
Information and Signal Processing

23

UDC 004.82:004.62=111

S.S. Zobnin, V.B. Polyakov

INTELLIGENT TIME SERIES STORING AND INFERENCE ENGINE
IMPLEMENTATION WITH FOCUS ON PERFORMANCE

AND HIGH LEVELS OF ABSTRACTION

This paper covers several aspects of intelligent time series database implementation. It also includes
the description and analysis of a symbolic time series representation scheme. The paper focuses on various
indexing and parallelization approaches in conjunction with actual backend storage engines. Special emphasis
is made on identifying the problem of combining simple queries with time series pattern search and retrieval
requests and finding a solution to this problem. The paper also considers query definition and provides the
general architecture of a time series database with data mining capabilities.

TIME SERIES; DATABASE; DISTRIBUTED SYSTEM; INDEXING.

С.С. Зобнин, В.Б. Поляков

РЕАЛИЗАЦИЯ ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ СИСТЕМ ХРАНЕНИЯ
И ОБРАБОТКИ ВРЕМЕННЫХ РЯДОВ, ПРЕДСТАВЛЕННЫХ

В ВИДЕ ВЫСОКОУРОВНЕВЫХ АБСТРАКЦИЙ

Рассмотрены аспекты реализации высокопроизводительных систем хранения и обработки вре-
менных рядов, представленных в виде высокоуровневых абстракций. Особое внимание уделено
производительности конечного решения и способам увеличения производительности. Проведено
сравнение различных высокоуровневых представлений временных рядов по разным критериям. Из-
учены различные распределенные низкоуровневые хранилища данных. Установлена и рассмотрена
проблема эффективного выполнения комбинированных запросов к хранилищу временных рядов.
Рассмотрена задача создания запроса для рассматриваемой базы данных временных рядов. Приве-
дена конечная архитектура рассматриваемой системы.

БАЗА ДАННЫХ ВРЕМЕННЫХ РЯДОВ; РАСПРЕДЕЛЕННАЯ СИСТЕМА; ИНДЕКСИРОВА-
НИЕ.

Nowadays big volumes of time series data
are generated in various fields of science and
engineering. Most of the time such data is just
stored and forgotten (or analyzed using standard
visualization / retrieval tools «by hand»), but
it is very tempting to have an opportunity to
extract certain amounts of information that
might be useful for immediate and strategical
problem solving and control tasks, such as
events, patterns, motifs, anomalies etc, in
an automated or even automatic manner.
The implementation of such system (which
may also be called as intelligent database) is
always accompanied by various problems. The
main part of this paper contains a set of such
problems and ways of solving them, referenced
by related work and several contributions of

this paper's author.
The main contribution of this paper is

the integration of various techniques (which
originated in signal processing, data mining, big
data and distributed systems, engineering fields)
connected with efficient and production-ready
intelligent time series database implementation
into a single reusable framework. Several
secondary contributions are related to existing
algorithm combinations and optimization.
A novel time series approximation scheme
is proposed. The purpose of this paper is to
provide a general method (framework) of
solving a range of tasks related to intelligent
time series management and mining, as well as
a general overview of the problem with some
concrete ideas and practices.

24

St. Petersburg State Polytechnical University Journal 1' (188) 2014
Computer Science. Telecommunications and Control Systems

Time Series Data, Representation Scheme

First of all, data itself, or, to be specific,
the amount of time series and data quality is a
problem. Hundreds of gigabytes of time series
data to be processed in such system require
high performance of storage backends. The
quality or (and) specifics in data streams is also
an issue: intelligent similarity search algorithms
tend to depend on internal parameters of time
series and have problems with generalization.
Usually one should consider at least problems
of noise (SNR) and data misses and provide
ways of intelligent algorithms parametrization.

