Санкт-Петербургский политехнический университет Петра Великого Институт физики, нанотехнологий и телекоммуникаций (ИФНиТ) Кафедра экспериментальной физики

Беляев В.М., Боборыкина Е.Н., Гаспарян Р.А., Машков Ю.А.

Сборник задач по механике и молекулярной физике Учебное пособие

1. Кинематика

Основные соотношения

ullet Положение материальной точки в пространстве задается радиусвектором \vec{r} в прямоугольной системе координат:

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k} ,$$

где \vec{i} , \vec{j} , \vec{k} - единичные векторы направления (орты); $x = f_1(t), y = f_2(t), z = f_3(t)$ - координаты точки, как функции времени t.

• Средняя скорость перемещения:

$$\vec{v}_{cp} = \Delta \vec{r} / \Delta t ,$$

где $\Delta \vec{r}$ - перемещение материальной точки за интервал времени Δt .

• Средняя путевая скорость:

$$\langle v \rangle = \Delta s / \Delta t$$
,

где Δs - путь, пройденный точкой за интервал времени Δt .

• Мгновенная скорость:

$$\vec{v} = d\vec{r}/dt = \vec{i}v_x + \vec{j}v_y + \vec{k}v_z,$$

где $v_x = \mathrm{d} x/\mathrm{d} t, v_y = \mathrm{d} y/\mathrm{d} t, v_z = \mathrm{d} z/\mathrm{d} t$ - проекции вектора скорости \vec{v} на оси координат.

• Абсолютное значение (модуль) скорости:

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2} \ .$$

• Ускорение материальной точки:

$$\vec{a} = d\vec{v}/dt = \vec{i} a_x + \vec{j} a_y + \vec{k} a_z,$$

где $a_x = \mathrm{d} v_x / \mathrm{d} t, a_y = \mathrm{d} v_y / \mathrm{d} t, a_z = \mathrm{d} v_z / \mathrm{d} t$ - проекции вектора ускорения \vec{a} на оси координат.

• Абсолютное значение (модуль) ускорения:

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} \ .$$

• При криволинейном движении ускорение можно представить как сумму нормальной (центростремительной) \vec{a}_n и касательной (тангенциальной) \vec{a}_{τ} составляющих:

$$\vec{a} = \vec{a}_n + \vec{a}_{\tau}$$
.

• Абсолютные значения этих ускорений:

$$a_n = v^2 / R$$
; $a_{\tau} = dv / dt$; $a = \sqrt{a_n^2 + a_{\tau}^2}$,

где *R* - радиус кривизны в данной точке траектории.

• Кинематическое уравнение равнопеременного движения (a = const) вдоль оси x:

$$x = x_0 + v_0 t + a t^2 / 2$$

где x_0 , v_0 - начальные координата и скорость.

• Скорость точки при равнопеременном движении:

$$v = v_0 + at$$
.

• При равномерном движении $v = v_0$, a = 0. Тогда

$$x = x_0 + vt$$
.

• Средняя угловая скорость тела при заданной оси вращения:

$$\langle \omega \rangle = \Delta \varphi / \Delta t$$
,

где $\Delta \phi$ - изменение угла поворота тела за интервал времени Δt .

• Мгновенная угловая скорость:

$$\vec{\omega} = d\vec{\varphi}/dt$$
,

где $\vec{\phi}$ - угловое перемещение за интервал времени $\Delta t, \ \phi = f(t)$.

• Угловое ускорение:

$$\vec{\epsilon} = d\vec{\omega}/dt$$
.

• Кинематическое уравнение равнопеременного вращения:

$$\varphi = \varphi_0 + \omega_0 t + \varepsilon t^2 / 2,$$

где ϕ_0 , ω_0 - начальные угловые перемещения и угловая скорость.

• Угловая скорость при равнопеременном вращении:

$$\omega = \omega_0 + \varepsilon t$$
.

• При равномерном вращении $\varepsilon = 0, \omega = \omega_0$. Тогда

$$\varphi = \varphi_0 + \omega t$$
.

• Частота вращения:

$$n = N/t$$
; $n = 1/T$,

где N - число оборотов, совершенных телом за время t; T- период вращения.

Связь между линейными и угловыми величинами при вращательном движении твердого тела:

• длина пути S, пройденного точкой тела по дуге окружности радиуса R при повороте тела на угол ϕ :

$$S = \varphi R$$
;

• линейная скорость точки тела определяется формулами:

$$v = \omega R$$
, $\vec{v} = \vec{\omega} \times \vec{R}$;

• касательное (тангенциальное) ускорение точки:

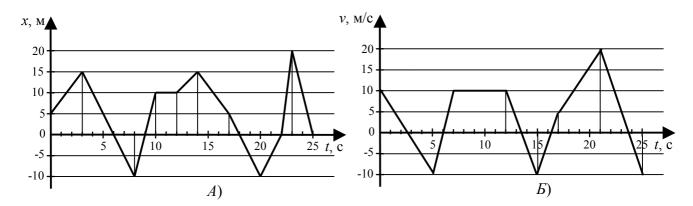
$$a_{\tau} = \varepsilon R, \ \vec{a}_{\tau} = \vec{\varepsilon} \times \vec{R};$$

• нормальное (центростремительное) ускорение:

$$a_n = \omega^2 R$$
, $\vec{a}_n = -\omega^2 \vec{R}$.

Задание 1 «Кинематика»

- 1. Определить среднюю путевую скорость материальной точки в указанном интервале времени $(t_{_H}-t_{_K})$, используя рисунок 1 и данные таблицы 1. Для рисунка 1E начальную скорость v_0 взять из таблицы 1.
- 2. Используя соотношения, определяющие движения тела с начальной скоростью v_0 , направленной под углом к горизонту α , найти значения физических


величин, указанных в таблице 1 в заданный момент времени t^* ; h_0 - высота тела в начальный момент времени (при t=0); v_κ - скорость в конце движения; S и H - дальность полета и максимальная высота подъема тела; a_n и a_τ - нормальное и касательное ускорения соответственно.

