	_	
Санкт-Петербургски	й политехнический универ	ситет
Пе	етра Великого	

Институт информационных технологий и управления Кафедра компьютерных систем и программных технологий

Сиднев А.Г.

Использование аппарата линейной алгебры в экономических расчетах

Методические указания по дисциплине «Математические модели бизнес-процессов»

Санкт-Петербург 2015

Содержание

1. Модель международной торговли	3
1.1. Условие сбалансированности бюджетов стран-участниц	торгового
обмена	3
2. Балансовая модель В. Леонтьева	6
2.1. Линейная модель межотраслевого баланса	6
2.2. Содержательная интерпретация матрицы $S = [E - A]^{-1}$	10
2.3. Продуктивность матрицы A	12
3. Модель равновесных цен	14
4. Определение оптимального плана выпуска товарной продукции.	
Литература	

1. Модель международной торговли

1.1. Условие сбалансированности бюджетов стран-участниц торгового обмена

Страны-участницы международной торговли обмениваются между собой товарами. Каждая страна располагает определенным бюджетом, который полностью расходуется на закупки товаров внутри страны и на закупки товаров других стран. При сбалансированности международной торговли обеспечивается бездифицитность бюджетов всех стран, которые в ней участвуют. Модель международной торговли позволяет определить соотношения между бюджетами стран, при котором соблюдается условие ее сбалансированности.

Формальная модель международной торговли представляет собой следующее уравнение линейной алгебры [1]

$$AX = X, (1.1)$$

где

$$A_{[n imes n]} = \{a_{ij}\}_{\substack{i=\overline{I,n} \ j=\overline{I,n}}}$$
 — структурная матрица торговли, в которой a_{ij} — часть бюджета,

которую j-я страна тратит на закупки товаров i-й страны,

n — число стран-участниц международной торговли.

$$X = \{x_1, x_2, \dots, x_i, \dots, x_n\}$$
 — вектор бюджетов, где, x_i — бюджет i -й страны.

Если весь бюджет i-й страны тратится полностью на закупки товаров, то сумма элементов i-й строки матрицы A равна единице. При дефиците бюджета i-й страны указанная сумма будет больше единицы.

Выполнение условия (1.1) обеспечивает сбалансированность международной торговли.

Дальнейшее описание модели основывается на материалах §4.2 [1].

Рассмотрим следующий пример. Пусть

$$A = \begin{cases} \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{3} & 0 \end{cases}.$$

Уравнение (1.1) можем записать в следующем виде

$$(E-A)X = 0. (1.2)$$

Уравнение (1.2) есть система линейных однородных уравнений, имеющая решение в том случае, если детерминант матрицы (E-A) равен нулю. В данном случае это действительно так, потому, что строки матрицы A линейно зависимы — любая строка может быть найдена из условия равенства единице элементов столбцов матрицы, — ранг матрицы меньше трех, следовательно, матрица (E-A) является сингулярной.

Решение системы (1.2) — вектор $X = \{x_1, x_2, x_3\}$ с компонентами, находящимися в соотношении $x_1: x_2: x_3 = 4:3:2$.

Рассмотрим понятия собственных значений и собственных векторов применительно к анализу рассмотренной выше модели международной торговли. Уравнение (1.1) есть частный случай уравнения, вводящего и использующего понятия собственных значений (чисел) и собственных векторов:

$$AX = \lambda X . (1.3)$$

При выполнении (1.2) говорят, что вектор X является собственным вектором квадратной матрицы A, соответствующим собственному значению λ .

Следовательно, решением системы (1.1) является собственный вектор, соответствующий $\lambda = 1$.

Это легко проверить для рассмотренного выше примера с использованием пакета Матлаб. Ниже приводится фрагмент журнала Матлаб, демонстрирующий решение задачи поиска собственных чисел и векторов матрицы

$$A = \begin{cases} \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{3} & 0 \end{cases} .$$

$$V = -0.7428 -0.7651 -0.2852$$

Здесь [V,D]=eig(A) есть обращение к функции, вычисляющей для матрицы A две матрицы: D — диагональную матрицу с собственными числами матрицы A и V — матрицу со столбцами — собственными векторами, соответствующими найденным собственным числам.

