УДК 681.51/54 doi:10.18720/SPBPU/2/id20-151

Ефремов Артём Александрович¹, канд. физ.-мат. наук, доцент; **Козлов Владимир Николаевич**², д-р техн. наук, профессор; **Каракчиева Вера Валерьевна**³, магистрант

АНАЛИЗ УСТОЙЧИВОСТИ ДИНАМИЧЕСКИХ СИСТЕМ НА ОСНОВЕ ВЕКТОРНЫХ ФУНКЦИЙ ЛЯПУНОВА

1 artem.efremov@spbstu.ru, 2 kozlov_vn@spbstu.ru, 3 karakchieva.vv@edu.spbstu.ru

Аннотация. Рассмотрен метод анализа устойчивости на основе метода векторных функций Ляпунова для применения в задачах энергетики.

Ключевые слова: децентрализация системы, векторные функции Ляпунова, принцип сравнения.

Vladimir N. Kozlov¹,
Doctor of Technical Sciences, Professor;
Artyom A. Efremov²,
Cand. Ph.-Mat. Sc., Assistant Professor;
Vera V. Karakchieva³,
Master Student

ANALYSIS OF THE STABILITY OF DYNAMIC SYSTEMS BASED ON VECTOR LYAPUNOV FUNCTIONS

^{1,2,3} Peter the Great St. Petersburg Polytechnic University, Institute of Computer Science and Technology, St. Petersburg, Russia,

¹ artem.efremov@spbstu.ru, ² kozlov_vn@spbstu.ru, ³ karakchieva.vv@edu.spbstu.ru

Abstract. Method of stability analysis based on the method of vector Lyapunov functions is considered for use in energy problems.

Keywords: system decentralization, Lyapunov vector functions, comparison principle.

Введение

Метод векторных функций А.М. Ляпунова (МВФЛ), предложенный В.М. Матросовым, позволяет исследовать устойчивость децентрализованных систем (ДС) на основе декомпозиции системы на диагональные и недиагональные подсистемы [1]. Для ДС использованы оценки производных по времени квадратичных функций Ляпунова или функций Ляпунова в форме Д. Шиляка [2] для синтеза моделей сравнения (оценок) для ДС с учетом подсистем. Описаны мажорирующие модели МВФЛ на основе оценок свойств функций Ляпунова в форме Н.Н. Красовского [3], С.А. Чаплыгиным и условий Т. Важевского для подсистем. Далее МВФЛ используется для анализа энергообъединений (ЭО) [4].

1. Декомпозиция моделей динамических систем

Структура уравнений сложной системы преобразуется с учетом требований МВФЛ и декомпозиции — разделения сложной системы на подсистемы к виду [1, 2]

$$x_i' = f_i(x_i, u_i) = A_i x_i + \sum_{j=1, i \neq j}^{s} A_{ij} x_j + B_i u_i, i = 1, 2, ..., s,$$
 (1)

где $x_i \in R^{n_i}$.

Диагональные матрицы $A_i \in R^{n_i \times n_i}$ определяют диагональные; подсистемы S_i , а слагаемые $\sum A_{ij} x_j$ в (1) определяют влияние подсистем с координатами x_j на координату x_i и x_i' подсистемы S_i . После декомпозиции исследуется устойчивость диагональных подсистем при нулевых связях

$$x_i' = A_i x_i + B_i u_i, (2)$$

а на следующих этапах исследуются оценки влияния связей на устойчивость.

Такая декомпозиция может быть мало эффективной, если элементы диагональных блоков A_i не доминируют над элементами недиагональных блоков A_{ij} , т. е. если связи не будут достаточно слабыми.

«Диагональное преобладание» — это также условие устойчивости системы кусочно-линейных разностных уравнений на основе нормы как диагональной аппроксимации функции Ляпунова [4-6].

2. Принцип сравнения и векторные функции Ляпунова

Векторные функции Ляпунова и декомпозиция системы (2) позволяют вместо функции V(x) системы с полным набором координат $x \in \mathbb{R}^N$ использовать функции Ляпунова $V_i(x_i)$ для диагональных подсистем в (2).

Диагональные функции $V_i \left(x_i \right)$ образуют компоненты векторфункции

$$V(x) = \{V_1(x_1), ..., V_i(x_i), ..., V_r(x_r)\},$$
(3)

для которых В.М. Матросовым выведены достаточные условия устойчивости системы. Оценки функции Ляпунова даны Н.Н. Красовским для экспоненциально устойчивых подсистем декомпозированной системы

$$x_i' = f_i(x_i) + \sum_{j=1, j \neq i}^r P_{ij} x_j, \quad i = 1, 2, ..., r,$$
(4)

с линейными связями, для мажорирующей и минорирующей моделей.

От неравенств, описывающих модели сравнения, можно перейти к дифференциальным уравнениям систем сравнения. Задача формулировки условий существования верхней (мажорирующей модели) и нижней (минорирующей модели) оценок, сформулирована С.А. Чаплыгиным.

Условия существования решения задачи Чаплыгина для системы дифференциальных неравенств первого порядка получены Т. Важевским в теореме о существовании верхних и нижних решений неравенств для квазимонотонной и неубывающей функции f(t,x) в уравнении x' = f(t,x).

Принцип сравнения развит в работах В.М. Матросова, объединяющих метод Н.Н. Красовского для оценок функций Ляпунова, дифференциальные неравенства С.А. Чаплыгина, теорему Т. Важевского и концепция нескольких функций Ляпунова для моделей сравнения [1].

Таким образом, синтез моделей сравнения системы на основе оценок производных функций Ляпунова диагональных подсистем содержит декомпозицию, выбор класса компонент функций Ляпунова диагональных подсистем и оценки, решение системы сравнения для анализа устойчивости.

