;

(4) ~i ⊆ G ×G (i ∈ A) is an epistemic
indistinguishability relation for each agent
i ∈ A defined by s ~i s’ iff li(s’) = li(s), where
the function li : G → Li returns the local state
of agent i from a global state s;

(5) V : G → 2Prp is a valuation function for
a set of propositional variables Prp such as true
∈ V(s) for all s ∈ G. V assigns to each state a
set of propositional variables that are assumed
to be true at that state.

For every a ∈ Act an a-run is a maximal
sequence of states gs = s1…sjsj+1… such as
t(sj, a) = sj+1 for all j > 0.

Every indistinguishability relation expresses
the fact that an agent has incomplete information
about system states.

Definition 2. (of Act-CTL-Kn syntax). Syntax
of Act-CTL-Kn consists of formulas that are
constructed from Boolean constants {true,
false}, propositional variables, connectives ¬,

Mathematical Modelling: Methods, Algorithms, Technologies

71

∧, ∨, and the following modalities. Let i ∈ A,
a ∈ Act, ϕ and ψ be formulas. Then formulas
with the modalities are:

knowledge modalities: • Kiϕ and Siϕ (they
are read as `an agent i knows’ and `an agent i
supposes’);

action modalities: • AXaϕ, EXaϕ, AGaϕ,
EGaϕ, AFaϕ, EFaϕ, AϕUaψ, and EϕUaψ (A is
read as `for all futures’, E – `for some futures',
X – `next time', G – `always', F – `sometime',
U – `until', and a sup-index a – `in a-run(s)').

Syntax of Act-CTL-Kn combines modalities
of PLK [3] and CTL [1] with action symbols.
Semantics of Act-CTL-Kn follows semantics of
these logics.

Definition 3. (of Act-CTL-Kn semantics).
A satisfiability relation |= between interpreted
systems, states, and formulas is defined
inductively with respect to a structure of
formulas. For Boolean constants, propositional
variables, and connectives a satisfiability
relation is standard. For the action modalities
semantics is almost the same as for the standard
CTL-modalities, but is formulated for a-runs.
For the knowledge modalities we define the
semantics as follows. Let s ∈ G, i ∈ A, ϕ be a
formula, then

s • |=M (Kiϕ) iff for every s' : s ~i s' implies
s' |=M ϕ;

s • |=M (Siϕ) iff for some s' : s ~i s' and
s' |=M ϕ.

Semantics of a formula ϕ in an interpreted
system M is the set of all worlds of E that
satisfies this formula ϕ: M(ϕ) = {s |s|=M ϕ}.

Further we consider just Act-CTL-Kn
normal formulas in which negation is used
in literals only. Every Act-CTL-Kn formula is
equivalent to some normal formula due to «De
Morgan» laws.

We use trace-based perfect recall
synchronous (PRS) interpreted systems
generated from background interpreted systems.
In PRS environments (1) states are sequences
of states of initial interpreted systems with a
history of generating actions; (2) there are
transitions from one sequence to another with
an action a made by extending the sequence
with a state reachable by a from the last state
of the sequence; (3) perfect recall protocols
take into account local traces of agents when
modelling their actions; (4) an agent does not

distinguish such sequences if the background
system performs the same sequence of actions,
and the agent cannot distinguish the sequences
state by state; (5) propositional variables are
evaluated at the last state of sequences with
respect to their evaluations in the background
interpreted systems.

Definition 4. (of a PRS-system). Let M be
an interpreted system M = (G; t; P; ~1, …, ~n;
ι; V). A trace-based Perfect Recall Synchronous
interpreted system generated by M is another
interpreted system prs(M) = (Gprs; tprs; Pprs; ≈1,
…, ≈n; ιprs; Vprs)

2:
(1) Gprs is the set of all pairs (gs, as), where

non-empty gs ∈ G*, as ∈ Act*, |gs| = |as| + 1,
and t(gsj, asj) = gsj+1 for every j ∈ [1..|as|];
lsi(gs) ∈ Li

 * is a sequence of local states of
agent i ∈ A with (lsi)j = li(gsj); ιprs ∈ Gprs is the
initial state;

Let us assume that (gs, as), (gs', as') ∈ Gprs:
(2) a transition function tprs : G

prs×Act → Gprs
is defined as follows: for every a ∈ Act: tprs((gs,
as), a) = (gs', as') iff as' = as^a, gs' = gs^s', and
t(g|gs|, a) = s’;

(3) a joint protocol Pprs(M) : Gprs → 2Act such
as Pprs = 〈(P1)prs, …, (Pn)prs, (Pe)prs〉, where every
(Pi)prs: Li

 * → 2Actsi does not depend on Pi
3 and

(Pe)prs : Le
 * → 2Actse such as (Pe)prs(lse ^ se) = Pe(se);

(4) for every i ∈ A: (gs, as) ≈i (gs', as') iff
as = as' and gsj ~ i gs'j for every j ∈ [1..|gs|];

(5) for every p ∈ Prp: (gs, as) ∈ Vprs(p) iff
gs|gs| ∈ V(p).