Для нашего примера нашлось собственное число $\lambda = 1$, ему соответствует найденный с точностью до мультипликативной константы собственный вектор

$$egin{bmatrix} -0.7428 \ -0.5571 \ -0.3714 \end{bmatrix}$$

Умножим его на константу, равную (-0.7428/4) и получим собственный

вектор $X = \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}$, который повторяет приведенное выше условие сбалансированности

международной торговли $x_1: x_2: x_3 = 4:3:2$.

Теорема 1.1.

Если в матрице A сумма элементов каждого столбца равна 1: $\sum_{i=1}^{n} a_{ij} = 1$, $i = \overline{1,n}$, то имеется собственный вектор, принадлежащий собственному значению 1.

Заметим, что это условие выполняется для матрицы A, фигурировавшей в рассмотренном примере.

Далее даются формулировки теорем, которые также может быть использованы при анализе модели международной торговли.

Теорема 1.2. (Фробениуса-Перрона).

Пусть $A = \left\{a_{ij}\right\}_{\substack{j = \overline{I,n} \\ i = I,n}}$ — квадратная матрица со строго положительными элементами: A > 0 . Тогда справедливы утверждения.

- 1. Наибольшее по модулю собственное число λ_A вещественное и строго положительное
 - 2. λ_A простой корень характеристического уравнения
 - 3. Собственный вектор X, принадлежащий λ_A , строго положителен: X>0

Определение. Максимальное по модулю собственное значение λ_A неотрицательной матрицы A называется числом Фробениуса матрицы A, а соответствующий ему неотрицательный собственный вектор X — вектором Фробениуса для A.

Теорема 1.3.

Число Фробениуса неотрицательной матрицы A удовлетворяет неравенствам

$$\begin{cases} \min \limits_{(i)} \sum_{(j)} a_{ij} \leq \lambda_A \leq \max \limits_{(i)} \sum_{(j)} a_{ij} \\ \min \limits_{(j)} \sum_{(i)} a_{ij} \leq \lambda_A \leq \max \limits_{(j)} \sum_{(i)} a_{ij} \end{cases}$$

Если к тому же матрица A положительна, то неравенства строгие за исключением случая, когда $\min_{(i)} \sum_{(j)} a_{ij} = \max_{(i)} \sum_{(j)} a_{ij}$ или $\min_{(j)} \sum_{(i)} a_{ij} = \max_{(j)} \sum_{(i)} a_{ij}$.

Следствие теоремы 1.3.

Если все суммы строк неотрицательной матрицы A равны одному и тому же числу λ , то число Фробениуса $\lambda_A = \lambda$.

2. Балансовая модель В. Леонтьева

2.1. Линейная модель межотраслевого баланса

Балансовая модель экономики была формально представлена в 1936 г. Василием Леонтьевым, американским ученым русского происхождения, получившим позднее нобелевскую премию в области экономики. Модель предполагает, что все народное хозяйство станы состоит из *п* отраслей, каждая из которых выпускает свой единственный продукт. Производство собственного продукта отрасли требует использования продукции других отраслей, поэтому объем продукции, произведенной любой отраслью можно представить в виде

суммы объема продукции данной отрасли, потребленной другими отраслями, и объема продукции, поступившей на рынок для использования потребителями. Посуществу, математической основой модели Леонтьева является матрица A, называемая матрицей прямых затрат или технологической матрицей.

Итак

$$A = \left\{a_{ij}
ight\}_{\substack{i=\overline{1,n}\j=\overline{1,n}}}$$
 – матрица прямых затрат,

n — число отраслей равное числу видов товара, а

 a_{ij} — количество денег, идущих на приобретение продукции i-й отрасли, которое j-я отрасль тратит для производства собственной продукции на \$1.

