Детальная информация

Название: Computational methods for deep learning: theoretic, practice and applications
Авторы: Wei Qi Yan
Выходные сведения: Cham: Springer, 2021
Коллекция: Электронные книги зарубежных издательств; Общая коллекция
Тематика: Искусственный интеллект; Численные методы; глубокое обучение
УДК: 004.8; 519.6
Тип документа: Другой
Тип файла: PDF
Язык: Английский
Права доступа: Доступ по паролю из сети Интернет (чтение)
Ключ записи: RU\SPSTU\edoc\69881

Разрешенные действия:

Действие 'Прочитать' будет доступно, если вы выполните вход в систему или будете работать с сайтом на компьютере в другой сети

Группа: Анонимные пользователи

Сеть: Интернет


Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations.Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms.As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers.This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision.Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать
Интернет Авторизованные пользователи Прочитать
-> Интернет Анонимные пользователи

Статистика использования

stat Количество обращений: 1
За последние 30 дней: 0
Подробная статистика