3. Структура оценок производных функций Ляпунова диагональных подсистем

При условии u=0 и $P_{ij}=0$, из общей модели (1) при условии нулевых воздействий следуют уравнения диагональных подсистем

$$x_i' = A_i x_i. (5)$$

Для линейной стационарной системы (6) функции Ляпунова $V_i(x_i)$ диагональных подсистем выбирается в виде квадратичной формы

$$V_i(x_i) = x_i^T H_i x_i, \tag{6}$$

где $H_i = H_i^T \in R^{n_i \times n_i}$ — положительно определенная матрица как решение матричного уравнения Ляпунова $A_i^T H_i + H_i A_i = -G_i$, где $G_i = G_i^T \in R^{n_i \times n_i}$ — положительно определенная матрица, часто задаваемая как $G_i = E_n$.

Из теоремы Н.Н. Красовского следует, что если состояние равновесия x = 0 системы экспоненциально устойчиво, то существует функция Ляпунова, интервально ограниченная, имеющая оценки сверху [3]

$$c_{1i}^{2} \|x_{i}\|^{2} \leq V_{i} \leq c_{2i}^{2} \|x_{i}\|^{2}, \quad V_{i}' \leq -c_{3i}^{2} \|x_{i}\|^{2}, \quad \|grad_{x_{i}}V_{i}\| \leq c_{4i}^{2} \|x_{i}\|^{2}, \quad (7)$$

где $c_{ki}^2 > 0, k = 1, 2, 3, 4, \|x_i\| = (x_i^T x_i)^{1/2} -$ евклидова норма вектора x_i в (1).

Если функция Ляпунова $V_i(x_i) = x_i^T H_i x_i - \kappa вадратичная форма,$ то постоянные c_{ki}^2 — функции собственных чисел матриц H_i и G_i :

$$c_{1i}^2 = \lambda_m(H_i), \quad c_{2i}^2 = \lambda_M(H_i), \quad c_{3i}^2 = \lambda_m(G_i), \quad c_{4i}^2 = 2\lambda_M(H_i),$$

где λ_m , λ_M — наименьшее и наибольшее собственные числа матрицы.

При внешних воздействиях вводится функция Ляпунова Д. Шилака [2]

$$v_i(x_i) = (V_i(x_i))^{1/2} = (x_i^T H_i x_i)^{1/2}.$$
 (8)

Для этой функции v_i из неравенств Красовского (7) следуют оценки

$$c_{1i} \|x_i\| \le v_i \le c_{2i} \|x_i\|, \quad v_i' \le -\eta_i \|x_i\|, \quad \|grad_{x_i} v_i\| \le \mu_i,$$

где c_{1i} , c_{2i} , η_i и μ_i – положительные вещественные числа, причем параметры η_i и μ_i связаны с c_{ki} и собственными числами H_i и G_i :

$$\eta_i = \frac{c_{3i}^2}{2c_{2i}} = \frac{\lambda_m(G_i)}{2\lambda_M^{1/2}(H_i)}, \quad \mu_i = \frac{c_{4i}^2}{2c_{1i}} = \frac{\lambda_M(H_i)}{\lambda_m^{1/2}(H_i)}.$$

4. Уравнения сравнения

Вычисление параметров c_{ki} , η_i и μ_i , определяет уравнения моделей сравнения децентрализованных систем.

а). Для диагональной подсистемы при нулевых воздействиях *уравнение системы сравнения* для функции Ляпунова в виде *квадрата нормы* $\|x_i\|^2$, полученное из неравенств (7), имеет вид $z_i' = -c_{3i}^2 z_i / c_{2i}^2$.

Квадратичные функции Ляпунова V_i при $z_{i0} = V_i \left(0 \right) = x_{i0}^T H_i x_{i0}$ имеют оценки

$$\left\|x_{i}\left(t;t_{0},x_{i0}\right)\right\|^{2} \leq \frac{x_{i0}^{T}H_{i}x_{i0}}{c_{1i}^{2}} e^{-\frac{c_{3i}^{2}}{c_{2i}^{2}}\left(t-t_{0}\right)}, \left\|x_{i}\left(t;t_{0},x_{i0}\right)\right\|^{2} \leq \frac{c_{2i}^{2}}{c_{1i}^{2}} \left\|x_{i0}\right\|^{2} e^{-\frac{c_{3i}^{2}}{c_{2i}^{2}}\left(t-t_{0}\right)}.$$

б). Уравнение системы сравнения относительно первой степени нормы $\|x_i\|$ для функции Ляпунова v_i имеет вид $z_i' = -c_{3i}^2 z_i / 2c_{2i}^2$.

Если выбрать $z_{i0} = (x_{i0}^T H_i x_{i0})^{1/2}$, то оценка нормы решения примет вид

$$||x_i(t;t_0,x_{i0})|| \le \frac{(x_{i0}^T H_i x_{i0})^{1/2}}{c_{1i}} ||x_{i0}|| \times \exp\left[-\frac{c_{3i}^2}{c_{2i}^2}(t-t_0)\right].$$

Коэффициент усиления блока сравнения в этом случае должен быть не меньше, чем $c_{1i}^{-1}(x_{i0}^T H_i x_{i0})^{1/2}$ или $c_{1i}^{-1} c_{2i}$.

