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INTELLIGENT TIME SERIES STORING AND INFERENCE ENGINE 
IMPLEMENTATION WITH FOCUS ON PERFORMANCE  

AND HIGH LEVELS OF ABSTRACTION

This paper covers several aspects of intelligent time series database implementation. It also includes 
the description and analysis of a symbolic time series representation scheme. The paper focuses on various 
indexing and parallelization approaches in conjunction with actual backend storage engines. Special emphasis 
is made on identifying the problem of combining simple queries with time series pattern search and retrieval 
requests and finding a solution to this problem. The paper also considers query definition and provides the 
general architecture of a time series database with data mining capabilities.
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РЕАЛИЗАЦИЯ ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ СИСТЕМ ХРАНЕНИЯ  
И ОБРАБОТКИ ВРЕМЕННЫХ РЯДОВ, ПРЕДСТАВЛЕННЫХ  

В ВИДЕ ВЫСОКОУРОВНЕВЫХ АБСТРАКЦИЙ

Рассмотрены аспекты реализации высокопроизводительных систем хранения и обработки вре-
менных рядов, представленных в виде высокоуровневых абстракций. Особое внимание уделено 
производительности конечного решения и способам увеличения производительности. Проведено 
сравнение различных высокоуровневых представлений временных рядов по разным критериям. Из-
учены различные распределенные низкоуровневые хранилища данных. Установлена и рассмотрена 
проблема эффективного выполнения комбинированных запросов к хранилищу временных рядов. 
Рассмотрена задача создания запроса для рассматриваемой базы данных временных рядов. Приве-
дена конечная архитектура рассматриваемой системы.

БАЗА ДАННЫХ ВРЕМЕННЫХ РЯДОВ; РАСПРЕДЕЛЕННАЯ СИСТЕМА; ИНДЕКСИРОВА-
НИЕ.

Nowadays big volumes of time series data 
are generated in various fields of science and 
engineering. Most of the time such data is just 
stored and forgotten (or analyzed using standard 
visualization / retrieval tools «by hand»), but 
it is very tempting to have an opportunity to 
extract certain amounts of information that 
might be useful for immediate and strategical 
problem solving and control tasks, such as 
events, patterns, motifs, anomalies etc, in 
an automated or even automatic manner. 
The implementation of such system (which 
may also be called as intelligent database) is 
always accompanied by various problems. The 
main part of this paper contains a set of such 
problems and ways of solving them, referenced 
by related work and several contributions of 

this paper's author.  
The main contribution of this paper is 

the integration of various techniques (which 
originated in signal processing, data mining, big 
data and distributed systems, engineering fields) 
connected with efficient and production-ready 
intelligent time series database implementation  
into a single reusable framework. Several 
secondary contributions are related to existing 
algorithm combinations and optimization. 
A novel time series approximation scheme 
is proposed. The purpose of this paper is to 
provide a general method (framework) of 
solving a range of tasks related to intelligent 
time series management and mining, as well as 
a general overview of the problem with some 
concrete ideas and practices.
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Time Series Data, Representation Scheme

First of all, data itself, or, to be specific, 
the amount of time series and data quality is a 
problem. Hundreds of gigabytes of time series 
data to be processed in such system require 
high performance of storage backends. The 
quality or (and) specifics in data streams is also 
an issue: intelligent similarity search algorithms 
tend to depend on internal parameters of time 
series and have problems with generalization. 
Usually one should consider at least problems 
of noise (SNR) and data misses and provide 
ways of intelligent algorithms parametrization.  