- 3. Материальная точка движется по плоскости согласно уравнению: $\vec{r}(t) = \vec{i} (A + Bt^2) + \vec{j} Ct$ для четных номеров вариантов; $\vec{r}(t) = A(\vec{i} \cos \omega t + \vec{j} \sin \omega t)$ для нечетных. Для момента времени t^* определить: а) модуль перемещения точки; б) скорость точки; в) ускорение точки. Начертить траекторию точки.
- 4. Колесо радиусом R вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением $\varphi = A + Bt + Ct^3$. Для точек, лежащих на ободе колеса, найти к моменту времени t^* после начала движения: а) линейную и угловую скорости; б) касательное, нормальное и полное ускорения; в) число оборотов, сделанных колесом за это время.
- 5. Колесо радиусом R вращается так, что зависимость линейной скорости точек, лежащих на ободе колеса, от времени дается уравнением $v = At + Bt^2$. Найти угол, составляемый вектором полного ускорения с радиусом колеса в момент времени t^* после начала движения.

Таблина 1

											1 40	лица 1
No	Вариант	$(t_{\scriptscriptstyle \mathrm{H}} - t_{\scriptscriptstyle \mathrm{K}}),$	v_0 ,	α,	h_0 ,	t^* ,	Искомые	A	В	C	w,	R,
вар.	рисунка	c	м/с	град	M	c	величины				рад/с	M
							в задаче 2.					
1	A	0-3	5	0	10	1	x, y, a_n	0.2	1	0.1	π	0.1
2	Б	0-5	3	30	10	1	x, y, a_{τ}	0.3	2	-0.1		0.2
3	В	18-23	5	30	5	2	$v_{\rm x}, v_{\rm y}, a_{\rm n}$	0.4	3	-0.2	$\pi/2$	0.3
4	Б	5-10	5	45	7	2	$v_{\rm x}, v_{\rm y}, a_{\rm \tau}$	1	4	-1		0.4
5	A	0-6	8	45	0	1	x, y, H	2	1	-2	$\pi/2$	0.2
6	В	20-25	10	30	0	1.5	x, y, S	3	2	-0.3		0.15
7	A	0-8	10	60	0	2	x, y, v_k	0.5	3	2	$\pi/3$	0.1
8	Б	0-10	6	60	5	2	y, v_y, H	0.4	-2	3		0.25
9	В	15-20	10	30	8	3	x, v_x, a_n	0.2	-1	1	$\pi/4$	0.35
10	Б	10-15	15	30	0	2	$v_{\rm x}, v_{\rm y}, H$	0.1	4	0.5		0.3
11	A	3-8	15	45	10	3	y, v_x, S	0.3	5	0.4	$\pi/3$	0.4

12	В	10-15	20	45	0	3	$v_{\rm x}, v_{\rm y}, S$	0.4	6	0.6		0.25
13	Б	15-20	15	60	0	2	$v_{\rm x}, v_{\rm y}, a_{\rm t}$	1	3	-0.2	$\pi/6$	0.10
14	A	3-11	20	30	0	2	$v_{\rm x}, v_{\rm y}, a_{\rm n}$	2	1	-0.4		0.13
15	В	8-12	20	60	0	1	x, v_x, v_k	3	4	-0.3	$\pi/3$	0.14
16	A	8-14	30	0	20	0.5	y, v_y, v_k	0.2	5	-0.1		0.15
17	B	3-8	10	0	25	1	x , $a_{\rm n}$, $a_{\rm \tau}$	0.4	3	0.5	$\pi/6$	0.23
18	Б	20-25	10	0	40	2	x, y, H	0.6	1	0.1		0.18
19	A	11-16	50	30	0	3	v_{x}, y, H	0.8	2	-0.01	$\pi/2$	0.15
20	В	5-10	50	45	0	2.5	x, H, S	4	3	-0.02		0.13
21	Б	12-20	40	0	10	1	x, y, v_k	9	4	0.4	$\pi/6$	0.24
22	В	7-10	40	30	10	3	$v_{\rm x}, y, v_{\rm k}$	3	5	0.8		0.36
23	Б	6-12	40	45	5	2	v_{x}, y, H	1	6	0.7	π	0.28
24	A	16-23	60	60	20	4	x, y, H	2	1	0.3		0.21
25	Б	12-17	60	45	15	4	v_{x}, H, S	5	7	0.01	$\pi/4$	0.16
26	A	23-25	45	30	0	2	$v_{\rm x}$, H , $a_{\rm n}$	6	3	0.05		0.31
27	В	0-7	80	60	0	1	v_x , H , a_{τ}	7	4	0.9	$\pi/6$	0.23
28	A	19-23	18	45	40	3	y, H, S	3	-2	-0.01		0.14
29	Б	18-22	35	60	30	2	x, H, a_n	4	-1	-0.05	$\pi/2$	0.15
30	В	0-5	42	60	15	3	y, H, a_{τ}	2	3	0.02		0.38

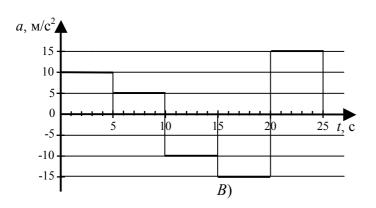


Рис.1. Зависимости координаты x, скорости v и ускорения a материальной точки от времени

2. Динамика материальной точки и тела, движущегося поступательно.

Основные соотношения

• Уравнение движения материальной точки (второй закон Ньютона):

$$d\vec{p}/dt = \sum_{i=1}^{n} \vec{F}_{i}$$
 или $m\vec{a} = \sum_{i=1}^{n} \vec{F}_{i}$,

где $\sum_{i=1}^{n} \vec{F}_{i}$ - геометрическая сумма сил, действующих на материальную точку (результирующая сила); m - масса; \vec{a} - ускорение; $\vec{p} = m\vec{v}$ - импульс; n - число сил, действующих на точку.

В координатной (скалярной форме) уравнение можно записать так:

$$ma_x = \sum F_{xi}, ma_y = \sum F_{yi}, ma_z = \sum F_{zi},$$

где под знаком суммы стоят проекции сил \vec{F}_i на соответствующие оси координат.

• Работа, совершаемая постоянной силой

$$\Delta A = \vec{F} \Delta \vec{r}$$
 или $\Delta A = F \Delta r \cos \alpha$,

где α - угол между направлениями векторов силы \vec{F} и перемещения $\Delta \vec{r}$.

• Работа, совершаемая переменной силой,

$$A = \int_{L} F(r) \cos \alpha \, \mathrm{d} r \,,$$

где интегрирование ведется вдоль траектории, обозначенной L.

• Средняя мощность за интервал времени Δt

$$\langle N \rangle = \Delta A / \Delta t$$
.

• Мгновенная мощность

$$N = dA/dt$$
 или $N = Fv\cos\alpha$,

где dA - работа, совершаемая за промежуток времени dt.