5. Уравнение системы сравнения

Уравнение системы сравнения для изолированной подсистемы npu наличии воздействия для функции Ляпунова v_i для норм $\|x_i\|$ и $\|u\|$, равно

$$z_{i}' = -\frac{c_{3i}^{2}}{2c_{2i}^{2}} z_{i} + \frac{c_{4i}^{2}}{2c_{1i}^{2}} \lambda_{M}^{1/2} \left(B_{i}^{T} B_{i} \right) \| u \|.$$
 (9)

Если $v_i = (x_i^T H_i x_i)^{1/2}$, то *уравнение системы сравнения* (9) примет вид

$$z_i' = -\frac{\lambda_m(G_i)}{2\lambda_M(H_i)} z_i + \frac{\lambda_M(H_i)\lambda_M^{1/2}(B_i^T B_i)}{\lambda_m^{1/2}(H_i)} \|u\|.$$

Для этого *диагонального уравнения* оценка функции Ляпунова имеет вид

$$v_i(t; t_0, x_{i0}) \le z_i(t; t_0, z_{i0}) \Big|_{z_{i0} = v_{i0}}, \quad ||x_i|| \le (c_{1i})^{-1} z_i.$$

6. Уравнение системы сравнения агрегированной системы с воздействиями

Для функции Ляпунова $v_i(x_i)$ система сравнения имеет вид $z' = Wz + \Gamma \|u\|, \tag{10}$

для которого координатная форма определена системой уравнений

$$z'_{i} = w_{ii}z_{i} + \sum_{j=1, j \neq i}^{r} w_{ij}z_{j} + \gamma_{i} \|u\|, \quad i = 1, 2, ..., r,$$

где $z, \Gamma \in \mathbb{R}^r$, W — постоянная $r \times r$ -матрица. Элементы матриц W и Γ равны

$$w_{ii} = -\frac{c_{3i}^2}{2c_{2i}^2}, \quad w_{ij} = \frac{c_{4i}^2 \lambda_M^{1/2} \left(P_{ij}^T P_{ij} \right)}{2c_{1i}c_{1j}}, \quad \gamma_i = \frac{c_{4i}^2 \lambda_M^{1/2} \left(B_i^T B_i \right)}{2c_{1i}}.$$

Если $v_i = (x_i^T H_i x_i)^{1/2}$, то параметры системы сравнения равны

$$w_{ii} = -\frac{\lambda_{m}(G_{i})}{2\lambda_{M}(H_{i})}, \quad w_{ij} = \frac{\lambda_{M}(H_{i}) \lambda_{M}^{1/2}(P_{ij}^{T} P_{ij})}{\lambda_{m}^{1/2}(H_{i}) \lambda_{m}^{1/2}(H_{j})}, \quad \gamma_{i} = \frac{\lambda_{M}(H_{i}) \lambda_{M}^{1/2}(B_{i}^{T} B_{i})}{\lambda_{m}^{1/2}(H_{i})}.$$

7. Условия устойчивости агрегированной модели

Условия устойчивости *агрегатной системы* (10) достаточные, но не необходимые, однако они легко проверяются, т. к. система (10) устойчива тогда и только тогда, когда W – гурвицева матрица. Параметры $w_{ij} > 0$, W – это M-матрица, условия устойчивости Севастьянова-Котелянского имеют вид [1]:

$$(-1)^k \begin{vmatrix} w_{11} & \cdots & w_{1k} \\ \vdots & \ddots & \vdots \\ w_{k1} & \cdots & w_{kk} \end{vmatrix} > 0, \quad k = 1, 2, ..., r,$$

или *условиями квазидоминирования диагонали* в матрице W , а именно: агрегатная модель устойчива тогда и только тогда, когда имеются такие положительные числа d_j , j=1,2,...,r , что выполнены любое из условий:

$$d_i \left| w_{ii} \right| > \sum_{j=1, \ j \neq i}^r d_j \left| w_{ij} \right|, \ i = 1, 2, ..., r, \$$
или
 $d_j \left| w_{jj} \right| > \sum_{i=1, i \neq j}^r d_i \left| w_{ij} \right|, \ j = 1, 2, ..., r.$

8. Применение МВФЛ для анализа устойчивости ЭЭО

Исходные уравнения электромеханических процессов i-й ЭС имеют вид

$$T_{ai}^{2}\omega_{i}' + T_{yi}\omega_{i} + \sum_{j,i\neq j} \rho_{ij}(\varphi_{i} - \varphi_{j}) = p_{i} - \mu_{i}; \quad T_{\Pi i}p_{i}' + p_{i} = -k_{\omega i}\omega_{i} + k_{\Pi i}\sigma_{i};$$

$$T_{Ci}\sigma_{i}' + \sigma_{i} = k_{Ci}u_{i} + k_{1_{i}}\varphi_{i} + k_{2_{i}}\omega_{i}, \quad s_{i} = \sum_{j,i\neq j} \rho_{ij}(\varphi_{i} - \varphi_{j}); \quad (11)$$

где φ_i , ω_i , μ_i , σ_i , p_i , s_i , u_i — отклонения углов, частот, нагрузки, сигналов регуляторов, мощностей, перетоков по линиям и управлений i -й ЭС;

 $T_{ai}^2, T_{vi}, \rho_{ij}, T_{\Pi i}, T_{Ci}, k_{\Pi i}, k_{Ci}, k_{\omega i}$ – параметры ЭС.