The general intelligent algorithm that
works with time series data usually uses some
intermediate time series representation. Many
time series representations have been introduced
(e. g. FFT, Wavelets, Piecewise-Constant
Approximation, curve-based approximation
etc). Recently it has been shown that symbolic
representations of time series outperform
most of other representations in terms of
approximation performance and execution
performance. Moreover, they allow using some
frameworks which require symbolic input (e. g.
Markov models, Kolmogorov complexity based
methods, suffix trees), give good compression
rate and give a lower bound on the real value
(useful in data mining applications), reduce
sensitivity to noise and greatly improve
computational performance [1]. There are two
types of time series symbolization: the first
one is based on quantization and the second
is based on temporal segmentation. It was
found that quantization-based symbolization
performs generally better on signals without
temporal structure (the criteria are: information
loss, accuracy, alphabet size) and vice-versa
[2]. Several extensions for basic representation
scheme have been developed, such as:
symbolization based on kNN segmentation
[3] where a relative frequency is used to
determine the best approximation parameters,
symbolization based on k-Means [4] which
highly outperforms the standard scheme on
highly Gaussian distributed streams. One may
also employ a more intelligent approach: in
order to optimize the algorithm for a particular
dataset, a neural network may be tested and
used either for an efficient rank-based parameter

pick as in [3], or for an efficient segmentation
scheme as in [4]. There is no doubt that
symbolic representation of time series is most
appropriate for similarity search in intelligent
database (most arising) and it is the best
solution for fast retrieval due to availability of
various data structures from bioinformatics and
computer science communities.

During the investigation of SAX time series
representation the following specifics were found.
SAX is very dependent on parameters (window
size, word size, alphabet size). The window
size parameter is responsible for capturing the
dynamics of time series (data is normalized
in each window and as a consequence).
The word size and alphabet size parameters
determine performance/space requirements
of the transformation and operations over
transformed time series. The word size and
alphabet size correspond to discretization and
quantization. It comes true that determining
optimal parameters of SAX is an important and
actual problem. Moreover, domain knowledge
should be integrated in order to organize the
most efficient storage and retrieval scheme. An
example of such domain knowledge integration
is manually defined stream groupings provided
by an expert, the other example is unsupervised
classification of time series, which determines
parameters. It should be noted that it is also
not optimal to generate an infinite number of
parameter triples, because this requires a lot
of additional computations. The optimization
task should be defined to perform an on-line
unsupervised classification that also minimizes
the number of class reallocation in time.

Indexing Symbolic Time Series. Simple
Queries. Approximations and Storage.

Parallel Execution

Indexing is the core of a database, because
there always are response and performance
requirements of a database in production sys-
tems. One always faces a space-time dilemma
when some indexing scheme is implemented,
and uses an underlying representation (symbolic
in our case) for the best performance. The
chosen indexing scheme directly depends on
queries to be executed against a database. In
case of intelligent time series database, the
main query is a «pattern query» or a similarity

Information and Signal Processing

25

query. The other possible queries are event
queries like «X more than 10 and Y less than 20»
and more simple ones.

Here two combinations of indexing schemes
are proposed. Each of these combinations
allows fulfilling all query requirements.

Let’s consider the first combination. In
order to allow fast «direct» pattern match
against symbols, a suffix tree is built over
symbolic representations of time series. This
can be called the first level of index. The second
level of index is an index for similarity-based
queries. A KD-tree is used for this purpose.
The same KD-tree is used to execute event
queries. Performance is improved via using the
following methods. At first, one probabilistic
suffix tree is used to perform faster first level
index operations. Secondly, KD-tree performs
partial queries and uses heuristics. Last, but
not the least, a separate «reduces space» index
could be built in the reduced feature space of
time series, where the reduction is done via
domain knowledge or general PCA or SOM
scheme. These approaches were evaluated by
the author of this paper. Alternative approaches
to KD-tree index are other structures
optimized for similarity search: general B-tree
based structures [5], R-trees [6]. It should be
noted, that the second index level techniques
listed here are basic ones: trees need special
measures to handle balancing issues, more
parallelization and distribution considerations
should be made. Even though a tree index can
be equally distributed, processing time for each
node needs prediction, which itself represents
a forecasting problem that is not easily solved;
nodes distribution mechanisms with random
effects also have some difficulties.