• Кинетическая энергия поступательно движущегося тела:

$$T = mv^2/2$$
 или $T = p^2/2m$.

• Потенциальная энергия тела и сила, действующая на тело в данной точке стационарного потенциального поля, связаны соотношением:

$$\vec{F} = -\operatorname{grad} \Pi$$
, или $\vec{F} = -[(\partial \Pi/\partial x)\vec{i} + (\partial \Pi/\partial y)\vec{j} + (\partial \Pi/\partial z)\vec{k}]$,

где \vec{i} , \vec{j} , \vec{k} - орты прямоугольной системы координат.

• Потенциальная энергия упруго деформированного тела (сжатой или растянутой пружины)

$$\Pi = kx^2/2$$
.

• Потенциальная энергия тела, находящегося в однородном поле силы тяжести

$$\Pi = mgh$$
,

где h - высота тела над уровнем, принятым за нулевой.

Эта формула справедлива при h << R, где R - радиус Земли.

• Закон сохранения энергии в механике выполняется в замкнутой системе, в которой действуют только консервативные силы:

$$T + \Pi = \text{const}$$
.

• Закон сохранения импульса:

$$\sum_{i=1}^{n} \vec{p}_i = \text{const}$$
 или $\sum_{i=1}^{n} m_i \vec{v}_i = \text{const}$,

где n - число материальных точек (тел), входящих в данную замкнутую систему.

• Скорость абсолютно неупругих шаров после удара:

$$U = (m_1 v_1 + m_2 v_2)/(m_1 + m_2)$$

и абсолютно упругих:

$$U_1 = [v_1(m_1 - m_2) + 2m_2v_2]/(m_1 + m_2),$$

$$U_2 = [v_2(m_2 - m_1) + 2m_1v_1]/(m_1 + m_2),$$

где m_1, m_2 - массы, v_1, v_2 - скорости шаров до удара.

Задание 2 «Динамика. Работа, мощность, энергия, импульс»

1. Тело массой m движется прямолинейно так, что зависимость пройденного телом пути от времени дается уравнением $S = A \sin \omega t$ - для четных номеров вариантов $(\omega = \pi/9), S = A + Bt + Ct^3$ - для нечетных номеров. Для

момента времени $t=t^*$ найти: а) силу, действующую на тело; б) импульс тела; в) кинетическую энергию тела. Значения величин A,B,C,t^* взять из таблицы 1 (задание 1).

- 2. Определить кинетическую и потенциальную энергии тела массой m в условиях задачи №2 (задание 1) в момент времени $t = t^*$.
- 3. Найти значения физических величин, указанных в таблице 2, используя схемы рисунка 2; a ускорение тел; T сила натяжения нити; S путь, пройденный телами; t время движения тел; F сила, растягивающая пружину. Массой блоков и трением пренебречь.
- 4. Тело массой m скользит вниз по наклонной плоскости для четных номеров вариантов, вверх для нечетных. Используя данные таблицы 2, определить величины, указанные в этой таблице; α угол наклона плоскости к горизонту; k коэффициент трения; l длина наклонной плоскости; v скорость в конце пути; a ускорение движения; A,N работа и мощность в конце пути; F дополнительная сила, действующая на тело; E_k кинетическая энергия тела в конце пути.
- 5. Шар массой m налетает на покоящийся шар массой m со скоростью v: для четных номеров вариантов удар упругий, для нечетных неупругий центральный. При упругом ударе первоначально движущийся шар меняет свое направление на угол α (из таблицы 2). Определить величины, указанные в таблице 2: β угол между вектором скорости второго шара и первоначальным направлением движения первого шара; u_1 и u_2 скорости шаров после удара; p_1 и p_2 импульсы шаров после удара; Δp_1 и Δp_2 изменения импульсов; T_1 , T_2 энергии шаров после удара; ΔT_1 и ΔT_2 изменение энергии; ΔU изменение внутренней энергии шаров.

Таблица 2

$N_{\underline{0}}$	т,	Вариант	S,	t,	Искомые	α,	k	l,	a,	Искомые	ν,	Искомые
вар.	ΚГ	рисунка	M	c	величины	град		M	a , m/c^2	величины	м/с	величины
					в задаче 3	_				в задаче 4		в задаче 5
1	0,5	a			a, T	30	0,1	2	0,1	F, v	2	$U_1, \Delta p_2$
2	1	б			F	30	0,1	3	0,2	F, A	3	β, Δν
3	1,2	В	2		<i>t</i> , <i>a</i>	45	0,01	2	0,3	F, N	4	$\Delta p_1, p_2$
4	2	Γ		3	S, a	45	0,01	3	0,4	$F, E_{\rm k}$	5	$U_1, \Delta T_2$
5	2,5	Д			<i>a</i> , <i>T</i>	60	0,15	4	0	F, A	2	U_1 , Δv
6	3	e			а	60	0,15	5	0,6	F, N	3	$\Delta p_1, \Delta p_2$
7	3,5	Ж			F	40	0,02	4	0,7	$F, E_{\rm k}$	4	U_1, T_1
8	4	3	3		t, T	40	0,02	5	0,8	F, v	5	$\Delta T_1, \Delta T_2$
9	1	б	4		<i>F</i> , <i>t</i>	35	0,05	2	0	F, N	10	β , Δv
10	1,5	В			a, T	35	0,05	3	1	F, A	11	p_1, p_2
11	2	a	1,5		t, T	50	0,03	2	1,1	F, v	15	$\Delta p_1, T_1$
12	1,8	Γ			<i>a</i> , <i>T</i>	50	0,03	3	1,2	$F, E_{\rm k}$	14	T_1, T_2
13	2,5	e			T_1, T_2	65	0,04	6	1,3	F, A	13	$\Delta p_1, T_2$
14	3	Д	1,5		<i>t</i> , <i>a</i>	65	0,04	5	1,4	F, N	8	β , T_1
15	4	3			<i>a</i> , <i>T</i>	25	0,1	6	1,5	F, v	7	$\Delta p_1, \Delta p_2$
16	5	ж			a, F	25	0,1	5	1,2	$F, E_{\rm k}$	6	β , T_2
17	1,5	a		5	S, T	30	0,05	1	1,3	F, A	5	$\Delta T_1, \Delta T_2$
18	4,5	б	3,5		<i>t</i> , <i>F</i>	30	0,05	8	1,4	F, N	4	β , p_1
19	8	Γ	2		<i>t</i> , <i>a</i>	45	0,07	7	1,5	$F, E_{\rm k}$	10	p_1, T_2
20	10	ж	1,7		S, F	45	0,07	10	1,6	F, v	12	β, p_2
21	11	3		3,5	S, T	60	0,08	8	1,7	F, A	14	$p_1, \Delta v$
22	12	a		2	S, a	60	0,08	7	1,8	F, N	15	U_2 , T_1
23	16	б		1,6	S, F	65	0,2	4	1	$F, E_{\rm k}$	13	β , Δp_1
24	2	В		1,8	S, T	65	0,2	5	1,5	F, v	7	U_1, T_2
25	2,7	Д		2	<i>S</i> , <i>a</i>	40	0,16	6	1,6	F, A	6	$\Delta p_1, \Delta T_1$
26	18	Γ		1,5	S, T	40	0,16	7	0,8	F, N	5	T_1 , Δv
27	20	a	3		t, a	25	0,17	5	0,7	$F, E_{\rm k}$	4	$\Delta p_2, \Delta T_2$
28	0,7	В		2,7	S, a	45	0,17	10	0	<i>F</i> , <i>v</i>	10	$\Delta p_1, \Delta p_2$
29	1,7	Γ	3,5		t,T	45	0,12	15	0	F, A	12	T_2 , Δv
30	13	Ж		4	t, F	25	0,12	12	0	F, N	4	U_1, U_2