Асимпиотические уравнения для сверхбольших ЭС типа (11) при $u_i = k_{1i} \varphi_i + k_{2i} \omega_i + u_i$ имеют вид

$$T_{ai}^{2}\omega_{i}' + T_{yi}\omega_{i} + \sum_{j,i\neq j} (\varphi_{i} - \varphi_{j}) = p_{i} - \mu_{i};$$
 (12)

Форма Коши для асимптотических уравнений (12) имеет представление

$$\varphi_{i}' = \omega_{i},$$

$$\omega_{i}' = T_{ai}^{-2} \left[-k_{\omega i} \omega_{i} + k_{\Pi i} \left(k_{1i} \varphi_{i} + k_{2i} \omega_{i} + k_{Ci} u_{i} \right) - \mu_{i} - T_{yi} \omega_{i} - \sum_{j,i \neq j} (\varphi_{i} - \varphi_{j}). \right]$$

$$(13)$$

Преобразованное второе дифференциальное уравнение имеет вид

$$\omega_i' = T_{ai}^{-2} \left[k_{\Pi i} k_{1i} \varphi_i - \sum_{j,i \neq j} \rho_{ij} (\varphi_i - \varphi_j) - \left(k_{\omega i} - k_{\Pi i} k_{2i} + T_{yi} \right) \omega_i + k_{\Pi i} k_{Ci} u_i - \mu_i \right].$$

Отклонения суммы перетоков активной мощности s_i по линиям, связывающим диагональную ЭС с другими ЭС имеет вид

$$\sum_{j,i\neq j} \rho_{ij}(\varphi_i - \varphi_j) = \varphi_i \sum_{j,i\neq j} \rho_{ij} - \sum_{j,i\neq j} \rho_{ij} \varphi_j.$$

Децентрализованная матричная форма Коши (1) уравнений ЭЭО имеет вид

$$x_{i}' = \begin{bmatrix} \varphi_{i}' & \omega_{i}' \end{bmatrix}^{T} = A_{i}x + \sum_{j,j\neq i}^{n} P_{ij}x_{j} + P_{i}u_{i} + B_{Mi}\mu_{i} = \begin{bmatrix} 0 & 1 \\ \overline{T}_{ai} \begin{pmatrix} k_{\Pi i}k_{1i} - \sum_{j,i\neq j} \rho_{ij} \end{pmatrix} & -\overline{T}_{ai} \begin{pmatrix} k_{\omega i} - k_{\Pi i}k_{2i} + T_{yi} \end{pmatrix} \end{bmatrix} \times \begin{bmatrix} \varphi_{i} \\ \omega_{i} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \rho_{i1} & 0 \end{bmatrix} \times \begin{bmatrix} \varphi_{1} \\ \omega_{1} \end{bmatrix} + \dots + \begin{bmatrix} 0 & 0 \\ \rho_{in} & 0 \end{bmatrix} \times \begin{bmatrix} \varphi_{n} \\ \omega_{n} \end{bmatrix} + \begin{bmatrix} 0 \\ \overline{T}_{ai}k_{\Pi i}k_{Ci} \end{bmatrix} u_{i} + \begin{bmatrix} 0 \\ -\overline{T}_{ai} \end{bmatrix} \mu_{i}.$$

$$(14)$$

Модель ЭЭО дана в форме для анализа устойчивости МВФЛ

$$x_i' = A_i x_i + P_{i1} x_1 + ... + P_{in} x_n + B_{ui} u_i + B_{Mi} \mu_i; i = 1...n, i \neq j.$$
 (15)

Далее использована модель влияния управлений на перетоки мощности S_i .

9. Синтез функции Ляпунова для подсистемы

Для изолированной подсистемы: $P_{ij} = 0$, $u_i = 0 \Rightarrow x_i' = A_i x_i$. Для линейной стационарной системы $V_i(x_i) = x_i^T H_i x_i$, H_i — решение уравнения Ляпунова: $A_i^T H_i + H_i A_i = -G_i = -E_2$.

При внешних связях функция Ляпунова в форме Д. Шилака имеет вид

$$v_i(x_i) = (x_i^T H_i x_i)^{1/2}.$$

а) Вычисление оценок функции Ляпунова. Для компонент функций векторной функции Ляпунова в силу имеют оценки Красовского

$$c_{1i} \|x_i\| \le v_i \le c_{2i} \|x_i\|, \quad v_i' \le -\eta_i \|x_i\|, \quad \|grad_{x_i} v_i\| \le \mu_i,$$

где $c_{1i},c_{2i},\eta_i,\mu_i\in R_+,\ \eta_i$ и μ_i связаны с c_{ki} и $\lambda_j(H_i),$ и $\lambda_j(G_i)$ так, что

$$\eta_{i} = \frac{c_{3i}^{2}}{2c_{2i}} = \frac{\lambda_{m}(G_{i})}{2\lambda_{M}^{1/2}(H_{i})}, \, \mu_{i} = \frac{c_{4i}^{2}}{2c_{1i}} = \frac{\lambda_{M}(H_{i})}{\lambda_{m}^{1/2}(H_{i})}.$$

Постоянные c_{ki}^2 как функции собственных чисел матриц H_i и G_i равны

$$c_{1i}^2 = \lambda_m(H_i), \quad c_{2i}^2 = \lambda_M(H_i), \quad c_{3i}^2 = \lambda_m(G_i), \quad c_{4i}^2 = 2\lambda_M(H_i).$$

10. Применение МВФЛ для анализа устойчивости ЭЭО

Диагональные уравнения процессов i -й ЭС с учетом подсистем квазистационарной стабилизации имеют вид

$$T_{ai}^2\omega_i' + T_{yi}\omega_i + \sum_{j,i\neq j} \rho_{ij} (\varphi_i - \varphi_j) = p_i - \mu_i; \quad T_{\Pi i}p_i' + p_i = -k_{\omega i}\omega_i + k_{\Pi i}\sigma_i;$$

$$T_{Ci}\sigma_i' + \sigma_i = k_{Ci}u_i + k_{l_i}\varphi_i + k_{2_i}\omega_i, \quad s_i = \sum_{j,i\neq j} \rho_{ij}(\varphi_i - \varphi_j);$$
 (16)