Далее матрица A используется в следующем уравнении, которое собственно и является рассматриваемой моделью и носит название линейной модели межотраслевого баланса.

$$X = AX + Y, (2.1)$$

где $X=(x_1,x_2,\ldots,x_n)^T$ — вектор валового выпуска продукции, а $Y=(y_1,y_2,\ldots,y_n)^T$ — вектор конечного потребления.

В рассматриваемой модели, как следует из формального определения матрицы \boldsymbol{A} , компоненты векторов \boldsymbol{X} и \boldsymbol{Y} имеют единую стоимостную единицу измерения, в данном случае, \$, имея в виду происхождение модели.

В уравнении (2.1) исходными данными являются матрица \boldsymbol{A} и вектор \boldsymbol{Y} , а требуется определить вектор \boldsymbol{X} , позволяющий получить заданный \boldsymbol{Y} .

В. Леонтьев обнаружил, что элементы a_{ij} матрицы A со временем меняются достаточно медленно вследствие относительно медленного изменения технологии.

Вектор X можно также рассматривать, как вектор затрат, понесенных народным хозяйством — всеми его отраслями — в связи с необходимостью наполнения рынка товарами в соответствии с вектором Y . Последний можно также рассматривать как план выпуска товарной продукции, обеспечиваемый валовым объемом X .

X и Y предъявляются следующие требования, исходящие из смысла модели.

Матрица A — неотрицательная, вектор Y также неотрицательный, а решением системы (2.1) должен стать неотрицательный вектор X.

Сформулируем задачу 1.

Задача 1

Для заданного вектора потребления $Y = (y_1, y_2, ..., y_n)^T$ найти: средства, потраченные на производство продукции всех отраслей, обеспечивающих получение заданного $Y = (y_1, y_2, ..., y_n)^T$.

Для ответа на этот вопрос следует найти вектор $X = (x_1, x_2, ..., x_n)^T$, где x_j – средства, потраченные на производство продукции j -й отрасли.

$$X - AX = (E - A)X = Y.$$

Умножим левую и правую части на $(E-A)^{-1}$, и получим решение:

$$X = (E - A)^{-1}Y . (2.2)$$

Матрица $S = (E - A)^{-1}$ называется матрицей полных затрат.

Рассмотрим следующее уравнение.

$$X - AY = \left[\left[E - A \right]^{-1} - A \right] \cdot Y = SY - AY . \tag{2.3}$$

X-AY есть косвенные затраты в связи с необходимостью выполнения отраслями плана Y . Действительно, X — это все затраты, а AY — прямые затраты в связи с планом Y . Тогда $\left[\![E-A]^{\!-I}-A\right]$ — матрица косвенных затрат.

Размер косвенных затрат определяется так:

$$X - AY = \left[\left[E - A \right]^{-1} - A \right] \cdot Y = SY - AY.$$

Оценка прибыльности отраслей при выполнении плана выпуска $Y = (y_1, y_2, \ldots, y_n)^T \, .$

На каждый доллар выпущенной продукции отрасль \boldsymbol{j} получает прибыль, равную «один доллар минус сумма элементов \boldsymbol{j} -го столбца матрицы \boldsymbol{A} »:

$$S_{j}(\$1) = 1 - \sum_{i=1}^{n} a_{ij}$$
.

Тогда для вектора $X=[E-A]^{-I}\cdot Y=(x_1,x_2,\ldots,x_n)^T$ прибыль j-й отрасли составит следующую сумму: $S_j=x_j(1-\sum_{i=1}^n a_{ij})$.

Вектор прибыли на \$1 по всем отраслям $S(\$1) = (S_1(\$1), S_2(\$1), \ldots, S_j(\$1), \ldots, S_n(\$1))$ можно вычислить по формуле:

$$S(\$1) = I_n - A^T \cdot I_n,$$

где I_n — вектор размера $[n \times I]$, все компоненты которого равны 1.