In PRS-systems agents have some kind
of memory because an awareness expressed
by an indistinguishability relation depends on
the history of the system evolution. Actions
of perfect recall agents are knowledge-based
because protocols of agents take into account
the previous states and actions.

Eleusis Model

In order to define the background
Eleusis interpreted system E-M we have to
determine the following features: (1) agents
and an environment; (2) their local states and

2 In the definition, for every set S let S* be the set of
all finite sequences over S and the operation ^ stand
for the concatenation of finite words.
3 We model behavior according to information
history, but not to the single local state.

72

St. Petersburg State Polytechnical University Journal 1' (188) 2014
Computer Science. Telecommunications and Control Systems

generated global states; (3) local agent actions
and generated global actions; (4) a transition
function; (5) protocols of agents and the
environment; (6) indistinguishability relations
for agents; (7) propositional variables and their
evaluation.

(1) Agents and an environment. Let players
of the game and the dealer be agents. The
environment may not be specified in our case.
Without loss of generality, we consider two
players – Alice and Bob, and the dealer Clare.

(2) Local and global states. It is not
reasonable to fix special local states for agents
because they have complete information about
the system. We define the global state using the
following local variables:

Value = {2, 3, 4, 5, 6, 7, 8, 9, 10, Kn, Q, K,
A} is a set of card values;

Suit = {♠, ♣, ♦, ♥} is a set of suits;
Cards = Value × Suit is a set of cards;
Obs ∈ Cards is the last observable card in

the dealer’s pile;
Prt ∈ Cards ∪ {∅} is a pretender card to

satisfy the rule put by some player;
DeckA, DeckB ⊂ Cards are the decks of Alice

and Bob which they have to get rid of;
Turn ∈ {A, B} determines whose move is

next;
Moves ∈ [0..n] is a number of dealer replies.

Let n be big enough to discover the rule by
players.

Then every global state is (Obs, Prt, DeckA,
DeckB, Turn, Moves) ∈ G, where G = Cards×
×(Cards ∪ {∅})×2Cards×2Cards×{A, B}×[0..n].

We set ι = (Obs, ∅, DeckA, DeckB, Turn, 0),
where Obs ∈ Cards, DeckA, DeckB ⊂ Cards\
{some card}4 as initial state, and Turn ∈ {A, B}.
Further we use the following notation: for every
card C ∈ Cards let C.Val be a value of C and
C.Suit be a suit of C.

(3) Local and global actions. Let us define
the following actions of agents:

turn is an action of agent-players. The result
of this action is a new pretender card;

accept is an action of the agent-dealer used
for validation that the pretender card satisfies
the rule. The result is a new observable card

and a decreased deck of a player that gives the
pretender;

reject is an action of the agent-dealer used
for disproof that the pretender card satisfies the
rule. The result is passing the move.

Let us note that in this system agents cannot
act parallelly because their actions depend on
each other. Hence global actions are rather a
PDL-program [5] of actions move = turn;(accept∪
reject) (to make an experiment then to give
a result) than a product turn×{accept, reject}.
It is easy to make a product by the PDL-
program move introducing lazy action skip
which does nothing for every agent.

(4) A transition function. The transition
function for actions is given in terms of pre-
and post-conditions of local state variables:
(pre1, …, pre5) → (post1, …, post5), where for
every j ∈ [1..5] (1) prej is a precondition for
the corresponding variable; the precondition of
omitted variable means that the corresponding
variable has any value; (2) postj is a
postcondition for the corresponding variable;
the postcondition of omitted variable means
that the corresponding variable has the same
value as in the precondition. Let card ∈ Cards
and other_cards ⊂ Cards. We describe turn and
reject for Alice only, because for Bob these
actions are similar.

1. turn:
(Prt = ∅, DeckA = {card} ∪ other_cards,

Turn = A) → (Prt = card, DeckA = other_cards);
2. accept:
(Prt = card) → (Obs = card, Prt = ∅,

Moves = Moves + 1);
3. reject:
(Prt = card, DeckA = other_cards;

Turn = A) →
(Prt = ∅, DeckA = {card}∪ other_cards,

Turn = B, Moves = Moves + 1).
(5) Protocols of agents. In our model

protocol for players is easy: they perform any
action in the state. They try an arbitrary card
they have. We choose this simple behavior
of players because the definition of actions
corresponds to reasoning too cumbersome for
this short paper. This is a topic for our future
work. Nevertheless, it is possible to formulate
and analyse some interesting properties of the
Eleusis system.