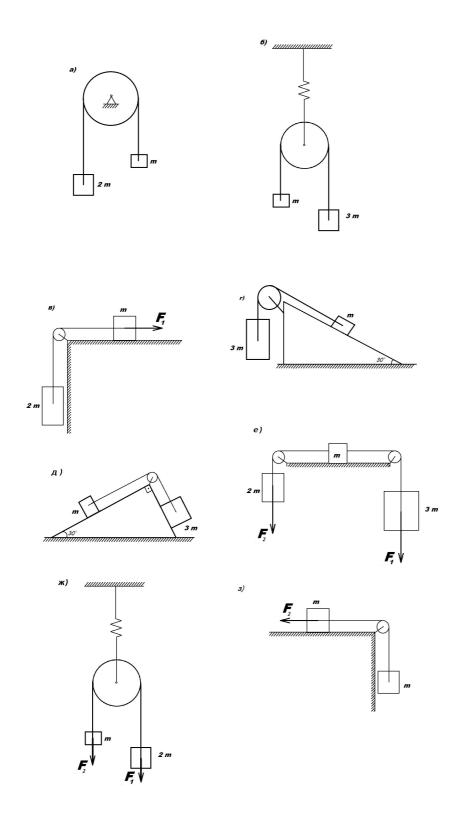


Рис.2. Система тел, соединенных невесомыми нерастяжимыми нитями, движущихся без трения. F_1 =10 H; F_2 =20 H.

3. Динамика вращательного движения

Основные соотношения

• Основное уравнение динамики вращательного движения твердого тела относительно неподвижной оси

$$M dt = d(I\omega)$$
,

где M - момент силы, действующий на тело в течение времени $\mathrm{d}t$; I - момент инерции тела; ω - угловая скорость; $I\omega$ - момент импульса.

Если момент силы и момент инерции постоянны, то уравнение записывается в виде:

$$M\Delta t = I\Delta\omega$$
.

В случае постоянного момента инерции

$$M = I\varepsilon$$
,

где ε - угловое ускорение.

ullet Момент силы $ec{F}$, действующей на тело относительно оси вращения

$$M = F_{\perp} l$$
,

где F_{\perp} - проекция силы \vec{F} на плоскость, перпендикулярную оси вращения; l- плечо силы \vec{F} (кратчайшее расстояние от оси вращения до линии действия силы).

• Момент инерции материальной точки

$$I = mr^2$$
,

где m - масса точки, r - ее расстояние от оси вращения.

• Момент инерции твердого тела

$$I = \int r^2 dm$$
 или $I = \int \rho r^2 dV$,

где ρ , V - плотность и объем тела; m- его масса.

Моменты инерции некоторых однородных тел относительно центральных осей:

• тонкий стержень массой m и длиной l, ось перпендикулярна стержню:

$$I=ml^2/12;$$

• если перпендикулярная ось проходит через конец стержня:

$$I = ml^2/3$$
:

• тонкое кольцо (труба) массой m и радиусом R, обруч, маховик, масса которого сосредоточена в ободе, ось перпендикулярна плоскости основания:

$$I = mR^2$$
;

 \bullet круглый однородный диск (цилиндр) массой m и радиусом R, ось перпендикулярна плоскости основания:

$$I = mR^2 / 2$$
;

• шар массой *m* и радиусом *R*:

$$I = 2mR^2/5$$
;

• прямоугольный параллелепипед массой m и размерами a, b, c вдоль осей x, y, z соответственно, оси перпендикулярны граням:

$$I_x = m(b^2 + c^2)/12$$
; $I_y = m(a^2 + c^2)/12$; $I_z = m(a^2 + b^2)/12$;

ullet прямой круговой конус массой m и радиусом основания R, ось перпендикулярна плоскости основания:

$$I=3mR^2/10.$$

• Теорема Штейнера. Момент инерции тела относительно произвольной оси равен:

$$I = I_0 + ma^2,$$

где I_0 - момент инерции этого тела относительно оси, проходящей через его центр масс параллельно заданной оси; a- расстояние между осями; m- масса тела.

• Закон сохранения момента импульса:

$$\sum_{i=1}^{n} I_i \omega_i = \text{const},$$

где n - число тел, входящих в данную замкнутую систему.

ullet Работа постоянного момента силы M, действующего на вращающееся тело:

$$A = M\varphi$$
,

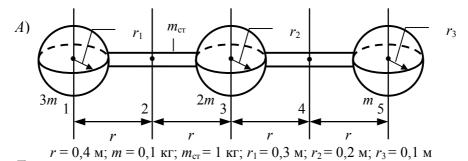
где ф - угол поворота тела.

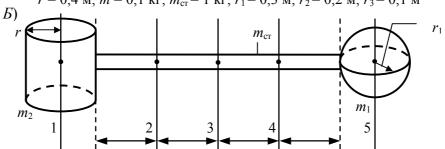
• Мгновенная мощность, развиваемая при вращении тела:

$$N = M\omega$$
.