The second combination of methods and
techniques that allow fulfilling advanced
querying requirements as well as performance
requirements gives more focus on distributional
and fault-tolerance capabilities of the system.
Instead of using a suffix tree as a primary
indexing structure, one can use a distributed
hashing structure. There has been large research
on distributed hashing structures recently,
especially Distributed Hash Tables (DHT):
CAN [7], Chord [8] and others. Generally, the
problem of indexing time series was thoroughly
studied in [9].

The advantage of the suffix tree as a first
level indexing structure is its simplicity and
general ability to perform suffix (substring)
queries. DHT-like structures require
much more additional space to allow such
expressivity. On the other hand, DHT-
based structures are purely distributed, thus
naturally allowing distributed computations
and storing.

A storage and cluster computation mecha-
nism is required in order to fulfill strict
requirements of productions environment.
Although there is some research into standard
backends usage for time series mining tasks [10],
such DBMSs lack replication and fault-tolerance
due to highly structured data predisposition. The
integration of intelligent capabilities requires
modifying the source code like in [11], which is
error prone and not appropriate in many cases.
A modern distributed computation framework
is much more preferable, given the fact that
parallelism can always be exploited and is
implemented naturally in such frameworks. One
more requirement is the ability of manual RAM
caching of computations in such framework, the
indexes are more preferable in RAM rather than
on hard drive. As a result, considerable systems
are [12–14].

It should be noted, that such distributed
systems are executed on commodity hardware
(i. e. standard hardware with no special
requirements), comparing to specialized
massively parallel solutions, for example [15]
meaning that they are more universal and
have bigger latencies comparing to specialized
hardware/software massively parallel solutions
at the same time. One implication is that the
time series database system implemented on
top of commodity hardware is not capable
of handling hard real time tasks arising, for
example, in military domains.

The General Architecture of an Intelligent
System

The general architecture of an intelligent time
series database can be represented in Fig. 1.

The central component is the intelligent
database itself, where indexes are stored in
memory, while raw data is stored in symbolic
form on the disk. This may require a cluster of
machines due to large size of indexes.

26

St. Petersburg State Polytechnical University Journal 1' (188) 2014
Computer Science. Telecommunications and Control Systems

The system is highly coupled with some
3rd-party storage, because raw data is always
stored somewhere. A good architectural
solution is to create an «Adapter» for each 3rd
party, the database is working with, so that
the intelligent database itself and adapters are
highly reusable.

The CEP component of the system is
responsible for preprocessing data for detection
of some event types. This component executes
event processing queries against data, a good
solution is to reuse some CEP engine while
building indexes and use some declarative
language to find events rather than to encode
requests by hand. CEP component also provides
additional stream processing capabilities for
on-line analysis, i. e. stream manipulation,
aggregation, joining etc.

It is very important to have a subsystem
responsible for user communication so that an
operator would have a way to present patterns
for queries in convenient forms. An example of
such assistance is a visual pattern constructor,

where it is easy to define the shape of a curve
(pattern) to be found in the database.

The concept of multilevel indexing is
represented in Fig. 2.

As discussed in the previous session, the
most optimal storing and indexing scheme
for time series is the scheme containing both
computer science techniques and bioinformatics
techniques. This allows fulfilling performance
requirements as well as provides capabilities
to perform simple queries, exact time series
match queries, range queries, N-nearest time
series queries and others. Not only does such
scheme allow such querying capabilities, but
it also allows using distributed systems and
networks concepts and experience: standard
DHT or CAN implementations may be used as
the second level of index.

It is convenient to have a distributed
optimization component in common space
to allow its reusability: the need of solving
optimization tasks arises on multiple levels of
the system. Currently a version of distributed

Fig. 1. The overview of architecture of an intelligent time series database

Fig. 2. The overview of architecture of an intelligent time series database

Information and Signal Processing

27

simulated annealing is used as an optimization
framework. A special protocol is implemented
for optimization of agents’ communication. This
protocol allows asynchronous optimization,
incremental updates of «current optimum» and
dynamic task reallocation.

The following figure (Fig. 3) shows in detail
the process of parsing incoming and generating
a distributed index for later querying as well as
the process of query generation, processing and
execution, one can also consider this figure as a
general algorithm, i. e. how the system works.