Пусть матрица
$$A = \begin{bmatrix} 0 & 0.2000 & 0.4000 \\ 0.7000 & 0 & 0.4000 \\ 0.3 & 0.6000 & 0 \end{bmatrix}$$
, тогда

 $S(\$1) = I_n - A^T \cdot I_n$, посчитанный в пакете Матлаб, даст следующий результат:

```
>> one=[1;1;1]
one =

1
1
1
>> SS=one-A'*one
SS =

0
0.2000
0.2000
```

Вектор SS информирует о том, что отрасль 1, продав продукции на \$1, получит прибыль, равную 0, отрасль 2, продав продукции на \$1, получит 0.2\$, отрасль 3 получит 0.2\$. этот вывод непосредственно следует из анализа столбцов матрицы A.

Если вектор $Y = (100, 200, 350)^T$, то отрасль 1 получит нулевую прибыль, отрасль 2 получит \$40, отрасль 3 получит \$70.

2.2. Содержательная интерпретация матрицы $S = \begin{bmatrix} E - A \end{bmatrix}^{-1}$

Для приведенной выше матрицы A найдем матрицу $S = [E - A]^{-1}$. Далее операции с векторами и матрицами производятся с использованием пакета Матлаб и сопровождаются выдержками из журнала пакета Матлаб.

```
>> S=inv(eye(3)-A)
S =
2.4675 1.4286 1.5584
2.6623 2.8571 2.2078
2.3377 2.1429 2.7922
```

Дадим содержательное толкование матрицы S.

При заказе товара 1 на 1\$ в отрасль 1 поступит \$2.4675, в отрасль 2 поступит \$2.6623 и в отрасль 3 — \$2.3377. То есть деловая активность народного хозяйства возрастет на \$2,4675+\$2,6623+\$2,3377 = \$7,4675. При этом отрасль 1 не получит прибыли, отрасль 2 получит \$2,6623*0,2 = \$0.53, отрасль 3 получит \$2.3377*0.2 = \$0,47. Представленный здесь вариант интерпретации матрицы S заимствован в [2].

Рассмотрим повторно 1-й столбец матрицы S

2.4675 2.6623 2.3377.

Определим, каким образом перераспределяются суммы, поступающие в

каждую отрасль в связи с выполнением заказа $oldsymbol{Y} = egin{bmatrix} oldsymbol{I} \\ oldsymbol{0} \\ oldsymbol{0} \end{bmatrix}.$

В данном случае вектор
$$X = \begin{bmatrix} 2,4675 \\ 2,6623 \\ 2,3377 \end{bmatrix}$$
. Найдем AX — часть валового

выпуска, потребленную всеми отраслями.

$$AX = \begin{bmatrix} A_1, A_2, A_3 \end{bmatrix} X = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A_1 x_1 + A_2 x_2 + A_3 x_3.$$

$$AX = \begin{bmatrix} 1,4675 \\ 2,6623 \\ 2,3377 \end{bmatrix} = \begin{bmatrix} 0 \\ 1,7272 \\ 0,7402 \end{bmatrix} + \begin{bmatrix} 0,5325 \\ 0 \\ 1,5974 \end{bmatrix} + \begin{bmatrix} 0,9351 \\ 0,9351 \\ 0 \end{bmatrix}.$$

Вектор AX характеризует поступления от отраслей друг другу. Тот же вектор, представленный в виде взвешенной суммы столбцов, дает развернутую информацию, на основе которой заполним следующую таблицу 2.1.

Выпущено на \$1 продукции 1-й отрасли. Вот, что из этого получилось.

Таблица 2.1.

отрасли	Поступило из отраслей		Поступило	Ушло из	Осталось	
	1	2	3	от дохода	отрасли	в отрасли
	1	2	3	Y	всего \$	\$
1	\$0	\$0,5325	\$0,9351	\$1,0	2,4675	0
	Всего і	поступило в	2,4073	U		
2	\$1,7272	\$0	\$0,9351	\$0	2 1209	0.5225
	Всего	поступило в	2,1298	0,5325		
3	\$0,7402	\$1,5974	\$0	\$0	1 9702	0.4675
	Всего поступило в отрасль 3: \$2,3377				1,8702	0,4675

В бесприбыльной отрасли 1 не осталось ничего: все, что поступило от отраслей 2 и 3 и от дохода от выручки товарной продукции, ушло этим же отраслям. Заметим, что баланс сошелся. В отрасли поступили «приличные» суммы.