где φ_i , ω_i , μ_i , σ_i , p_i , s_i , u_i , — отклонения углов, частот, нагрузки, сигналов регуляторов, мощностей, перетоков по линиям и управлений i -й ЭС;

 $T_{ai}^2, T_{yi}, \rho_{ij}, T_{\Pi i}, T_{Ci}, k_{\Pi i}, k_{Ci}, k_{\omega i}$ – параметры ЭС. Тогда уравнения для (11) для управления $u_i = k_{1i} \varphi_i + k_{2i} \omega_i + u_i$ будет иметь вид

$$T_{ai}^{2}\omega_{i}' + T_{yi}\omega_{i} + \sum_{j,i\neq j} (\varphi_{i} - \varphi_{j}) = p_{i} - \mu_{i};$$
 (17)

Форма Коши для асимптотической системы (17) имеет представление

$$\varphi_{i}' = \omega_{i},
\omega_{i}' = T_{ai}^{-2} \left[-k_{\omega i} \omega_{i} + k_{\Pi i} \left(k_{1i} \varphi_{i} + k_{2i} \omega_{i} + k_{Ci} u_{i} \right) - \right.
\left. -\mu_{i} - T_{yi} \omega_{i} - \sum_{j,i \neq j} \left(\varphi_{i} - \varphi_{j} \right) \right].$$
(18)

Преобразованное второе дифференциальное уравнение имеет вид

$$\omega_i' = T_{ai}^{-2} \left[k_{\Pi i} k_{1i} \varphi_i - \sum_{j,i \neq j} \rho_{ij} (\varphi_i - \varphi_j) - \left(k_{\omega i} - k_{\Pi i} k_{2i} + T_{yi} \right) \omega_i + k_{\Pi i} k_{Ci} u_i - \mu_i \right].$$

Приведение к диагональной форме требует следующих преобразований

$$\sum_{j,i\neq j} \rho_{ij}(\varphi_i - \varphi_j) = \varphi_i \sum_{j,i\neq j} \rho_{ij} - \sum_{j,i\neq j} \rho_{ij} \varphi_j.$$

В результате уравнения ЭЭО в матричной форме имеют вид

$$x_{i}' = \begin{bmatrix} \varphi_{i}' & \omega_{i}' \end{bmatrix}^{T} = A_{i}x + \sum_{i=1}^{n} P_{i}u_{i} + B_{Mi}\mu_{i} = \\ 0 & 1 \\ = \begin{bmatrix} 0 & 1 \\ \overline{T}_{ai} \begin{pmatrix} k_{\Pi i}k_{1i} - \sum_{j,i \neq j} \rho_{ij} \end{pmatrix} - \overline{T}_{ai} \begin{pmatrix} k_{\omega i} - k_{\Pi i}k_{2i} + T_{yi} \end{pmatrix} \times \begin{bmatrix} \varphi_{i} \\ \omega_{i} \end{bmatrix} + \\ + \begin{bmatrix} 0 & 0 \\ \rho_{i1} & 0 \end{bmatrix} \times \begin{bmatrix} \varphi_{1} \\ \omega_{1} \end{bmatrix} + \dots + \begin{bmatrix} 0 & 0 \\ \rho_{in} & 0 \end{bmatrix} \times \begin{bmatrix} \varphi_{n} \\ \omega_{n} \end{bmatrix} + \begin{bmatrix} 0 \\ \overline{T}_{ai}k_{\Pi i}k_{Ci} \end{bmatrix} u_{i} + \begin{bmatrix} 0 \\ -\overline{T}_{ai} \end{bmatrix} \mu_{i}.$$

$$(19)$$

Для вектора
$$x_i = (\varphi_i, \omega_i)^T$$
, матрицы A_i и $P_{in}, n = 1, ... i - 1, i + 1, ... n$, равны
$$A_i = \begin{bmatrix} 0 & 1 \\ \overline{T}_{ai} \left(k_{\Pi i} k_{1i} - \sum_{j,i \neq j} \rho_{ij} \right) & -\overline{T}_{ai} \left(k_{\omega i} - k_{\Pi i} k_{2i} + T_{yi} \right) \end{bmatrix};$$

$$P_{i1} = \begin{bmatrix} 0 & 0 \\ \rho_{i1} & 0 \end{bmatrix}; \quad \cdots \quad P_{in} = \begin{bmatrix} 0 & 0 \\ \rho_{in} & 0 \end{bmatrix}; \quad B_{ui} = \begin{bmatrix} 0 \\ \overline{T}_{ai} k_{\Pi i} k_{Ci} \end{bmatrix}; \quad B_{Mi} = \begin{bmatrix} 0 \\ -\overline{T}_{ai} \end{bmatrix}.$$

Асимптотическая модель ЭЭО для анализа устойчивости имеет вид

$$x_i' = A_i x_i + P_{i1} x_1 + \dots + P_{in} x_n + B_{ui} u_i + B_{Mi} \mu_i; \ i = 1 \dots n, i \neq j.$$
 (20)

Далее использована классическая модель ЭЭО для анализа устойчивости.

Синтез функции Ляпунова для подсистемы

Для изолированной подсистемы: $P_{ij} = 0$, $u_i = 0 \Rightarrow x_i' = A_i x_i$. Для линейной стационарной системы $V_i(x_i) = x_i^T H_i x_i$, где H_i — решение уравнения Ляпунова: $A_i^T H_i + H_i A_i = -G_i$.