A system constantly accepts incoming data
from various origins. CEP/Stream processing
(as well as any simple processing like stream
multiplication) queries are constantly executed
on incoming data in order to receive alternated
streams.

These data streams arrive to the
module responsible for generating symbolic
representation. This very module contains
additional domain knowledge, possibly
automatically inferred from data, that allows
more efficient storage and representation.
For example, there can be additional logic
for automatic unsupervised classification of
incoming data streams. A simpler approach is
to integrate domain knowledge of an expert
in various forms. For example, an expert
can set up proper groups of similar signals

from all. Different parameters based on
domain knowledge are then used for symbolic
representation generation algorithm.

The output of the module described in the
previous paragraph goes to a specially designed
hash function that gives hash values to time
series dividing them into equivalence groups
(dimensionality reduction). Generated hash
values are then mapped into DHT / CAN
nodes and distributed around the network.
This process is executed continuously because
amounts of incoming data can be too large. The
other continuously running indexing process is
the process that performs indexing of hashes
into tree structures. These structures are also
ideally distributed as it was discussed in the
previous chapters.

User defined queries, possibly from a special
graphical interface for query construction,
as well as constraints on window size and
additional parameters are supplied to the other
side of the system. This data is then translated
into patterns suitable for search, a search query
is executed and some post processing of search
results are performed.

At least two general ways of the described
system integration can be defined. The first
one puts time series database in the front line
(data acquisition layer). The second way of
integration considers time series database as an

Fig. 3. Internal data flows

-

28

St. Petersburg State Polytechnical University Journal 1' (188) 2014
Computer Science. Telecommunications and Control Systems

auxiliary part of another bigger system. Both
these cases are represented in Fig. 4.

The left case (Fig. 4, left) inserts time series
database into the system circuit, thus reducing
total system fault-tolerance. On the other side,
in such way time series database receives on-
line data and has this data indexed allowing
other systems to work with this data at once.
Thus, such way is the best for 3rd party systems
that require intelligent time series manipulations
with low latency. It is also possible to stream
data in parallel to third party components
having all pros at the same moment.

The right case (Fig. 4, right) puts time series
database aside from real time series. In this way
an intelligent database does not have data in
real time, but it is not located in the main data
circuit. Such way of integration is more suitable
for cases when off-line processing is required
for some existent systems as a separate module,
and extra low latency is not required.

The approach provided in this paper is
applicable to a wide range of tasks related
to time series: analysis, efficient storage,
approximation, motif discovery, classification,
and others. For example, in order to implement

a fully functional prototype of the vibration
diagnostic system based on models from [16], it
is required to have a subsystem able to provide
both raw time series functionality and similarity
search functionality. The system based on the
concept from [17] also requires historical access
and advanced time series similarity search
capabilities.

It was shown that the chosen methods
(symbolic representation + multilevel indexes
with approximations at distributed storage,
queries are executed in cluster in parallel) greatly
outperform standard approaches (standard time
series representations, SQL databases) in terms
of amount of queries per second and single
query execution time.

The ongoing research is targeted at
investigation and comparison of concrete
algorithms and methods for each stage of
the described systems, integration of chosen
algorithms, improving them and investigating
the means of domain knowledge integration.

The research and implementation of the
system based on the concepts from this paper
is performed as a part of the project related to
time series analysis and visualization in Siemens
LLC.

Fig. 4. Ways of integrating time series database with other systems: left, where time series database
is considered as a part of data acquisition layer and right, where considered system is used as an auxiliary

system for other products

REFERENCES

1. Lin J., Wei Li et al. Experiencing SAX: a
Novel Symbolic Representation of Time Series,
2007.

2. Sant’Anna A., Wickstrom N. Symbol-
ization of time-series: An evaluation of SAX,

Persist, and ACA. Image and Signal Process-
ing, 4th Internat. Congress on, 2011, Vol. 4,
pp. 2223–2228.