Вернемся к исходной задаче: найти вектор X, соответствующий векторуY. $X = [E - A]^{-1}Y$.

$$X = [E - A] Y$$
.
>> Y=[10;22;31]
Y =
10
22
31
>> X=inv(eye(3)-A)*Y
X =
104.4156
157.9221
157.0779

2. Найдем прямые денежные затраты — сумму всех компонентов вектора X (вектора прямых денежных затрат)

```
one =
1
1
1
>> one'*X
ans =
419.4156
```

3. Найдем оценку прибыльности отраслей (какую прибыль получит каждая отрасль при выполнении плана выпуска $Y = (10, 22, 31)^T$).

При заказе товара 1 на \$10, товара 2 на \$22 и товара 3 на \$31 в отрасль 1 поступит \$104.4156, в отрасль 2 поступит \$157.9221 и в отрасль 3 — \$157.0779. То есть деловая активность народного хозяйства возрастет на сумму этих величин, равную \$419.4156.

При этом отрасль 1 не получит прибыли, отрасль 2 получит \$157.9221*0,2 = \$31,5844, отрасль 3 получит \$157.0779*0.2 = \$31,4156.

4. Найдем косвенные затраты на производство товаров 1,2,3.

$$\left[\left[E-A\right]^{\!-I}-A\right]$$
 — матрица косвенных затрат

>> inv(eye(3)-A)-A

ans =

2.4675 1.2286 1.1584

1.9623 2.8571 1.8078

2.0377 1.5429 2.7922

Эта матрица характеризует часть деловой активности, идущую на покрытие косвенных затрат в связи с производством товаров 1, 2, 3 на \$1.

2.3. Продуктивность матрицы A

Матрица A, все элементы которой неотрицательны, называется продуктивной, если для любого вектора Y с неотрицательными компонентами существует неотрицательное решение X системы (2.1). В этом случае и модель Леонтьева также называется продуктивной. Приведенные ниже критерии продуктивности матрицы A даются в форме, заимствованной в [1].

Критерии продуктивности матрицы A

1-й критерий продуктивности

Матрица $(E - A)^{-1}$ существует и ее элементы неотрицательны.

2-й критерий продуктивности

Неотрицательная квадратная матрица \boldsymbol{A} продуктивна тогда и только тогда, когда ее число Фробениуса меньше 1.

Покажем, что приведенная выше матрица A продуктивна. Для этого найдем ее собственные числа с использованием пакета Матлаб. Ниже приводится соответствующий фрагмент журнала этого пакета.

```
>> A=[0 0.2 0.4;0.7 0 0.4;0.3 0.6 0]
A =

0 0.2000 0.4000
0.7000 0 0.4000
0.3000 0.6000 0

>> eig(A)
ans =
0.8517
-0.4259 + 0.2099i
-0.4259 - 0.2099i
```

Найдены 3 собственных числа матрицы A, из них два комплексных и одно вещественное, являющееся числом Фробениуса, равным 0.8517, то есть меньшим 1. Следовательно, Матрица A — продуктивная и существует вектор X для любого ненулевого неотрицательного вектора Y.

Можно также убедиться в существовании неотрицательной матрицы $(E-A)^{-1}$:

```
>> inv(eye(3)-A)
ans =
2.4675   1.4286   1.5584
2.6623   2.8571   2.2078
2.3377   2.1429   2.7922
```

Введем понятие запаса продуктивности матрицы $oldsymbol{A}$.

Определение. Пусть $A \ge 0$ — продуктивная матрица. Запасом продуктивности матрицы A называется такое число α , что все матрицы λA , где $1 < \lambda < 1 + \alpha$, продуктивны, а матрица $(1 + \alpha)A$ не продуктивна.

Найдем запас продуктивности матрицы
$$A = \begin{bmatrix} 0 & 0.2000 & 0.4000 \\ 0.7000 & 0 & 0.4000 \\ 0.3 & 0.6000 & 0 \end{bmatrix}$$
.