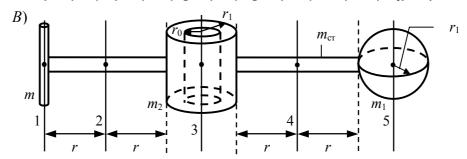
• Кинетическая энергия вращающегося тела:

$$T = I\omega^2/2$$
.

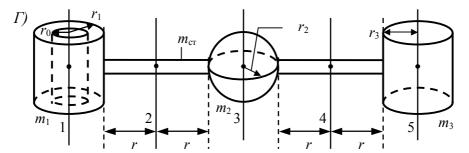

Задание 3 «Динамика вращательного движения»

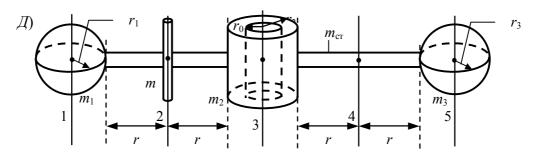

- 1. Автомобиль массой m движется по выпуклому (для четных номеров вариантов) или вогнутому (для нечетных) мосту, имеющему форму дуги окружностью радиуса R со скоростью v. Положение автомобиля на мосту задано центральным углом α (α угол между вертикальным радиусом кривизны и радиусом, соответствующим местоположению автомобиля). Определить силу давления автомобиля на мост и силу трения, если коэффициент трения равен 0,2. Величины m, v, R, α взять из таблицы 3.
- 2. Вычислить моменты инерции системы тел относительно осей 1-5, указанных в таблице 3.
- 3. Решить задачу №3 (Задание 2) с учетом массы блока $m_{\tilde{o}_{\tilde{n}}}$ =1 кг; радиус блока принять равным 0,1 метра, блок считать сплошным однородным диском.
- 4. По данным задачи №4 (задание 1) для момента времени t^* определить: а) вращающий момент; б) кинетическую энергию колеса; в) мощность; г) работу, совершенную с начала вращения до момента времени $t = t^*$. Массу колеса принять равной 70 кг.
- 5. Пластилиновый шарик массой m_{uv} , летящий со скоростью v_{uv} , попадает в стержень (для четных номеров вариантов) или диск (для нечетных) и прилипает к нему. Используя рисунок 4 и данные таблицы 3, определить указанные в ней величины. M масса диска (стержня); ω угловая скорость в начальный момент

времени (сразу после удара); v_A - линейная скорость точки A сразу после удара; E_κ - энергия стержня (диска) в начальный момент времени; h- максимальная высота подъема центра масс стержня (диска); ϕ - максимальный угол отклонения оси стержня (диска) от вертикального положения.