4 In order to provide our agents with an equal
quantity of cards, the dealer has to remove one card
from the initial deck.

Mathematical Modelling: Methods, Algorithms, Technologies

73

The protocol for dealer actions depends
very much on the chosen rule. In many cases
it must be a perfect recall protocol because the
dealer relies on the previously accepted cards
when accepting or rejecting cards. Some of
these protocols are given in next section.

(6) Indistinguishability relations. As game
agents have complete information about the
system in our variant of Eleusis, we assume that
every indistinguishability relation is equality.

(7) Propositional variables and their
evaluation. In our case a set of propositional
variables strictly depends on formulas to be
verified. Hence we define them later using
values of local variables. Thus a valuation
function V is defined naturally.

The corresponding perfect recall interpreted
system for Eleusis E-prs(M) can be made from
E-M by Definition 4. Perfect recall is really
needed for agent-players because in order to
discover the rule they have not only to consider
accepted cards, but to remember rejected cards.
Several perfect recall protocols for the dealer
depending on the rules are given in the section
below.

Eleusis Rules

The most interesting thing in Eleusis and its
formalization is the accepting rule. We consider
the rules that use card descriptions only5, i. e.
their values and suits (colors and faces are
subsets of suits and values). There are variants
of Eleusis where rules could be defined as a
function from sequences to boolean values [7].
Time modalities next X, globally G and until U
are sufficient for a wide class of Eleusis rules6.
We formulate several rules from [4] using these
time modalities. The corresponding dealer
protocols are described too. Let us define the
following sets of cards: Even = {card | card.Val
∈ {2, 4, 6, 8, 10, Q}}, Odd = {card | card.Val
∈ {3, 5, 7, 9, Kn, K, A}}, Black = {card | card.
Suit ∈ {♠, ♣}}, and Red = {card | card.Suit ∈

{♦, ♥}}. Let v ∈ Value and s ∈ Suit.
In dealer actions the above PDL-program

move = turn; (accept ∪ reject) follows the
Dealer protocol corresponding to the rule of
the game. The dealer protocol is a function
from sequences of the system states to a set
of dealer actions enabled at these sequences.
For sequences we use the following regular
notation. Let p be a propositional condition for
system variables that uses set inclusion, subsets,
equalities, inequalities of system variables,
and boolean connectives. For simplicity we
consider p to be a «propositional» state from
a set of system states that satisfies with this
propositional condition p:

a propositional state • p is a sequence of
states;

p • ;q is a sequence of states which is
concatenation of sequences of states from p
and q;

p • * is a sequence of states which is a finite
repeat of states from p.

Let state be a propositional state from a
complete set of system states G. Let us assume
that by the definition of propositional states in
sequence state* states can differ. It is easy to
see that the set of states in which the dealer
rejects a pretender card is the complement to
the set of states in which the dealer accepts the
pretender card. We shall describe both cases.

1) Alternatively even and odd cards:
AGmove((Obs ∈ Even → AXmove Obs ∈ Odd) ∧

(Obs ∈ Odd → AXmoveObs ∈ Even)).
The dealer protocol:
state*; ((obs ∈ Even ∧ prt ∈ Odd) ∨ (obs ∈

Odd ∧ prt ∈ Even)) → accept;
state*; ((obs ∈ Even ∧ prt ∈ Even) ∨ (obs ∈

Odd ∧ prt ∈ Odd)) → reject.
2) The card played must have either the

same suit or the same value as the card on top
of the pile:

AGmove((Obs.Val = v ∧ Obs.Suit = s) →
AXmove(Obs.Val = v ∨ Obs.Suit = s)).

The dealer protocol:
state*; (Obs.Val = prt.Val ∨ Obs.Suit = prt.

Suit) → accept;
state*; (Obs.Val ≠ prt.Val ∧ Obs.Suit ≠ prt.

Suit) → reject.
3) If the top two cards are of the same

color, play a card from ace to 7. If they are of
different colors, play a card from 7 to king:

5 It is possible to devise rules taking into account
some external features like names of players or the
color of their hair. These rules correspond to the
experiments in which the effect of a experimenting
person and his equipment is considerable.
6 We do not need F in future because Eleusis rule
determines all cards in sequences step by step.

