Bormpocsl, 3aTpoHyThie B HacTosIeld padoTe, a Takxke Ipyrue, OTHOCS-
myecs K TEOPUH MOAOOMS M Pa3MEPHOCTH, JOCTATOYHO MOJIHO OTPAKCHHI B
YKa3aHHBIX HIKE KHUrax. B yacTHOCTH, O0JIbIIIOE YMCIIO KOHKPETHBIX MTPUMeE-
POB MCIIOJIB30BAHMSI 3TOM TEOPUM B 3a/JayaX MEXaHHKH, TEIJIO- U DJIEKTPO-
DHEPIreTUKH NPUBENEHO B [3, 5, 6].
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CBOAMUTCS K 3a7ade JIMHEWHOIO IPOrPaMMMPOBAHHUs, ONTUMAJBHBIM IUIAH I KOTOPOU
HaXOJUTCSI ¢ MOMOIIbIO ajnanTuBHOro merona P. I'abGacoBa. PaccMoTpeHHBIN anropurm
peamuzoBan B cpeae MATLAB, nans d4ucieHHOM peanu3aldd — MCIHOJIb30BAaHBI
CTaTUCTUYECKHUE JaHHBIE.
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Abstract. In this paper, we construct a non-cooperative game-theoretic model
describing the interaction process of insurance companies in the CMTPL business line. As
an optimality principle in the game, we use a local Nash equilibrium [1], to define Nash
equilibrium the method of reduction to the linear programming problem and the adaptive
method by R. Gabasov [2] are used. The corresponding algorithm is implemented in
MATLAB, statistical data is used for numerical simulation.

Keywords: optimal control, adaptive method, Gabasov’s approach, Nash equilibrium,
actuarial mathematics, numerical methods, game theory.

Introduction

In this paper, we discuss an approach to solving linear game-theoretic
problems using the adaptive method. The considered approach is based on re-
ducing the game-theoretic problem to two related linear programming prob-
lems, the optimal plan is constructed using the adaptive method. Let us con-
sider the mathematical formulation of the problem.

1. Problem statement
We consider a non-cooperative game with two players in normal form.
The strategy for the first player is xeR", for the second player is yeR".

The payoff functions for the first player and for the second are
fi(x,y)=cx+cy, fL,(x,y)=clx+ciy

consequently.
The set of strategies for the first player is

X(y)={xeR :Ax=d-By,l. <x<I},

for the second player is
Y(x):{yeR’” :By =d - Aux,L,. SySlZ}.
The pair (x',y"), x € X(¥), y € Y(x) is a local Nash equilibrium if the
LG5y = max fi(x, ), f(x7,y7) = max f,(x7,y).
XeX(y) ye¥(x)
following equations are true.
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Also, we can consider this game-theoretic problem like two linear pro-
gramming problems.
Let the vectors be such that y=y(x)eY(x) and x=x(y)e X(y), then we
get following system
CIX+CrY(X) = yg{axx)(cfx +Coy).

CX(Y)+Cyy = Xerr)l(azcy)(cl'x +CyY).

The vectors y" =y’ (x"), x =x(y") are local Nash equilibrium if the if the
following equations are true
f,(x",y") = max f,(x, y(x)),x € X (y(x)),
f,(X",y7) = max f,(x(y), ),y €Y (X(¥).
For solving interval linear programming problem, we use the Adaptive
method, which has many advantages over the classical simplex-method. We

consider the details of the algorithm and features of the adaptive method by
R. Gabasov [2].

1.1. Adaptive method

To find the optimal plan in linear programming problems, the simplex-
method is usually used, but in this paper, we will consider an alternative
method.

The adaptive method does not require the introduction of new variables
and an increase of the dimension of the problem, besides the adaptive method
can use any points from a set of plans, not only vertices. The algorithm of the
adaptive method at each iteration the direction and length of the step along this
direction are selected according to certain rules.

We use the direct algorithm of the adaptive method [2] for solving the in-
terval linear programming problem

F'U—> max,
T.<KU<T', (1)
U.<U<U"
Where F, U, U,, U are n-dimension vectors, T,, T are m-dimension vectors, K
1s m*n—dimension matrix.

The adaptive method algorithm consists of several steps.

0 step First of all, you need to choose the initial plan U and support

Ko =g, dp)-

Let I,=1\1,and J,=J\J,.

1 step Calculation of potential vectors & and estimates A:

(1) =F )K"y, 1),  £01,)=0, 2)
AJ,) =F(J,)-K (1,,3,),), A(J,)=0. 3)
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U.,if A()<0;
U = U",if AG)>0; (4)
e[U.,U"],ifAG)=0,jeld,;

T.,if £(j)<0;
K(i,J)U = T7,if £(j)>0; (5)

e[T.T7].if £()=0,iel,.