Будем руководствоваться критерием 1 продуктивности, предполагающим необходимость существования неотрицательной матрицы.

Воспользуемся символическим тулбоксом пакета Матлаб найдем матрицу $(E-(1+a)A)^{-1}$.

```
>> syms a
>> B=inv(eye(3)-(1+a)*A)
```

B =

 $\begin{bmatrix} (60^{*}a^{\wedge}2 + 120^{*}a - 190)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(60^{*}a^{\wedge}2 + 170^{*}a + 110)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(20^{*}a^{\wedge}2 + 140^{*}a + 120)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77) \end{bmatrix} \\ [-(30^{*}a^{\wedge}2 + 235^{*}a + 205)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(30^{*}a^{\wedge}2 + 60^{*}a - 220)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(70^{*}a^{\wedge}2 + 240^{*}a + 170)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77) \end{bmatrix} \\ [-(105^{*}a^{\wedge}2 + 285^{*}a + 180)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(15^{*}a^{\wedge}2 + 180^{*}a + 165)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(35^{*}a^{\wedge}2 + 70^{*}a - 215)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77) \end{bmatrix} \\ [-(105^{*}a^{\wedge}2 + 285^{*}a + 180)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(15^{*}a^{\wedge}2 + 180^{*}a + 165)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(35^{*}a^{\wedge}2 + 70^{*}a - 215)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77) \end{bmatrix} \\ [-(105^{*}a^{\wedge}2 + 285^{*}a + 180)/(48^{*}a^{\wedge}3 + 269^{*}a^{\wedge}2 + 394^{*}a - 77), -(15^{*}a^{\wedge}2 + 180^{*}a - 18$

Далее, меняя коэффициент a, найдем его максимальное значение, при котором сохраняется неотрицательность матрицы $(E - (I + a)A)^{-1}$.

```
>> B1=subs(B,'a',0.174)
B1 =
1.0e+003 *
3.5679 3.0154 3.0916
5.2633 4.4497 4.5612
4.9641 4.1964 4.3028
```

Заметим, что уже при незначительном увеличении коэффициента a матрица $(E-(I+a)A)^{-1}$ становится отрицательной.

```
>> B1=subs(B,'a',0.175)
B1 =
-375.3298 -317.9063 -325.8209
-554.6871 -468.3273 -480.8167
-523.3581 -442.2327 -452.8277
```

Таким образом, запас продуктивности матрицы A не превышает величины, равной 0.175 .

Рассмотрим еще один важный аспект балансовой модели экономики — назначение адекватных цен продукции, поставляемой на товарный рынок.

3. Модель равновесных цен

Матрица A может быть интерпретирована несколько по-другому, чем ранее. Пусть $A = \left\{a_{ij}\right\}_{\substack{i=\overline{I,n}\\j=\overline{I,n}}}$, где a_{ij} — количество экземпляров продукции i -й отрасли, необходимое для производства одного экземпляра продукции x_j . Пусть $C = \left\{c_j\right\}_{j=\overline{I,n}}$ — вектор цен, i -й компонент которого равен цене единицы продукции

i -й отрасли, а $X = \{x_1, x_2, \dots x_j, \dots, x_n\}$ — по-прежнему вектор валового выпуска продукции, где x_j — количество единиц продукции j -й отрасли.

Тогда справедливы следующие соотношения.

 $c_j x_j$ — выручка j-й отрасли, так как все, что произведено любой отраслью, продано другим отраслям и реализовано на товарном рынке.

 $\sum_{i=1}^{n} a_{ij} c_i$ — сумма, затраченная j-й отраслью на закупку продукции других отраслей с целью производства единицы продукции собственной отрасли.

$$x_j \sum_{i=1}^n a_{ij} c_i$$
 — затраты j -й отрасли на производство продукции в объеме x_j .