74

St. Petersburg State Polytechnical University Journal 1' (188) 2014
Computer Science. Telecommunications and Control Systems

AGmove(((Obs ∈ Black) → AXmove((Obs ∈
Black) ∧ AXmove(Obs.Val ∈ [A..7])) ∨

(Obs ∈ Black) → AXmove((Obs ∈ Red) ∧
AXmove(Obs.Val ∈ [8..K]))) ∨ ((Obs ∈ Red) →
AXmove((Obs ∈ Red) ∧ AXmove(Obs.Val ∈ [A..7]))
∨ (Obs ∈ Red) → AXmove((Obs ∈ Black) ∧
AXmove(Obs.Val ∈ [8..K]))))

The dealer protocol:
state*; obs ∈ Black; (obs ∈ Black ∧ prt.Val ∈

[A..7]) → accept;
state*; obs ∈ Red; (obs ∈ Red ∧ prt.Val ∈

[A..7]) → accept;
state*; obs ∈ Black; (obs ∈ Red ∧ prt.Val ∈

[8..K]) → accept;
state*; obs ∈ Red; (obs ∈ Black ∧ prt.Val ∈

[8..K]) → accept;
state*; obs ∈ Black; (obs ∈ Black ∧ prt.Val ∈

[8..K]) → reject;
state*; obs ∈ Red; (obs ∈ Red ∧ prt.Val ∈

[8..K]) → reject;
state*; obs ∈ Black; (obs ∈ Red ∧ prt.Val ∈

[A..7]) → reject;
state*; obs ∈ Red; (obs ∈ Black ∧ prt.Val ∈

[A..7]) → reject.
4) If the second card from the top is red,

play a card with a value equal to or higher than
this card. If the second card is black, play a
card of equal or lower value:

AGmove(((Obs ∈ Red ∧ Obs.Val = v) →
AXmove(Obs ∈ Cards) ∧ AXmove(Obs.Val ≥ v)) ∨
((Obs ∈ Black ∧ Obs.Val = v) → AXmove(Obs ∈
Cards) ∧ AXmove(Obs.Val ≤ v)))

The dealer protocol:
state*; (obs ∈ Red ∧ Obs.Val = v);

(prt.Val ≥ v) → accept;
state*; (obs ∈ Black ∧ Obs.Val = v);

(prt.Val ≤ v) → accept;
state*; (obs ∈ Red ∧ Obs.Val = v);

(prt.Val ≤ v) → reject;
state*; (obs ∈ Black ∧ Obs.Val = v);

(prt.Val ≥ v) → reject.
All above rules from [4] are applicable over

a fixed number of cards. The next rule uses
indefinite, but finite number of cards.

5) Change the color of cards after an ace:
AGmove((Obs ∈ Black) AUmove(Obs.Val = A ∧

AXmove Obs ∈ Red) ∨ (Obs ∈ Red) AUmove (Obs.
Val = A ∧ AXmove Obs ∈ Black)).

The dealer protocol:
(obs ∈ Black)*; (obs ∈ Black ∧ Obs.Val = A);

(prt ∈ Red) → accept;

(obs ∈ Red)*; (obs ∈ Red ∧ Obs.Val = A);
(prt ∈ Black) → accept;

(obs ∈ Black)*; (obs ∈ Black ∧ Obs.Val = A);
(prt ∈ Black) → reject;

(obs ∈ Red)*; (obs ∈ Red ∧ Obs.Val = A);
(prt ∈ Red) → reject.

After expressing the accepting rule Rule we
can formulate the features of the Eleusis model.
For example:

1) AFmove (KARule ∨ KBRule) – there is a
moment in the future when some player knows
the rule;

2) AFmove(KARule ∧ ¬KBRule) – there is a
moment in the future when Alice knows the
rule earlier than Bob;

3) (Turn = A) → AFmove (KARule ∧ ¬KBRule) –
if Alice moves first then she is a winner;

4) ¬(KARule ∨ KBRule) AUmove (KARule ∨
KBRule) ∧ (Moves < m) – the rule can be
discovered in less than m steps.

Let us define that time complexity of the
model checking these formulas depends on the
complexity of the rule. The dealer can take into
account a finite part of the sequence which
determines accepting cards: in this case the
model checking the complexity corresponds to
the linear complexity of checking Act-CTL-Kn
formulas in forgetful semantics [13]. But when
the dealer makes the decision on pretender cards
considering all sequence, then it corresponds
to true perfect recall semantics and the model
checking properties of the system has non-
elementary complexity [12].