При воздействиях и связях функция Ляпунова в форме Д. Шилака $v_i(x_i) = (x_i^T H_i x_i)^{1/2}$.

b) Построение оценок функции Ляпунова. Для компонент функций векторной функции Ляпунова в силу имеют оценки Красовского

$$c_{1i} \|x_i\| \le v_i \le c_{2i} \|x_i\|, \quad v_i' \le -\eta_i \|x_i\|, \quad \|grad_{x_i} v_i\| \le \mu_i,$$

где $c_{1i},c_{2i},\eta_i,\mu_i\in R_+,\ \eta_i$ и μ_i связаны с c_{ki} и $\lambda_j(H_i)$, и $\lambda_j(G_i)$ так, что

$$\eta_{i} = \frac{c_{3i}^{2}}{2c_{2i}} = \frac{\lambda_{m}(G_{i})}{2\lambda_{M}^{1/2}(H_{i})}, \mu_{i} = \frac{c_{4i}^{2}}{2c_{1i}} = \frac{\lambda_{M}(H_{i})}{\lambda_{m}^{1/2}(H_{i})}.$$

Постоянные c_{ki}^2 как функции собственных чисел матриц H_i и G_i равны

$$c_{1i}^2 = \lambda_m(H_i), \quad c_{2i}^2 = \lambda_M(H_i), \quad c_{3i}^2 = \lambda_m(G_i), \quad c_{4i}^2 = 2\lambda_M(H_i).$$

с) Построение модели сравнения. Вычисление производной по времени функции Ляпунова для системы с учетом (4) определяет равенства:

$$\begin{aligned} v_i'(x_i) &= \left[grad \ v_i \right]^T x_i' = \\ &= \left[grad \ v_i \right]^T \left(A_i x_i + P_{i1} x_1 + \ldots + P_{i,i-1} x_{i-1} + P_{i,i+1} x_{i+1} + \ldots + P_{in} x_n + B_{ui} u_i \right) = \\ &= \left[grad \ v_i \right]^T A_i x_i + \left[grad \ v_i \right]^T P_{i1} x_1 + \ldots + \left[grad \ v_i \right]^T P_{in} x_n + \left[grad \ v_i \right]^T B_{ui} u_i. \end{aligned}$$

Для диагональных подсистем справедливы требуемые для оценок равенства

$$v_i'(x_i) = [grad \ v_i]^T A_i x_i.$$

Из условий Красовского для подсистем следуют оценки производных $v_i'(x_i)$:

$$v_i'(x_i) \le -\eta_i ||x_i|| + ||grad v_i|| \times ||P_{i1}x_1|| + \dots + ||grad v_i|| \times ||P_{in}x_n|| + ||grad v_i|| \times ||B_{ui}u_i||.$$

Рассмотрим $\|P_{ij}x_j\|$ и значение для квадрата нормы $\|P_{ij}x_j\|$:

$$\left\|P_{ij}x_j\right\|^2 = x_j^T P_{ij}^T P_{ij}x_j.$$

Для симметричных квадратных матриц $P_{ij}^T P_{ij}$ справедливы оценки

$$\lambda_m \left(P_{ij}^T P_{ij} \right) \le x_j^T P_{ij}^T P_{ij} x_j \left\| x_j \right\|^{-2} \le \lambda_M \left(P_{ij}^T P_{ij} \right).$$

Тогда имеют место оценки вида

$$\|P_{ij}x_j\|^2 \le \lambda_M \left(P_{ij}^T P_{ij}\right) \|x_j\|^2; \qquad \|P_{ij}x_j\| \le \lambda_M^{1/2} \left(P_{ij}^T P_{ij}\right) \|x_j\|.$$
 (21)

Аналогично формируются требуемые оценки для норм

$$\|B_i u_i\|^2 \le \lambda_M (B_i^T B_i) \|u_i\|^2; \quad \|B_i u_i\| \le \lambda_M^{1/2} (B_i^T B_i) \|u_i\|.$$
 (22)

В силу (21), (22), первого и третьего неравенства Красовского оценки компонент $v_i'(x_i)$, i=1,...,n, производной функции Ляпунова примут вид

$$v_{i}'(x_{i}) \leq -\eta_{i}c_{2i}^{-1}v_{i} + \mu_{i} \lambda_{M}^{1/2} \left(P_{i1}^{T}P_{i1}\right)c_{11}^{-1}v_{1} + \dots$$

$$\dots + \mu_{i} \lambda_{M}^{1/2} \left(P_{in}^{T}P_{in}\right)c_{1n}^{-1}v_{n} + \mu_{i} \lambda_{M}^{1/2} \left(B_{i}^{T}B_{i}\right) \|u_{i}\|. \tag{23}$$

Из совокупности неравенств (23) следует уравнение сравнения:

$$z_{i}' + \eta_{i} c_{2i}^{-1} z_{i} = \mu_{i} \lambda_{M}^{1/2} \left(P_{i1}^{T} P_{i1} \right) c_{11}^{-1} z_{1} + \dots$$

$$\dots + \mu_{i} \lambda_{M}^{1/2} \left(P_{in}^{T} P_{in} \right) c_{1n}^{-1} z_{n} + \mu_{i} \lambda_{M}^{1/2} \left(B_{i}^{T} B_{i} \right) \| u_{i} \|.$$

$$(24)$$

Условия, при которых уравнение сравнения (24) мажорируют вектор-функцию Ляпунова v(t) следуют из первого неравенства Красовского:

$$||x_i|| \leq c_{1i}^{-1} v_i,$$

а уравнение сравнения, мажорирующее $\|x_i\|$, примет вид:

$$z_{i}' + \eta_{i} c_{2i}^{-1} z_{i} = \mu_{i} \lambda_{M}^{1/2} \left(P_{i1}^{T} P_{i1} \right) c_{11}^{-1} c_{1i}^{-1} z_{1} + \dots$$

$$\dots + \mu_{i} \lambda_{M}^{1/2} \left(P_{in}^{T} P_{in} \right) c_{1n}^{-1} c_{1i}^{-1} z_{n} + \mu_{i} \lambda_{M}^{1/2} \left(B_{i}^{T} B_{i} \right) c_{1i}^{-1} \| u_{i} \|.$$

Система сравнения на основе функции Ляпунова $v_i(x_i)$ имеет вид

$$z' = Wz + \Gamma \|u\|,\tag{25}$$

причем координатная форма уравнений сравнения определена равенствами

$$z'_{i} = w_{ii}z_{i} + \sum_{j=1, j \neq i}^{r} w_{ij}z_{j} + \gamma_{i} ||u||, \quad i = 1, 2, ..., r,$$

где $z, \Gamma \in \mathbb{R}^r$, $W \in \mathbb{R}^{r \times r}$.