The general intelligent algorithm that 
works with time series data usually uses some 
intermediate time series representation. Many 
time series representations have been introduced 
(e. g. FFT, Wavelets, Piecewise-Constant 
Approximation, curve-based approximation 
etc). Recently it has been shown that symbolic 
representations of time series outperform 
most of other representations in terms of 
approximation performance and execution 
performance. Moreover, they allow using some 
frameworks which require symbolic input (e. g. 
Markov models, Kolmogorov complexity based 
methods, suffix trees), give good compression 
rate and give a lower bound on the real value 
(useful in data mining applications), reduce 
sensitivity to noise and greatly improve 
computational performance [1]. There are two 
types of time series symbolization:  the first 
one is based on quantization and the second 
is based on temporal segmentation. It was 
found that quantization-based symbolization 
performs generally better on signals without 
temporal structure (the criteria are: information 
loss, accuracy, alphabet size) and vice-versa 
[2]. Several extensions for basic representation 
scheme have been developed, such as: 
symbolization based on kNN segmentation 
[3] where a relative frequency is used to 
determine the best approximation parameters, 
symbolization based on k-Means [4] which 
highly outperforms the standard scheme on 
highly Gaussian distributed streams. One may 
also employ a more intelligent approach: in 
order to optimize the algorithm for a particular 
dataset, a neural network may be tested and 
used either for an efficient rank-based parameter 

pick as in [3], or for an efficient segmentation 
scheme as in [4]. There is no doubt that 
symbolic representation of time series is most 
appropriate for similarity search in intelligent 
database (most arising) and it is the best 
solution for fast retrieval due to availability of 
various data structures from bioinformatics and 
computer science communities.  

During the investigation of SAX time series 
representation the following specifics were found. 
SAX is very dependent on parameters (window 
size, word size, alphabet size). The window 
size parameter is responsible for capturing the 
dynamics of time series (data is normalized 
in each window and as a consequence). 
The word size and alphabet size parameters 
determine performance/space requirements 
of the transformation and operations over 
transformed time series. The word size and 
alphabet size correspond to discretization and 
quantization. It comes true that determining 
optimal parameters of SAX is an important and 
actual problem. Moreover, domain knowledge 
should be integrated in order to organize the 
most efficient storage and retrieval scheme. An 
example of such domain knowledge integration 
is manually defined stream groupings provided 
by an expert, the other example is unsupervised 
classification of time series, which determines 
parameters. It should be noted that it is also 
not optimal to generate an infinite number of 
parameter triples, because this requires a lot 
of additional computations. The optimization 
task should be defined to perform an on-line 
unsupervised classification that also minimizes 
the number of class reallocation in time.

Indexing Symbolic Time Series. Simple 
Queries. Approximations and Storage.  

Parallel Execution

Indexing is the core of a database, because 
there always are response and performance 
requirements of a database in production sys-
tems. One always faces a space-time dilemma 
when some indexing scheme is implemented, 
and uses an underlying representation (symbolic 
in our case) for the best performance. The 
chosen indexing scheme directly depends on 
queries to be executed against a database. In 
case of intelligent time series database, the 
main query is a «pattern query» or a similarity 
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query. The other possible queries are event 
queries like «X more than 10 and Y less than 20»  
and more simple ones. 

Here two combinations of indexing schemes 
are proposed. Each of these combinations 
allows fulfilling all query requirements. 

Let’s consider the first combination. In 
order to allow fast «direct» pattern match 
against symbols, a suffix tree is built over 
symbolic representations of time series. This 
can be called the first level of index. The second 
level of index is an index for similarity-based 
queries. A KD-tree is used for this purpose. 
The same KD-tree is used to execute event 
queries. Performance is improved via using the 
following methods. At first, one probabilistic 
suffix tree is used to perform faster first level 
index operations. Secondly, KD-tree performs 
partial queries and uses heuristics. Last, but 
not the least, a separate «reduces space» index 
could be built in the reduced feature space of 
time series, where the reduction is done via 
domain knowledge or general PCA or SOM 
scheme. These approaches were evaluated by 
the author of this paper. Alternative approaches 
to KD-tree index are other structures 
optimized for similarity search: general B-tree 
based structures [5], R-trees [6]. It should be 
noted, that the second index level techniques 
listed here are basic ones: trees need special 
measures to handle balancing issues, more 
parallelization and distribution considerations 
should be made. Even though a tree index can 
be equally distributed, processing time for each 
node needs prediction, which itself represents 
a forecasting problem that is not easily solved; 
nodes distribution mechanisms with random 
effects also have some difficulties. 