Таблина 3

Ne вар. R,														-	I аолица <i>3</i>
1 1 100 12 60 A 1 0,5 0,3 0,8 12 0,3 0,2 ω, E _k 2 1,5 100 15 50 Б 2 1,1 0,2 0,3 10 0,2 0,8 ω, φ 3 2 100 13 40 B 3 0,6 0,4 0,9 14 0,4 0,2 ω, h 4 2,5 150 18 30 Г 1 1,2 0,3 0,4 9 0,4 0,8 ν _A , E _k 5 3 200 20 25 Д 5 0,7 0,4 1 16 0,5 0,3 ν _A , Φ 6 2 100 10 35 Б 5 1 0,25 0,5 8 0,3 0,7 ν _A , h 7 2,5 300 21 45 B 2 0,8 0,35 1,1	№	m,	R,	ν,	α,	Вариант	No	l,	r,	m_{III} ,	М,	ν _{III} ,	a,	b,	Искомые
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	вар.	T	M	M/c	град	рисунка	оси	M	M	КГ	КГ	м/с	M	M	величины
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															в задаче 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	100						0,5				0,3		ω , $E_{\rm k}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,5	100		50	Б		1,1		0,2		10	0,2		ω, φ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	2	100	13	40	В	3		0,6	0,4	0,9	14	0,4	0,2	ω , h
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	2,5	150	18		Γ		1,2		0,3	0,4	9		0,8	$v_{\rm A}, E_{ m k}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		200	20					0,7				0,5	0,3	$v_{\rm A}, \phi$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			100	10				1			0,5		0,3	0,7	$v_{\rm A},h$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			300				2		0,8		1,1	17		0,3	ω , $E_{\rm k}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	3	400	25	55	Γ		0,8		-	0,2	6	0,25	-	ω, φ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	3,5	500	9	0	A	3		0,5	0,45	1,2	10	0,25	0,35	ω , h
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	1	180		30	Д	1	1,1		0,3	0,6	9	0,4	0,6	$v_{\rm A}, E_{ m k}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	2	200	7	40				0,6	0,5	1	13	0,3	0,4	$v_{\rm A}, \phi$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	2,4	200	16	50	Γ		1,2		,	0,7	10	0,45	0,7	$v_{\rm A},h$
15 1,7 190 21 30 \overline{A} 2 0,8 0,3 1,2 15 0,2 0,5 ω, h 16 1,8 250 10 40 Γ 5 0,8 0,2 0,3 12 0,2 0,5 ω, E _k 17 2 210 18 45 A 4 0,4 0,5 0,8 10 0,3 0,25 ω, φ 18 2,3 230 13 0 Б 4 1,4 0,25 0,8 10 0,5 0,8 ω, φ 19 2,4 270 19 60 \overline{A} 4 0,6 0,3 0,9 17 0,4 0,35 ν_A , E_k 20 2,8 500 8 55 B 1 1,6 0,4 0,9 12 0,6 0,9 ν_A , ρ 21 3,2 450 10 40 A 4 0,7 <t< td=""><td>13</td><td>2,8</td><td>300</td><td>17</td><td>0</td><td></td><td>5</td><td></td><td>0,7</td><td>0,3</td><td>1,4</td><td>14</td><td>0,35</td><td>0,4</td><td>ω, $E_{\rm k}$</td></t<>	13	2,8	300	17	0		5		0,7	0,3	1,4	14	0,35	0,4	ω , $E_{\rm k}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	1,6	130	12	25	Б	1	1		0,35	0,6	11	0,25	0,6	ω, φ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	1,7	190	21	30	Д	2		0,8	0,3	1,2	15	0,2	0,5	ω, <i>h</i>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	1,8	250	10	40	Γ	5	0,8		0,2	0,3	12	0,2	0,5	ω , $E_{\rm k}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	2	210	18	45	A	4		0,4	0,5	0,8	10	0,3	0,25	ω, φ
19 2,4 270 19 60 Π 4 0,6 0,3 0,9 17 0,4 0,35 ν_A , E_k 20 2,8 500 8 55 B 1 1,6 0,4 0,9 12 0,6 0,9 ν_A , φ 21 3,2 450 10 40 A 4 0,7 0,25 1,3 18 0,4 0,5 ν_A , μ 22 3,4 520 11 30 B 2 1 0,5 0,4 8 0,5 ν_A , μ 23 1,2 140 8 0 B 5 0,8 0,25 1,5 19 0,3 0,3 ν_A , μ 24 1,3 120 16 60 Γ 1 1,2 0,2 0,6 12 0,3 0,7 ν_A , μ 25 2,6 170 14 50 Π 1 0,5 0,4	18	2,3	230	13	0	Б	4	1,4		0,25	0,8	10	0,5	0,8	ω , h
20 2,8 500 8 55 B 1 1,6 0,4 0,9 12 0,6 0,9 v_A , φ 21 3,2 450 10 40 A 4 0,7 0,25 1,3 18 0,4 0,5 v_A , h 22 3,4 520 11 30 B 2 1 0,5 0,4 8 0,25 0,6 v_A , h 23 1,2 140 8 0 B 5 0,8 0,25 1,5 19 0,3 0,3 v_A , ϕ 24 1,3 120 16 60 Γ 1 1,2 0,2 0,6 12 0,3 0,7 v_A , ϕ 25 2,6 170 14 50 Д 1 0,5 0,4 0,7 15 0,2 0,4 ϕ , E_k 26 2,4 320 19 25 B 4 1,1	19	2,4	270	19	60	Д	4		0,6	0,3	0,9	17	0,4	0,35	$v_{\rm A}, E_{\rm k}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	2,8	500	8	55	В	1	1,6		0,4	0,9	12	0,6	0,9	<i>ν</i> _A , φ
22 3,4 520 11 30 B 2 1 0,5 0,4 8 0,25 0,6 v_A , E_k 23 1,2 140 8 0 B 5 0,8 0,25 1,5 19 0,3 0,3 v_A , φ 24 1,3 120 16 60 Γ 1 1,2 0,2 0,6 12 0,3 0,7 v_A , h 25 2,6 170 14 50 Д 1 0,5 0,4 0,7 15 0,2 0,4 ω, E_k 26 2,4 320 19 25 B 4 1,1 0,35 0,5 8 0,35 0,6 ω, φ 27 1,4 200 13 45 Б 3 0,6 0,6 0,8 9 0,35 0,5 ω, h 28 2,6 280 17 0 A 2 0,8 0,5 0,3 7 0,25 0,4 ω, E_k 29 1,1 170 21 40 Γ 5 0,7 0,4 1,2 20 0,2 0,25 ω, φ	21	3,2	450	10	40	A	4		0,7	0,25	1,3	18	0,4	0,5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	3,4	520	11	30	Б		1		0,5	0,4	8	0,25	0,6	
24 1,3 120 16 60 Γ 1 1,2 0,2 0,6 12 0,3 0,7 v_A , h 25 2,6 170 14 50 Д 1 0,5 0,4 0,7 15 0,2 0,4 $ω$, E_k 26 2,4 320 19 25 B 4 1,1 0,35 0,5 8 0,35 0,6 $ω$, $φ$ 27 1,4 200 13 45 B 3 0,6 0,6 0,8 9 0,35 0,5 $ω$, h 28 2,6 280 17 0 A 2 0,8 0,5 0,3 7 0,25 0,4 $ω$, E_k 29 1,1 170 21 40 Γ 5 0,7 0,4 1,2 20 0,2 0,25 $ω$, $φ$	23	1,2	140	8	0	В	5		0,8	0,25	1,5	19	0,3	0,3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	1,3	120	16	60	Γ	1	1,2		0,2	,	12	0,3	0,7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	2,6	170	14	50	Д	1		0,5	0,4	0,7	15	0,2	0,4	ω , $E_{\rm k}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	2,4	320	19	25	В	4	1,1		0,35	0,5	8	0,35	0,6	ω, φ
28 2,6 280 17 0 A 2 0,8 0,5 0,3 7 0,25 0,4 ω, E_k 29 1,1 170 21 40 Γ 5 0,7 0,4 1,2 20 0,2 0,25 ω, φ	27	1,4	200	13	45	Б	3		0,6	0,6	0,8	9	0,35	0,5	
29 1,1 170 21 40 Γ 5 0,7 0,4 1,2 20 0,2 0,25 ω, φ	28	2,6	280	17	0	A	2	0,8		0,5	0,3	7	0,25	0,4	·
	29	1,1	170	21	40	Γ	5		0,7		1,2	20	0,2	0,25	· ·
	30	3,1	440	15	50	Д	5	1		0,2	0,4	10	0,2	0,5	




 $r_1 = 0.1$ м; $m_1 = 0.2$ кг; $r_2 = 0.2$ м; $m_2 = 0.3$ кг; r = 0.21 м; $m_{\rm cr} = 0.4$ кг

 $r_1 = 0,1$ м; $m_1 = 0,2$ кг; $m_2 = 0,5$ кг; $r_2 = 0,1$ м; $m = m_{cr} = 0,25$ кг; r = 0,1 м; $r_0 = 0,05$ м

 $r_1 = 0.15 \text{ m}; r_0 = 0.07 \text{ m}; m_1 = 0.2 \text{ kg}; r_2 = 0.1 \text{ m}; m_2 = 0.25 \text{ kg}; m_3 = 0.3 \text{ kg}; r_3 = 0.08 \text{ m}; m_{\text{ct}} = 0.7 \text{ kg}; r = 0.12 \text{ m}$

 $m_1=0.1$ кг; $m_2=0.2$ кг; $m_3=0.3$ кг; $m=m_{\rm cr}=0.5$ кг; $r_1=0.1$ м; $r_2=0.2$ м; $r_0=0.1$ м; $r_3=0.3$ м; r=0.25 м Рис. 3. Комбинированные системы тел для вычисления моментов инерции

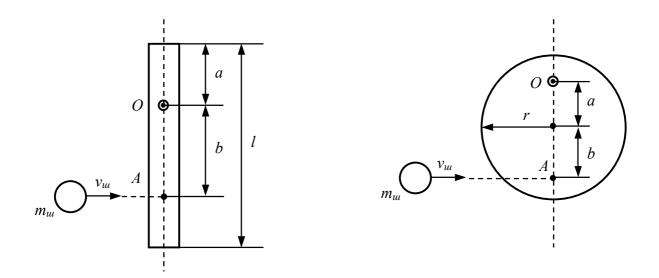


Рис.4. Вид стержня и диска до взаимодействия с шариком. O — точка подвеса; $m_{\text{ш}}$, $v_{\text{ш}}$ — масса и скорость шарика; l — длина стержня; r — радиус диска.