Элементы матриц W и вектора Γ равны

$$w_{ii} = -\frac{c_{3i}^2}{2c_{2i}^2}, \quad w_{ij} = \frac{c_{4i}^2 \lambda_M^{1/2} \left(P_{ij}^T P_{ij} \right)}{2c_{1i}c_{1j}}, \quad \gamma_i = \frac{c_{4i}^2 \lambda_M^{1/2} \left(B_i^T B_i \right)}{2c_{1i}}.$$

Если $v_i(x_i) = (x_i^T H_i x_i)^{1/2}$, то элементы (25) примут вид

$$w_{ii} = -\frac{\lambda_m\left(G_i\right)}{2\lambda_M\left(H_i\right)}, w_{ij} = \frac{\lambda_M\left(H_i\right)\lambda_M^{1/2}\left(P_{ij}^TP_{ij}\right)}{\lambda_m^{1/2}\left(H_i\right)\lambda_m^{1/2}\left(H_j\right)}, \gamma_i = \frac{\lambda_M\left(H_i\right)\lambda_M^{1/2}\left(B_i^TB_i\right)}{\lambda_m^{1/2}\left(H_i\right)}.$$

Для норм выходных координат-перетоков по линиям s_i , справедливы соотношения в виде равенств и неравенств-оценок вида

$$||s_i|| = ||C_{ii}x_i + C_{1i}x_1 + \dots + C_{ni}x_n||;$$

$$||s_i|| \le ||C_{ii}|| \times ||x_i|| + ||C_{1i}|| \times ||x_1|| + \dots + ||C_{ni}|| \times ||x_n||.$$
(26)

11. Вычислительный эксперимент

Исследовано ЭЭО из трех ЭС, представленных моделями турбин, схема которого дана на рисунке 1, а параметры ЭС, представленных эквивалентными турбинами, и линий $k_{C_1}, k_{\Pi_1}, k_{\omega_1}, T_{a_1}, T_{y_1}, k_{11}, k_{21}$ приведены в таблице.

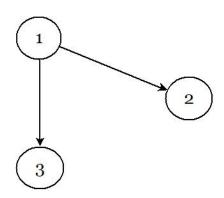


Рис. 1. Схема сети электроэнергетического объединения из 3-х машин

Параметры энергосистемы

k_{C_1}	0,019	k_{C_2}	0,028	k_{C_3}	0,017
k_{Π_1}	0,021	k_{Π_2}	0,024	k_{II_3}	0,02
k_{ω_1}	0,017	k_{ω_2}	0,032	k_{ω_3}	0,016
T_{a_1}	0,02	T_{a_2}	0,017	T_{a_3}	0,02
T_{y_1}	0,027	T_{y_2}	0,025	T_{y_3}	0,025
k_{11}	0,015	<i>k</i> ₁₂	0,027	<i>k</i> ₁₃	0,013
k ₂₁	0,022	k ₂₂	0,031	k ₂₃	0,019
ρ_{12}	0,02	ρ_{23}	0	ρ_{13}	0,04

Требуется исследовать устойчивость ЭЭО с помощью МВФЛ на основе дифференциальных уравнений объединения.

Функции Ляпунова для аппроксимирующих уравнений ЭС. Для каждой ЭС функция Ляпунова задана в форме Шилака. Матрицы H_i вычислены из уравнения Ляпунова, где $G_i = E$. Тогда

$$H_{1} = \begin{bmatrix} 0,6714 & -0.5 \\ -0.5 & 0.9151 \end{bmatrix}; \quad G_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \quad H_{2} = \begin{bmatrix} 1,7373 & -0.5 \\ -0.5 & 0.3231 \end{bmatrix}; \quad G_{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix};$$

$$H_{3} = \begin{bmatrix} 1,8812 & -0.5 \\ -0.5 & 0.7354 \end{bmatrix}; \quad G_{3} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Функция Ляпунова
$$V = (v_1, v_2, v_3)^T \in \mathbb{R}^3$$
, в форме Шилака равна [2] $v_1 = \left(0,6714\varphi_1^2 - \varphi_1\omega_1 + 0,9151\omega_1^2\right)^{1/2}$; $v_2 = \left(1,7373\varphi_2^2 - \varphi_2\omega_2 + 0,3231\omega_2^2\right)^{1/2}$; $v_3 = \left(0,8812\varphi_3^2 - \varphi_3\omega_3 + 0,7354\omega_3^2\right)^{1/2}$.

Оценки векторной функции Ляпунова. Оценки компонент ВФЛ вычислены с помощью $\lambda_i(H_i)$ и $\lambda_i(G_i)$, которые для ЭС-1 равны:

$$c_{11} = 0,5278; c_{21} = 1,1436; c_{31} = 1; c_{41} = 1,6173; \ \eta_1 = 0,4372; \ \mu_1 = 2,4778.$$

Оценки для ЭС-2 заданы равенствами:

$$c_{12} = 0,4052; c_{22} = 1,3770; c_{32} = 1; c_{42} = 1,9474; \ \eta_2 = 0,3631; \ \mu_2 = 4,6799.$$

Оценки для ЭС-3 определены равенствами:

$$c_{13} = 0.5504$$
; $c_{23} = 1.1461$; $c_{33} = 1$; $c_{43} = 1.6208$; $\eta_3 = 0.4363$; $\mu_3 = 2.3864$.