Представим выручку j-й отрасли в виде суммы затрат и добавленной стоимости V_j , имеющей смысл прибыли, идущей на выплату зарплаты, уплату налогов, инвестиции и пр.

$$x_{j}c_{j} = x_{j}\sum_{i=1}^{n}a_{ij}c_{i} + V_{j},$$
 (3.1)

Поделим (3.1) на x_i и получим

$$c_{j} = \sum_{i=1}^{n} a_{ij} c_{i} + \frac{V_{j}}{x_{i}}, \quad j = \overline{I, n},$$
(3.2)

где $\frac{\pmb{V}_j}{\pmb{x}_j}$ — норма добавленной стоимости. В матричной форме записи получим

уравнение
$$C = A^T C + V$$
, (3.3)
$$V = \left\{ \frac{V_j}{x_i} \right\}, \ j = \overline{1,n}.$$

Заметим, что (3.3) по структуре повторяет уравнение линейной модели межотраслевого баланса (2.1), в котором для перехода к (3.3) необходимо произвести следующую замену.

$$X \Rightarrow C$$

$$A \Rightarrow A^{T}$$

$$Y \Rightarrow V$$

Представленная здесь модель равновесных цен изложена по той же схеме, что и в [1].

Сформулируем задачу 2.

Задача 2

Найти равновесные цены для матрицы
$$A = \begin{bmatrix} 0 & 0.2000 & 0.4000 \\ 0.7000 & 0 & 0.4000 \\ 0.3 & 0.6000 & 0 \end{bmatrix}$$
 при

заданном векторе V .

Из (3.3) следует, что
$$C = (E - A^T)^{-1}V$$
.

Пусть V = (10, 20, 15), тогда, воспользовавшись пакетом Матлаб, получим:

A =

0 0.2000 0.4000

0.7000 0 0.4000

0.3000 0.6000 0

>> V=[10;20;15]

V =

10

20

15

>> C=inv(eye(3)-A')*V

C =

112.9870

103.5714

101.6234

Изменим один из компонентов вектора V . Пусть теперь V=(14,20,15) . Тогда все компоненты вектора равновесных цен также претерпят изменение.

```
>> V=[14;20;15]

V =

14

20

15

>> C=inv(eye(3)-A')*V

C =

122.8571

109.2857

107.8571
```

Таким образом, модель равновесных цен позволяет, располагая величинами норм добавленной стоимости, прогнозировать изменение цен вследствие изменения цены на продукцию одной из отраслей.

4. Определение оптимального плана выпуска товарной продукции

Содержательная интерпретация задачи оптимизации цен на выпускаемую продукцию по-прежнему предполагает наличие структурной матрицы $A = \left\{a_{ij}\right\}_{i=\overline{I,n}},$ где a_{ij} — количество экземпляров продукции i-й отрасли, необходимое для производства одного экземпляра продукции x_j . Кроме того, задана матрица расхода сырья $B = \left\{b_{ij}\right\}_{i=\overline{I,m}},$ где b_{ij} — количество сырья i-го вида, требуемое для производства единицы продукции j-й отрасли и находящиеся в распоряжении отраслей запасы сырья, представленные в виде вектора $D = \left\{d_i\right\}_{i=\overline{I,m}},$ где d_i — предельное количество сырья i-го вида, которое может быть израсходовано всеми отраслями. Задан также вектор цен $C = \left\{c_i\right\}_{i=\overline{I,n}}$ на продукцию, поступающую на товарный рынок. Необходимо наилучшим образом распорядиться наличным запасом сырья с тем, чтобы получить максимальную выручку от продажи поступившей на рынок продукции, то есть требуется найти вектор $Y = \left\{y_i\right\}_{i=\overline{I,n}},$ где y_i — количество продукции i-го вида, направляемое на товарный рынок.

Для того, чтобы обеспечить валовой выпуск продукции X всеми отраслями, нужно потратить ресурсы, соответствующие следующему вектору ресурсов: $B \cdot X$, где $X = [E - A]^{-1} \cdot Y$, Поэтому вектор затрат сырья считаем по следующей формуле:

$$\mathbf{B} \cdot [\mathbf{E} - \mathbf{A}]^{-1} \cdot \mathbf{Y} \quad . \tag{4.1}$$

Задача 3

Формальная постановка задачи оптимизации выпуска товарной продукции Дано:

вектор цен $C = (c_1, c_2, ..., c_n)^T$,

вектор D – вектор ограничений на сырьевые ресурсы,

матрица \boldsymbol{B} , задающая нормативное потребление ресурсов различными отраслями, структурная матрица \boldsymbol{A} (матрица технологических коэффициентов)

Найти: вектор выпуска товарной продукции $Y = (y_1, y_2, ..., y_n)^T$.