4. Молекулярная физика и термодинамика

Основные соотношения

• Уравнения состояния идеального газа (Менделеева-Клапейрона):

$$pV = (m/\mu)RT$$
, или $pV = \nu RT$,

где m - масса газа; μ - его молярная масса; R =8.31 Дж/(моль·К) — универсальная газовая постоянная; $\nu = m/\mu$ - количество вещества; T- термодинамическая температура.

• Закон Дальтона:

$$p = p_1 + p_2 + ... + p_n$$

где p - давление смеси газов; p_i - парциальное давление i - го компонента смеси; n- число компонентов смеси.

• Молярная масса смеси газов:

$$\mu = (m_1 + m_2 + ... + m_n)/(\nu_1 + \nu_2 + ... + \nu_n),$$

где m_i - масса i - го компонента смеси; v_i - количество вещества i - го компонента смеси.

• Количество вещества:

$$v = N/N_A$$
,

где N - число структурных элементов системы (молекул, атомов, ионов и т.п.); $N_A = 6.02 \cdot 10^{23} \text{ 1/моль} - \text{число Авогадро}.$

• Концентрация частиц (молекул, атомов и т.п.) однородной системы:

$$n = N/V = N_A \rho/\mu,$$

где V - объем системы; ρ - плотность вещества.

• Основное уравнение кинетической теории газов:

$$p = (2/3)n\langle \varepsilon_n \rangle$$
,

где $\langle \epsilon_n \rangle = 3kT/2$ - средняя кинетическая энергия поступательного движения молекулы; $k = 1{,}38 \cdot 10^{-23} \, \text{Дж/K}$ – постоянная Больцмана.

• Полная энергия молекулы:

$$\langle \varepsilon \rangle = (i/2)kT$$
,

где i - число степеней свободы молекулы (i =3 — для одноатомных молекул, i=5 — для двухатомных молекул, i=6 — для многоатомных молекул).

• Зависимость давления от концентрации молекул и температуры:

$$p = nkT$$
.

• Скорость молекул: средняя квадратичная

$$\langle v_{\kappa e} \rangle = \sqrt{3kT/m_1} = \sqrt{3RT/\mu}$$
;

средняя арифметическая

$$\langle v \rangle = \sqrt{8kT/(\pi m_1)} = \sqrt{8RT/(\pi \mu)}$$
;

наиболее вероятная

$$v_e = \sqrt{2kT/m_1} = \sqrt{2RT/\mu} \ .$$

• Распределение Больцмана (распределение частиц в силовом потенциальном поле):

$$n = n_0 \exp(-U/kT),$$

где n - концентрация частиц с потенциальной энергией U, n_0 - концентрация частиц в точке поля, где U=0.

• Барометрическая формула (распределение давления в однородном поле силы тяжести):

$$p = p_0 \exp(-mgh/kT) = p_0 \exp(-\mu gh/RT),$$

где p - давление в точках с координатой h (высотой) по отношению к уровню, принятому за нулевой; p_0 - давление в точках на нулевом уровне (при h=0); g - ускорение свободного падения.

- Распределение Максвелла (распределение по скоростям):
- а) число молекул, скорость которых заключена в пределах от v до v + dv,

$$dN(v) = 4\pi N(m/2\pi kT)^{3/2} \exp(-mv^2/2kT)v^2 dv$$
,

N - общее число молекул, m - масса одной молекулы;

б) число молекул, относительные скорости которых заключены в пределах от u до $u + \mathrm{d} u$,

$$dN(u) = (4/\sqrt{\pi})N \exp(-u^2)u^2 du$$

где $u = v/v_B$ - отношение скорости v к наиболее вероятной скорости v_B .

• Среднее число соударений, испытываемых одной молекулой газа в единицу времени:

$$\langle Z \rangle \sqrt{2\pi} d^2 n \langle v \rangle$$
,

где d - эффективный диаметр молекулы; n - концентрация молекул; $\langle v \rangle$ - средняя арифметическая скорость молекул.

• Средняя длина свободного пробега молекул газа:

$$\langle l \rangle = 1/(\sqrt{2\pi}d^2n)$$
.

• Связь между молярной C_m и удельной C теплоемкостями газа:

$$C_m = C\mu$$
,

где µ - молярная масса газа.

• Молярные теплоемкости при постоянном объеме и постоянном давлении соответственно равны:

$$C_V = iR/2$$
, $C_p = (i+2)R/2$, $C_p = C_V + R$,

где i - число степеней свободы молекулы; R - универсальная газовая постоянная.

• Показатель адиабаты:

$$\gamma = C_p / C_V$$
 или $\gamma = (i+2)/i$.

• Внутренняя энергия идеального газа:

$$U = N\langle \varepsilon \rangle$$
 или $U = vC_V T$,

где N - число молекул газа; $\langle \epsilon \rangle$ - средняя кинетическая энергия молекул газа; у-количество вещества.

• Работа газа при изотермическом процессе:

$$A = (m/\mu)RT\ln(V_2/V_1),$$

при изобарическом процессе:

$$A = p(V_2 - V_1),$$

при адиабатическом процессе:

$$A = (m/\mu)C_V(T_1 - T_2)$$
, или $A = RT_1/(-1)m/\mu[1 - (V_1/V_2)]$,

где $V_1,\ V_2$ - начальный и конечный объемы газа; $T_1,\ T_2$ - начальная и конечная температуры газа.

• Связь между начальным и конечным значениями параметров состояний газа при адиабатическом процессе:

$$p_2/p_1 = (V_1/V_2); T_2/T_1 = (V_1/V_2); T_2/T_1 = (p_2/p_1)$$

• Первое начало термодинамики:

$$Q = \Delta U + A$$
,

где Q - количество теплоты, сообщенное газу; ΔU - изменение его внутренней энергии; A - работа, совершенная газом против внешних сил.