Структура модели сравнения. На основе оценок сформирована система сравнения из трех уравнений

$$z_1' = -0.3823z_1 + 0.1223z_2 + 0.1801z_3 + 0.0494u;$$

$$z_2' = -0.2637z_2 + 0.1773z_1 + 0.1850u;$$
 $z_3' = -0.3807z_3 + 0.1808z_1 + 0.0406u.$

Тогда выполнены условия устойчивости Севастьянова-Котелянского для мажорирующей системы как неотрицательности трех определителей.

Оценки векторной функции Ляпунова. Для функций Ляпунова ЭС-1 оценки с помощью $\lambda_i(H_i)$ и $\lambda_i(G_i)$ вычислены оценки для ЭС-1 равные:

$$c_{11} = 0.5278$$
; $c_{21} = 1.1436$; $c_{31} = 1$; $c_{41} = 1.6173$; $\eta_1 = 0.4372$; $\mu_1 = 2.4778$.

Оценки для ЭС-2 заданы равенствами:

$$c_{12} = 0,4052; c_{22} = 1,3770; c_{32} = 1; c_{42} = 1,9474; \ \eta_2 = 0,3631; \mu_2 = 4,6799.$$

Аналогично вычислены оценки для ЭС-3, равные

$$c_{13} = 0,5504$$
; $c_{23} = 1,1461$; $c_{33} = 1$; $c_{43} = 1,6208$; $\eta_3 = 0,4363$; $\mu_3 = 2,3864$.

Условия устойчивости ЭЭО. На основе оценок получена система сравнения в виде трех линейных дифференциальных уравнений:

$$z_1' = -0.3823z_1 + 0.1223z_2 + 0.1801z_3 + 0.0494u;$$

$$z_2' = -0.2637z_2 + 0.1773z_1 + 0.1850u; \quad z_3' = -0.3807z_3 + 0.1808z_1 + 0.0406u.$$

Условия устойчивости Севастьянова-Котелянского имеют вид

$$-w_{11} = 0.3823 > 0;$$

$$\det \begin{vmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{vmatrix} = \det \begin{vmatrix} -0.3823 & 0.1223 \\ 0.1773 & -0.2637 \end{vmatrix} = 0.0791 > 0;$$

$$(-1) \det \begin{vmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{vmatrix} = (-1) \det \begin{vmatrix} -0.3823 & 0.1223 & 0.1801 \\ 0.1773 & -0.2637 & 0 \\ 0.1808 & 0 & -0.3807 \end{vmatrix} = 0.0215 > 0.$$

Таким образом, условия Севастьянова-Котелянского выполнены, поэтому ЭЭО из трех ЭС с двумя линиями является устойчивым.

Заключение

Для анализа достаточных условий устойчивости сложных систем может быть использован метод векторных функций Ляпунова.

Список литературы

- 1. Матросов В.М. Метод векторных функций Ляпунова: анализ динамических свойств нелинейных систем. М.: Физматлит, 2001. 373 с.
- 2. Шильяк Д.Д. Децентрализованное управление сложными системами. М.: Мир, 1994. 576 с.
 - 3. Красовский Н.Н. Теория управления движением. М.: Наука, 1968. 476 с.

- 4. Козлов В.Н. Управление энергетическими системами и объединениями. СПб.: Изд-во СПб. политехн. ун-та, 2008. 350 с.
- 5. Козлов В.Н., Куприянов В.Е. Вычислительные методы синтеза систем автоматического управления. Л.: Изд-во ЛГУ им. А.А. Жданова, 1989. 220 с.
- 6. Козлов В.Н., Ефремов А.А. Введение в функциональный анализ. СПб.: Издво СПб. политехн. ун-та, 2019. 90 с.

УДК 618.2 doi:10.18720/SPBPU/2/id20-152

Долятовский Валерий Анастасиевич¹, Заслуженный деятель науки РФ, д-р экон. наук, профессор, член МАН ВШ; Биломбо Рауль², доктор математики, профессор

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ ДИНАМИЧЕСКИМ ОБЪЕКТОМ НА ОСНОВЕ ПРИНЦИПА МАКСИМУМА

¹ Ростовский государственный экономический университет, Ростов-на-Дону, Россия, ¹ dvaleri@inbox.ru ² Университет М. Нгуаби, Браззавиль, ДРК

Аннотация. Рассмотрена задача оптимального управления по возмущениям динамическим объектом с переменной массой, движущимся по пути с изменяющимся профилем. Задача формализована на основе принципа максимума Л.С. Понтрягина, выведены условия переключения управлений, разработан алгоритм численного решения задачи. Приведены результаты программных расчетов, показавшие значительную экономию энергии при оптимальном управлении.

Ключевые слова: оптимальное управление, динамический объект, принцип максимума, эффективность.

Valery A. Dolyatovsky¹,
Honour. Scientist of the Russian Federation,
Dr. Math. Econ. Sci., Professor, IHAHS member;
Raul Bilombo²,
Doctor of Mathematics, Professor

OPTIMUM CONTROL OF THE DYNAMIC OBJECT ON THE BASIS OF THE MAXIMUM PRINCIPLE

¹Rostov State Economic University, Rostov-on-Don, Russia, ¹dvaleri@inbox.ru, ²Marien Ngouabi University, Brazzaville, Republic of Congo