Известно, что для получения любого вектора $Y = (y_1, y_2, ..., y_n)^T$ необходимо всеми отраслями произвести большее количество продукции, определяемое вектором $X = (x_1, x_2, ..., x_n)^T$. При этом известно, что Y = X - AX, поэтому $X = [E - A]^{-1} \cdot Y$. Для того, чтобы обеспечить валовой выпуск продукции X всеми отраслями, нужно потратить сырье, соответствующее вектору: $B \cdot X$. С учетом ограничений на количество ресурсов

$$m{B} \cdot m{X} \leq m{D}$$
 или $m{B} * m{[E-A]}^{-1} \cdot m{Y} \leq m{D}$. (4.2)

В последнем неравенстве удалось связать ограничения на ресурсы не с валовым выпуском \boldsymbol{X} , а с выпуском товарной продукции \boldsymbol{Y} .

Мы помним, что нужно максимизировать выручку, равную $\boldsymbol{C}^T \cdot \boldsymbol{Y}$, поэтому окончательно задача оптимизации товарного выпуска ставится в следующей форме:

$$\max_{\mathbf{C}} \mathbf{C}^{T} \cdot \mathbf{Y}$$

$$\begin{cases} \mathbf{B} * [\mathbf{E} - \mathbf{A}]^{-1} \cdot \mathbf{Y} \leq \mathbf{D} \\ \mathbf{Y} \geq \mathbf{0} \end{cases}$$
(4.3)

Пример решения задачи 3

Пусть
$$D = \begin{bmatrix} 16 \\ 7 \\ 23 \end{bmatrix}$$
, $C = \begin{bmatrix} 10 \\ 5 \\ 8 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 8 & 5 \\ 4 & 5 & 2 \\ 11 & 7 & 4 \end{bmatrix}$, $A = \begin{bmatrix} 0 & 0.2000 & 0.4000 \\ 0.7000 & 0 & 0.4000 \\ 0.3 & 0.6000 & 0 \end{bmatrix}$

Найдем решение оптимизационной задачи с помощью пакета Матлаб. Далее приводятся команды пакета Матлаб с результатами их исполнения.

```
>> D=[16;7;23]
D =
  16
  7
  23
>> C=[10;5;8]
\mathbf{C} =
  10
  5
  8
>> B=[6 8 5;4 5 2;11 7 4]
B =
      8 5
  6
  4 5 2
  11 7 4
>> A=[0 0.2 0.4;0.7 0 0.4;0.3 0.6 0]
A =
     0 0.2000 0.4000
             0 0.4000
  0.7000
  0.3000 0.6000
>> % найдем BS=inv(eye(3)-A)
>> BS=inv(eye(3)-A)
BS =
  2.4675 1.4286 1.5584
  2.6623 2.8571 2.2078
  2.3377 2.1429 2.7922
>> % зададим границы изменения вектора Ү
>> 1b=[0;0;0;]
lb =
  0
  0
>> % используем функцию linprog
>> [Y,fval]=linprog(-C,(B*BS),D,[],[],lb)
Optimization terminated.
Y =
```

```
2.6293
0.0000
0.0000
fval =
-26.2927
>> % решение получено : Y^T = (2.6293, \ 0, \ 0)
>> % выручка от продажи Y равна 26.2927
```

Литература

- 1. Солодовников А. С., Бабайцев В. А., Браилов А. В., Шандра И. Г. Математика в экономике: В 2-х ч. Ч 1. 2-е изд.,
- перераб. и. доп. М.: Финансы и статистика, 2003.– 384 с.
- 2. Кемени Дж., Снелл Дж. Конечные цепи Маркова. М.: Наука, 1970. 272 с.