При изобарическом процессе:

$$Q = \Delta U + A = (m/\mu)C_V\Delta T + (m/\mu)R\Delta T = (m/\mu)C_D\Delta T.$$

При изохорическом процессе (A = 0)

$$Q = \Delta U = (m/\mu)C_V \Delta T$$
.

При изотермическом процессе ($\Delta U = 0$)

$$Q = A = (m/\mu)RT\ln(V_2/V_1).$$

При адиабатическом процессе (Q = 0)

$$A = -\Delta U = -(m/\mu)C_V\Delta T$$
.

• Термический коэффициент полезного действия (к.п.д.) цикла в общем случае:

$$\eta = (Q_1 - Q_2)/Q_1$$

где Q_1 - количество теплоты, полученное рабочим телом (газом) от нагревателя; Q_2 - количество теплоты, переданное рабочим телом охладителю.

К.П.Д. цикла Карно:

$$\eta = (Q_1 - Q_2)/Q_1$$
, или $\eta = (T_1 - T_2)/T_1$,

где T_1 , T_2 - температуры нагревателя и охладителя.

• Изменение энтропии:

$$\Delta S = \int_{A}^{B} dQ/T,$$

где A, B - пределы интегрирования, соответствующие начальному и конечному состояниям системы.

Задание №4 «Молекулярная физика и термодинамика»

- 1. К массе 0.5 кг имеющегося газа при заданных давлении p, объеме V или температуре T добавили 0.2 кг кислорода, взятого при той же температуре, что и заданный газ. Считая объем неизменным, определить давление смеси и ее молярную массу.
- 2. При заданных значениях давления, объема и температуры, а также массы газа 0,5 кг, определить физические величины, указанные в таблице 4: N, n общее число и концентрация молекул в системе; m_1 , $\langle \epsilon \rangle$, $\langle p \rangle$ масса, средняя энергия и средний импульс одной молекулы; $\langle v_{\kappa e} \rangle$, $\langle v \rangle$, v_e средняя квадратичная, средняя арифметическая и наиболее вероятная скорости молекулы; C_p , C_V теплоемкости при постоянном давлении и объеме; $\langle l \rangle$, $\langle Z \rangle$ средняя длина свободного пробега и среднее число столкновений в единицу времени одной молекулы; U внутренняя энергия системы, C удельная теплоемкость, ρ плотность газа.
- 3. Определить величину работы A, изменение внутренней энергии системы ΔU , количество теплоты Q, сообщаемое системе при переходе ее из заданного состояния (p, V, T) в состояние, определяемое указанным процессом (табл.4); при изохорическом процессе температура возрастает в 1,5 раза; при изотермическом объем возрастает в 2 раза, при изобарическом объем убывает в 2 раза, при адиабатическом объем возрастает в 3 раза.
- 4. Газ с заданным начальным состоянием (p, V, T) совершает цикл, состоящий из двух изохор и двух изобар, при этом давление и объем увеличиваются в n раз (значение n принимается из таблицы 4). Во сколько раз работа, совершаемая при таком цикле, меньше работы, совершаемой в цикле Карно, изотермы которого соответствуют наибольшей и наименьшей температурам рассматриваемого цикла, если при изотермическом расширении объем увеличился в n раз. Найти к.п.д. обоих циклов.

5. По данным предыдущей задачи вычислить изменение энтропии за первую половину обоих циклов.

Таблица 4

No	p,	V	Τ,	Газ	Искомые	Процесс	n
вар.	P, MΠa	V_{M}^{3}	K K	1 43	величины	в задаче №3	11
Bup.	11114	141			в задаче 2	В зада то т (23	
1	0,1	0,3		Не	N, C	Изохорический	1,5
2		0,3	300	H_2	<i>n</i> , ρ	Изотермический	1,7
3	0,2		350	N_2	m_1, C	Изотермический	1,9
4	0,5	2		CO	<ε>, ρ	Изобарический	2,17
5		0,2	500	CO_2	$\langle v_{\text{KB}} \rangle$, C	Изотермический	2,5
6	0,15	0,1		SO_2	< <i>v</i> >, <i>C</i>	Изохорический	2,7
7	0,3		400	Ne	$v_{\scriptscriptstyle \rm B}, ho$	Изобарический	3
8	0,45	0,2		Ar	$C_{\rm p}, <\varepsilon_{\rm Bp}>$	Изобарический	1,8
9	0,1	0,13		Cl ₂	$C_{\rm v}, <_{\rm E_{\rm Bp}}>$	Изохорический	1,4
10		0,05	450	N ₂ O	U	Адиабатический	1,5
11	0,25		500	CO	<ε>, C	Изотермический	2,1
12	0,18	0,03		Ne	<z></z>	Адиабатический	2,6
13		0,025	600	Ar	< <i>p></i>	Изотермический	2,2
14	0,3	0,02		CO_2	$v_{\text{\tiny B}}, C$	Изохорический	2,05
15		0,5	350	Не		Адиабатический	2,3
16		0,04	500	N_2	n, C	Изохорический	1,6
17	0,4	0,16		H_2	Ν, ρ	Изохорический	1,8
18		0,01	300	Cl_2	U	Изотермический	2,5
19	0,2		350	SO_2	<ε>, C	Адиабатический	2,9
20	0,17	0,015		N ₂ O	< <i>p</i> >, ρ	Изохорический	2,1
21		0,12	400	NO	U	Изотермический	1,75
22	0,1	0,18		C_2H_2	$C_{\rm p}, <\varepsilon_{\rm Bp}>$	Адиабатический	1,45
23	0,16		300	H_2	<z></z>	Изобарический	2,25
24	0,5	0,15		Ar	< <i>l</i> >	Изохорический	2,45
25	0,15	0,4		Ne	m_1, ρ	Изохорический	2,15
26		1	150	Не	Ν, ρ	Изотермический	1,85
27	0,4	0,8		N_2	< <i>l></i>	Адиабатический	2,35
28		0,25	550	CO	$v_{\scriptscriptstyle \rm B},C$	Изохорический	2,65
29	0,01	0,07		C ₂ H ₂	<ε>, ρ	Изобарический	2,85
30		0,5	320	Cl_2	$v_{\text{\tiny KB}}, C$	Адиабатический	1,95

Литература

- 1. И.В. Савельев. Курс физики. Т.1. Механика. Молекулярная физика. СПб. Издательство «Лань», 2008.
 - 2. Т.И. Трофимова. Курс физики. М., Академия, 2007.

3. Рогачев Н.М. Курс физики: Учебное пособие. – СПб. Издательство «Лань», 2010.