The second combination of methods and 
techniques that allow fulfilling advanced 
querying requirements as well as performance 
requirements gives more focus on distributional 
and fault-tolerance capabilities of the system. 
Instead of using a suffix tree as a primary 
indexing structure, one can use a distributed 
hashing structure. There has been large research 
on distributed hashing structures recently, 
especially Distributed Hash Tables (DHT): 
CAN [7], Chord [8] and others. Generally, the 
problem of indexing time series was thoroughly 
studied in [9]. 

The advantage of the suffix tree as a first 
level indexing structure is its simplicity and 
general ability to perform suffix (substring) 
queries. DHT-like structures require 
much more additional space to allow such 
expressivity. On the other hand, DHT-
based structures are purely distributed, thus 
naturally allowing distributed computations 
and storing. 

A storage and cluster computation mecha-
nism is required in order to fulfill strict 
requirements of productions environment. 
Although there is some research into standard 
backends usage for time series mining tasks [10], 
such DBMSs lack replication and fault-tolerance 
due to highly structured data predisposition. The 
integration of intelligent capabilities requires 
modifying the source code like in [11], which is 
error prone and not appropriate in many cases. 
A modern distributed computation framework 
is much more preferable, given the fact that 
parallelism can always be exploited and is 
implemented naturally in such frameworks. One 
more requirement is the ability of manual RAM 
caching of computations in such framework, the 
indexes are more preferable in RAM rather than 
on hard drive. As a result, considerable systems 
are [12–14]. 

It should be noted, that such distributed 
systems are executed on commodity hardware 
(i. e. standard hardware with no special 
requirements), comparing to specialized 
massively parallel solutions, for example [15] 
meaning that they are more universal and 
have bigger latencies comparing to specialized 
hardware/software massively parallel solutions 
at the same time. One implication is that the 
time series database system implemented on 
top of commodity hardware is not capable 
of handling hard real time tasks arising, for 
example, in military domains. 

The General Architecture of an Intelligent 
System

The general architecture of an intelligent time 
series database can be represented in Fig. 1. 

The central component is the intelligent 
database itself, where indexes are stored in 
memory, while raw data is stored in symbolic 
form on the disk. This may require a cluster of 
machines due to large size of indexes. 
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The system is highly coupled with some 
3rd-party storage, because raw data is always 
stored somewhere. A good architectural 
solution is to create an «Adapter» for each 3rd 
party, the database is working with, so that 
the intelligent database itself and adapters are 
highly reusable. 

The CEP component of the system is 
responsible for preprocessing data for   detection 
of some event types. This component executes 
event processing queries against data, a good 
solution is to reuse some CEP engine while 
building indexes and use some declarative 
language to find events rather than to encode 
requests by hand. CEP component also provides 
additional stream processing capabilities for 
on-line analysis, i. e. stream manipulation, 
aggregation, joining etc. 

It is very important to have a subsystem 
responsible for user communication so that an 
operator would have a way to present patterns 
for queries in convenient forms. An example of 
such assistance is a visual pattern constructor, 

where it is easy to define the shape of a curve 
(pattern) to be found in the database.

The concept of multilevel indexing is 
represented in Fig. 2. 

As discussed in the previous session, the 
most optimal storing and indexing scheme 
for time series is the scheme containing both 
computer science techniques and bioinformatics 
techniques. This allows fulfilling performance 
requirements as well as provides capabilities 
to perform simple queries, exact time series 
match queries, range queries, N-nearest time 
series queries and others. Not only does such 
scheme allow such querying capabilities, but 
it also allows using distributed systems and 
networks concepts and experience: standard 
DHT or CAN implementations may be used as 
the second level of index. 

It is convenient to have a distributed 
optimization component in common space 
to allow its reusability: the need of solving 
optimization tasks arises on multiple levels of 
the system. Currently a version of distributed 

Fig. 1. The overview of architecture of an intelligent time series database

Fig. 2. The overview of architecture of an intelligent time series database
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simulated annealing is used as an optimization 
framework. A special protocol is implemented 
for optimization of agents’ communication. This 
protocol allows asynchronous optimization, 
incremental updates of «current optimum» and 
dynamic task reallocation. 