2 step Verification of the optimality criterion:

In the case of fulfilling the criterion of optimality of execution, the de-
sired solution is found and the algorithm should be completed. If it is not ful-
filled, then you need to write out the index i, e I,0r j, € J,, which the optimali-

ty criterion is violated and go to the next step.
3 step Construction of the direction of the plan change:
If at step 2 the optimality criterion (4) — (5) is violated for some index j,,

then we assume:

1(Jo) =sgn(A(jo)), 13,1\ jp) =0,
I(‘]o):_Kil(JO' Io)K(Io’ jo)l(jo)-

If at step 2 the optimality criterion (4) — (5) is violated at some index i,,
then we assume:
1(3,)=0, w(i,)=sgn(&(i,)), w(ly\iy)=0,
1(J,) = _Kil(‘]o’ l)w (1)

4 step Calculation of the maximum step along the direction:
If at step 2 the optimality criterion (4) — (5) is violated for some index j,,

then A(i,) = and if it is violated with the index i,, then A(j,)=o.
2% =min(A(k),k € J, U j, Ul Uiy),
U™ (k) =U (K)) 1 1(K), if 1 (K)>0;
A(K) =4 (U..(K) =U (k) / 1(K), if 1(k)<O;
o0,if (K)=0, k € J, U j,:
(@ (K)— K (k, U)K (K, )I,if K (k, I)>0;
A(K) =1 (. (k) —K(k, U)K (k, I, if K(k, J)I<0;
w0,if K(k, I)I=0, k e I_ Ui,

If 1°=o, then the objective function is unlimited and the algorithm
needs to be completed.
5 step Calculation of a new plan:

U=U+2".
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6 step Support replacement:
If 2°=A(k"), where ke J, Ul , then the support needs to be replaced.

One of the four cases is possible:
1) If on step 2 was index j,eJ, , k =; eJ,, then

Iy=1,, Jy=(J,\j)Y
2) If on step 2 was index j, e J,, k =i 1, then

—~

Iy=1,9i,, J,=J,U j,.
3) If on step 2 was index i, €1, k¥ = €J,, then

I,=(I,\ip)ywi', J,=J,.
4) If on step 2 was index i, e/,, kK =i el then

I=I\iy, Jy=J\/"
go to 1 step.

2. Actuarial Problem

Motor third party vehicle insurance is compulsory insurance and it covers
civil legal liability for damage caused to the third party by driving the motor
vehicle, which means that this will not be paid by a driver, but by the insur-
ance company which issued the policy. In Russia, it’s called CMTPL (rus.
«OCATI'O») — Compulsory Motor Third Party Liability.

CMTPL insurance allows the shifting of financial responsibility for the
property damage caused by you or to the health of the person to the insurance
company. In CMTPL offended policyholder can apply to his own insurance
company to settle the loss. After that, Company pays for policyholder his loss
and then sends this loss to the company of guilty policyholder through Clear-
ing house to receive compensation.

The process of exchanging the requirements evolves in the following
way: if an insured event occurs with two participants, the victim can apply not
only to the insurance company where he is a client, in this case, the insurance
company, which the victim turned directly, pays the losses to the victim. Later
on, the insurance company should demand compensation from the company of
the culprit.

Russian insurance market uses the Belgian system [3] for the process of
exchange the requirements. During the settlement session (one week), insur-
ance companies exchange requirements, and based on the settlement session
results, the average is calculated and all claims are refunded according to it.
Since the requirements have different sums, the calculating process of the av-
erage sum of all session requirements can be adjusted to obtain a large profit
during the session. Let us consider more detail about the process of exchange
the requirements between insurance companies in the market.
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2.1. Belgian system

Direct compensation for losses called “Belgian system” and is regulated
by the RAMI (Russian Association of Motor Insurers).

Clearing session — a period of time when insurance companies submit
losses to the clearing center (equal to one calendar week).

The process of regulating requirements on the market occurs according to
the following rules:

 During one clearing session (week), all insurance companies send re-
quirements to each other;

o After the end of the week, RAMI divides all requirements into groups
according to the region of the owner and the type of vehicle (30 groups);

* In each group, the average value is calculated (Fix values);

» On Tuesday, the average (Fix value) is paid back for each submitted
claim.

This system has following problems: for many small companies their
sum of losses much bigger, then average on the market, that is why these
companies can’t get all compensation and have bad financial result, besides all
insurance companies in Russia are obliged to insure customers coming from
the RAMI system who have a negative insurance history and bring big losses,
these losses almost always give a negative financial result. This article dis-
cusses the mathematical approach to the process of setting requirements, to
improve the financial result of the companies.

2.2. Mathematical problem statement

Let us consider a game-theoretic model describing the process of direct
compensation of losses between insurance companies. Players are the insur-
ance companies that make decisions on claiming losses during one settlement
session; therefore, we consider a static game. For simplicity, we consider one
session and two insurance companies or static two-player game.

Let us consider the problem as a problem of game theory with two play-
ers. Company A is the first player and company B is the second player.

Every company has a set of requirements:

N ={£&:0<¢& <400000,i =1,n},
M = {1, :0<n; <400000, j =1m}.