3. Ahmed A.M., Bakar A.A., Hamdan A.R. Im-
proved SAX time series data representation based

Information and Signal Processing

29

СПИСОК ЛИТЕРАТУРЫ

1. Lin Jessica, Wei Li, et al. Experiencing SAX:
a Novel Symbolic Representation of Time Series.
2007.

2. Sant’Anna A., Wickstrom N. Symbolization
of time-series: An evaluation of SAX, Persist,
and ACA // Image and Signal Processing,
4th Internat. Congress on. 2011. Vol. 4.
Pp. 2223–2228.

3. Ahmed A.M., Bakar A.A., Hamdan A.R.
Improved SAX time series data representation
based on Relative Frequency and K-Nearest
Neighbor Algorithm // Intelligent Systems Design
and Applications, 10th Internat. Conf. on. 2010.
Pp. 1320–1325.

4. Pham N.D., Quang Loc Le, Tran Khanh Dang.
Two Novel Adaptive Symbolic Representations for
Similarity Search in Time Series Databases // 12th
Internat. Asia-Pacific Web Conference. 2010.

5. Cui Yu, Bin Cui, Shuguang Wang, Jianwen
Su. Efficient index-based KNN join processing for
high-dimensional data // Inf. Softw. Technol. 2007.
Vol. 49. no. 4. Pp. 332–344.

6. Kuan J., Lewis P. Fast k nearest neighbour search
for R-tree family // Information, Communications

and Signal Processing. Proc. of Internat. Conf.
ICICS. 1997. Vol. 2. Pp. 924–928.

7. Ratnasamy S., Francis P., Handley M.,
Karp R., Shenker S. A scalable content-addressable
network // SIGCOMM Comput. Commun. 2001.
Rev. 31. no. 4. Pp. 161–172.

8. Stoica I., Morris R., Karger D., Kaashoek
M.F., Balakrishnan H. Chord: A scalable peer-
to-peer lookup service for internet applications //
SIGCOMM Comput. Commun. 2001. Rev. 31.
no. 4. Pp. 149–160.

9. Mar Yi Yi, Maw Aung Htein. Tree-based
Indexing for DHT-based P2P Systems // Internat.
J. of Computer Applications. 2013. Vol. 62.
Pp. 27–33.

10. Sorokin A., Selkov G., Goryanin I. A user-
defined data type for the storage of time series data
allowing efficient similarity screening // European
J. of Pharmaceutical Sciences. 2012. Vol. 46. Iss. 4.
Pp. 272–274.

11. Bartunov O., Sigaev T. Efficient K-nearest
neighbour search in PostgreSQL // Conf. talk,
PGDay-2010, Roma, 2010.

12. Dean J., Ghemawat S. MapReduce: simplified

on Relative Frequency and K-Nearest Neigh-
bor Algorithm. Intelligent Systems Design and Ap-
plications, 10th Internat. Conference on, 2010,
pp. 1320–1325.

4. Pham N.D., Quang Loc Le, Tran Khanh Dang.
Two Novel Adaptive Symbolic Representations for
Similarity Search in Time Series Databases. 12th In-
ternat. Asia-Pacific Web Conference APWEB-2010.

5. Cui Yu, Bin Cui, Shuguang Wang, Jianwen
Su. Efficient index-based KNN join processing for
high-dimensional data. Inf. Softw. Technol., 2007,
Vol. 49, No. 4, pp. 332–344.

6. Kuan J., Lewis P. Fast k nearest neighbour
search for R-tree family. Information, Communica-
tions and Signal Processing, Proceedings of Internat.
Conference ICICS-1997, Vol. 2, pp. 924–928.

7. Ratnasamy S., Francis P., Handley M.,
Karp R., Shenker S. A scalable content-address-
able network. SIGCOMM Comput. Commun., 2001,
Rev. 31, No. 4, pp. 161–172.

8. Stoica I., Morris R., Karger D., Kaashoek
M.F., Balakrishnan H. Chord: A scalable peer-to-
peer lookup service for internet applications. SIG-
COMM Comput. Commun, 2001, Rev. 31, No. 4,
pp. 149–160.

9. Mar Yi Yi, Maw Aung Htein. Tree-based In-
dexing for DHT-based P2P Systems. Internat. Journal
of Computer Applications, 2013, Vol. 62, pp. 27–33.