The following figure (Fig. 3) shows in detail 
the process of parsing incoming and generating 
a distributed index for later querying as well as 
the process of query generation, processing and 
execution, one can also consider this figure as a 
general algorithm, i. e. how the system works.

A system constantly accepts incoming data 
from various origins. CEP/Stream processing 
(as well as any simple processing like stream 
multiplication) queries are constantly executed 
on incoming data in order to receive alternated 
streams. 

These data streams arrive to the 
module responsible for generating symbolic 
representation. This very module contains 
additional domain knowledge, possibly 
automatically inferred from data, that allows 
more efficient storage and representation. 
For example, there can be additional logic 
for automatic unsupervised classification of 
incoming data streams. A simpler approach is 
to integrate domain knowledge of an expert 
in various forms. For example, an expert 
can set up proper groups of similar signals 

from all. Different parameters based on 
domain knowledge are then used for symbolic 
representation generation algorithm.

The output of the module described in the 
previous paragraph goes to a specially designed 
hash function that gives hash values to time 
series dividing them into equivalence groups 
(dimensionality reduction). Generated hash 
values are then mapped into DHT / CAN 
nodes and distributed around the network. 
This process is executed continuously because 
amounts of incoming data can be too large. The 
other continuously running indexing process is 
the process that performs indexing of hashes 
into tree structures. These structures are also 
ideally distributed as it was discussed in the 
previous chapters. 

User defined queries, possibly from a special 
graphical interface for query construction, 
as well as constraints on window size and 
additional parameters are supplied to the other 
side of the system. This data is then translated 
into patterns suitable for search, a search query 
is executed and some post processing of search 
results are performed. 

At least two general ways of the described 
system integration can be defined. The first 
one puts time series database in the front line 
(data acquisition layer). The second way of 
integration considers time series database as an 

Fig. 3. Internal data flows

-
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auxiliary part of another bigger system. Both 
these cases are represented in Fig. 4. 

The left case (Fig. 4, left) inserts time series 
database into the system circuit, thus reducing 
total system fault-tolerance. On the other side, 
in such way time series database receives on-
line data and has this data indexed allowing 
other systems to work with this data at once. 
Thus, such way is the best for 3rd party systems 
that require intelligent time series manipulations 
with low latency. It is also possible to stream 
data in parallel to third party components 
having all pros at the same moment. 

The right case (Fig. 4, right) puts time series 
database aside from real time series. In this way 
an intelligent database does not have data in 
real time, but it is not located in the main data 
circuit. Such way of integration is more suitable 
for cases when off-line processing is required 
for some existent systems as a separate module, 
and extra low latency is not required.

The approach provided in this paper is 
applicable to a wide range of tasks related 
to time series: analysis, efficient storage, 
approximation, motif discovery, classification, 
and others. For example, in order to implement 

a fully functional prototype of the vibration 
diagnostic system based on models from [16], it 
is required to have a subsystem able to provide 
both raw time series functionality and similarity 
search functionality. The system based on the 
concept from [17] also requires historical access 
and advanced time series similarity search 
capabilities. 

It was shown that the chosen methods 
(symbolic representation + multilevel indexes 
with approximations at distributed storage, 
queries are executed in cluster in parallel) greatly 
outperform standard approaches (standard time 
series representations, SQL databases) in terms 
of amount of queries per second and single 
query execution time. 

The ongoing research is targeted at 
investigation and comparison of concrete 
algorithms and methods for each stage of 
the described systems, integration of chosen 
algorithms, improving them and investigating 
the means of domain knowledge integration. 

The research and implementation of the 
system based on the concepts from this paper 
is performed as a part of the project related to 
time series analysis and visualization in Siemens 
LLC. 

Fig. 4. Ways of integrating time series database with other systems: left, where time series database  
is considered as a part of data acquisition layer and right, where considered system is used as an auxiliary 

system for other products 
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