In this paper we consider a simple variant
of the inductive game Eleusis. A model of the
game is an interpreted system with perfect recall
agents for the players and the dealer. This is
an example of a multi-agent system in which
agents have to guess the behavior of the system
rather than the information about it. We express
some Eleusis rules by formulas of branching
time logic Act-CTL and some properties of
the system by formulas of Act-CTL-Kn with
knowledge modalities. Model checking of these
properties depends on the complexity of the
Eleusis rule. It can be linear or non-elementary
according to the size of Eleusis model.

We do not give protocols of players guessing
the rule because it is too complex for a short

Mathematical Modelling: Methods, Algorithms, Technologies

75

paper. In the future we plan to develop a simple
protocol and try to do model checking of the
corresponding Eleusis system with some perfect
recall model checker.

The research has been supported by Russian Foundation
for Basic Research (grant 13-01-00643) and by Siberian
Branch of Russian Academy of Science (Integration Grant
n.15/10 «Mathematical and Methodological Aspects of
Intellectual Information Systems»).

REFERENCES / СПИСОК ЛИТЕРАТУРЫ

1. Clarke E.M., Grumberg O., Peled D. Model
Checking. MIT Press, 1999.

2. Dietterich T. Applying General Induction
Methods to the Card Game Eleusis. Proc. of the 1st
Annual National Conference on Artificial Intelligence.
Stanford University. AAAI Press/MIT Press, 1980,
pp. 218–220.

3. Fagin R., Halpern J.Y., Moses Y., Vardi M.Y.
Reasoning about Knowledge. MIT Press, 1995.

4. Gardner M. The Second Scientific American
Book of Mathematical Puzzles and Diversions. Uni-
versity of Chicago Press Edition, 1987, 251 p.

5. Harel D. First-Order Dynamic Logic. Lecture
Notes in Computer Science, 1979, Vol. 68.

6. Kacprzak M., Lomuscio A., Penczek W. Veri-
fication of Multi-agent Systems via Unbounded
Model Checking. Proc. of the 3 Internat. Joint Con-
ference on Autonomous Agents and Multi-agent Sys-
tems, 2004, Vol. 2, pp. 638–645.

7. Kurzen L. Eleusis: Complexity and Interac-
tion in Inductive Inference. Proc. of the 2 ILCLI
Internat. Workshop on Logic and Philosophy of
Know-ledge, Communication and Action, Donostia –
San Sebastian, Spain. 2010. The University of the
Basque Country Press, 2010.

8. Lomuscio A. R., van der Meyden R., Ryan M.
Knowledge in Multi-agent Systems: Initial Con-
figurations and Broadcast. ACM Transactions

on Computational Logic, 2000, Vol. 1, No. 2,
pp. 247–284.

9. van der Meyden R., Su K. Symbolic Model
Checking the Knowledge of the Dining Cryptogra-
phers. Proc. of the 17th IEEE Workshop on Computer
Security Foundations, 2004, pp. 280–291.

10. De Raedt L., Van Laer W. Inductive Con-
straint Logic. Proc. of 6th International Conference
Algorithmic Learning Theory, Fukuoka, Japan, 1995,
Springer, Lecture Notes in Computer Science, 1995,
Vol. 997, pp. 80–94.

11. Shilov N.V., Yi K. How to find a coin:
propositional program logics made easy. In Current
Trends in Theoretical Computer Science, World Sci-
entific, Vol. 2, 2004, pp. 181–213.

12. Shilov N.V., Garanina N.O., and Choe
K.-M. Update and Abstraction in Model Checking
of Knowledge and Branching Time. Fundameta In-
formaticae, 2006, Vol. 72, No. 1–3, pp. 347–361.

13. Shilov N.V., Garanina N.O. Combining
Knowledge And Fixpoints. Preprint, Novosibirsk,
2002, No. 98, 50 p.

14. Shilov N., Garanina N., Bodin E. Multi-
agent approach to a Dijkstra problem. In
Proc. of Workshop on Concurrency, Specifica-
tion and Programming, Helenenau, 2010. Hum-
boldt-Universitat zu Berlin. Informatik-Bericht,
No. 237, Vol. 1, pp. 73–84.

GARANINA, Natalia O. Laboratory of Theoretical Programming, A.P. Ershov Institute of Informatics
Systems, Siberian Branch of the Russian Academy of Sciences.

630090, Acad. Lavrentjev Ave. 6, Novosibirsk, Russia.
E-mail: garanina@iis.nsk.su

ГАРАНИНА Наталья Олеговна – научный сотрудник лаборатории теоретического программирова-
ния Института систем информатики имени А.П. Ершова Сибирского отделения РАН.

630090, Россия, г. Новосибирск, пр. Акад. Лаврентьева, д. 6.
E-mail: garanina@iis.nsk.su

 St. Petersburg State Polytechnical University, 2014