10. Sorokin A., Selkov G., Goryanin I. A user-
defined data type for the storage of time series data

allowing efficient similarity screening. European
Journal of Pharmaceutical Sciences, 2012, Vol. 46,
Iss. 4, pp. 272–274.

11. Bartunov O., Sigaev T. Efficient K-nearest
neighbour search in PostgreSQL. Conference talk,
PGDay-2010, Roma.

12. Dean J., Ghemawat S. MapReduce: sim-
plified data processing on large clusters. Commun.
ACM, 2008, Vol. 51, No. 1, pp. 107–113.

13. Zaharia M., Chowdhury M., Franklin M.J.,
Shenker S., Stoica I. Spark: cluster computing
with working sets. In Proceedings of the 2nd
USENIX Conference on Hot topics in cloud
computing, USENIX Association, Berkeley, CA,
USA, p. 10.

14. GridGain systems GridGain. Available:
http://www.gridgain.com

15. Polyakov V.B. Organizacija vychislenij
v arhitekturah, podderzhivajushhih massovyj
parallelism. Voprosy radioelektroniki. Moscow:
Elektronica Publ., 2008, pp. 33–41. (rus)

16. Zinkovsky A.V., Potekhin V.V., Ilyin I.Y.
Modelling of vibration activity on a man locomotorium.
Proceedings of the 10th Internat. Congress on Sound
and Vibration, 2003, pp. 3851–3856.

17. Arsen’ev D.G., Shkodyrev V.P. Strategija
gruppovogo upravlenija robotami na osnove
situacionno-celevogo planirovanija. Izvestija
Juzhnogo federalnogo universiteta. Tehnicheskie
nauki. Taganrog, 2010, pp.40–43 (rus)

30

St. Petersburg State Polytechnical University Journal 1' (188) 2014
Computer Science. Telecommunications and Control Systems

data processing on large clusters // Commun. ACM.
2008. Vol. 51. no. 1. Pp. 107–113.

13. Zaharia M., Chowdhury M., Franklin M.J.,
Shenker S., Stoica I. Spark: cluster computing with
working sets // In Proc. of the 2nd USENIX Conf.
on Hot Topics in Cloud Computing. USENIX
Association, Berkeley, CA, USA. P. 10.

14. GridGain systems GridGain [электронный
ресурс] / URL: http://www.gridgain.com

15. Поляков В.Б. Организация вычислений
в архитектурах, поддерживающих массовый па-

раллелизм // Вопросы радиоэлектроники. M.:
Электроника, 2008. С. 33–41.

16. Zinkovsky A.V., Potekhin V.V., Ilyin I.Y.
Modelling of vibration activity on a man locomo-
torium // Proc. of the 10th Internat. Congress on
Sound and Vibration. 2003. Pp. 3851–3856.

17. Aрсеньев Д.Г., Шкодырев В.П. Страте-
гия группового управления роботами на основе
ситуационно-целевого планирования // Изве-
стия Южного федерального университета. Тех-
нические науки. Таганрог, 2010. С. 40–43.

ZOBNIN, Sergey S. St. Petersburg State Polytechnical University. Siemens LLC.
195251, Politekhnicheskaya Str. 21, St. Petersburg, Russia.
E-mail: sergey.s.zobnin@gmail.com

ЗОБНИН Сергей Сергеевич – студент кафедры cистем и технологий управления Санкт-
Петербургского государственного политехнического университета.

195251, Россия, Санкт-Петербург, ул. Политехническая, д. 21.
E-mail: sergey.s.zobnin@gmail.com

POLYAKOV, Vadim B. St. Petersburg State Polytechnical University.
195251, Politekhnicheskaya Str. 21, St. Petersburg, Russia.
E-mail: vadim7702@yandex.ru

ПОлЯКОВ Вадим Борисович – доцент кафедры cистем и технологий управления Санкт-
Петербургского государственного политехнического университета, доктор технических наук.

195251, Россия, Санкт-Петербург, ул. Политехническая, д. 21.
E-mail: vadim7702@yandex.ru

 St. Petersburg State Polytechnical University, 2014