Players’ strategy sets are finite sets of vectors where the components are
the requirements that are sent by the insurance companies:

X:{x:(x1 ..... X;yenn xnl)T,dl*stdf,xieN,nleﬁ},
Y:{y:(y1 ..... Vs yml)T,dz*éysd;,yjeM,mleO,_m},

where x;,y; are the requirements of companies A and B respectively.
Payoff functions of players have the form
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L) =X (p-X). L) =3 (p-Y,)

1 : . .
where p= (Zflxi+z:_“ilyj) is the average value of all claims require-
n +m = =

ments.
2.3. Adaptive method for actuarial problem
The payoff functions of players are linear.
L Y) =ax+GY, (X y)=cX+cyY,

where
m n
¢ =——=—¢€,, C,=—=—¢€,,
n, +m, n, +m,
2= L
1 n 2 my
n, +m, n, +m,

and e, is unit vector 1*t.
Vector (x.,y;) is Nash equilibrium point if the following equations

LOCY)=max fi(xy),  f(Cy) =max f,(x,y)

are true.

We consider the actuarial game-theoretic problem as two linear pro-
gramming problems.

If xe X is some given vector, then y = y(x) is the optimal plan of the sec-
ond player such that

CIX+ Gy (x) = Max(¢fx+c3y), (6)

By analogy yeY and x = x(y) is the optimal plan of the first player

GX(Y) +CY = max(c;x +C,Y). (7)

The vectors x eX, y =y (x), x =x(y), y €Y is Nash equilibrium
points, if the following equations are true

f.(x,y") = max f,(x, y(x)),xe X, (8)

f,(x",y") =max f,(x(y),y).y €Y. 9

To find the equilibrium point we should solve one of the linear program-
ming problems (6) — (7), find y(x)eY or x(y)e X, and then solve the corre-

sponding problem (8) — (9).
2.4. Algorithm
Let us consider the steps of the algorithm of the adaptive method
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0 Step Set initial value x
1 Step Find A, from the auxiliary system

C;AX — max, (10)
d.—x<Ax<d; -x.

2 Step Find y

If ¢; >0, then y=d,., else y=d,.

3 Step

If Ax=0, then x=x+Ax— 1 Step
If Ax=0, then x=x, y=y.

3. Numerical implementation
For a numerical experiment, consider a few examples with the real statis-
tical data.

3.1. First example

Suppose that companies send only one requirement, thenn; =1, m; = 1.
Sets of requirements (in thous. rub.) are

N = {100, 200, 400}, M = {50, 100}.
Let’s construct a payoff matrix (Table 1).
Nash equilibrium is (x,y,): v=v=(-25,25).
Table 1
The payoff matrix for the first example

Y1 Y2

X1 -25\25 0\0

X -75\75 -50\50
X3 | -175\175 | -150\150

By the Adaptive method initial x=d,. The adaptive method finds the
equilibrium point in 2 steps.
AXx(2) =-300, Ax(2) =0.
The Nash equilibrium point is (x,y,), the same as in the payoff matrix
(see Tab.1).

3.2. Second example
Suppose that companies send two requirements, then ny =2, m; = 2.
Sets of requirements (in thous. rub.) are

N = {50, 200, 400, 400}, M = {100, 250, 400}.
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Then we get the following vectors
x, = (50,200)", x, = (50,200)", X, =(200,400)", x, = (400,400)",
y, = (100,250)", y, = (100,400)", y, =(250,400)",
d,. =(50,200)", d; = (400,400)", d,. =(100,250)", d, = (250,400)" .

Let us construct a payoff matrix (Fig. 1).

Nash equilibriumis (x,,y,) : v=v=(50,-50)

By the Adaptive method initial x=d,.. The Nash equilibrium point by
the adaptive method is (x,y,), which corresponds to the payoff matrix
(see Tab. 2).

3.3. Third example
Suppose that n =500, m = 600, n, = 120, m; = 150.
Nash equilibrium by the Adaptive method is (x,,y,) (see Tab. 3).

120 ¢
100 * L 2 .
80
» 60
% a 2
40 |
20 -
0
0 100 200 300 400 500
X
Fig 1. The strategies for the first example
Conclusion

Using the actuarial problem as an example, we considered the use of the
adaptive method for finding the local Nash equilibrium for linear game-
theoretic models. To implement the considered algorithm, a software package
was developed in the MATLAB, several numerical examples of different di-
mensions were considered, and for each example, the obtained equilibrium
points are given. The results obtained in this paper reflect the results obtained
using expert evaluations, but in real life, the model has a larger number of
players and a more complex set of parameters. Future studies will continue to
expand this approach to the case of a game of n-players and dynamics games.
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Annomayun. B HedTIHON NMPOMBIIUIEHHOCTH, 1 0COOEHHO B HE(TSIHBIX CKBAKUHAX,
HEOOXOIMMO MMETh BO3MOYKHOCTH MPOBOJIUTH HETIPEPBIBHBIC MTPOU3BOICTBEHHBIE 3aMEPHI,
9TOOBI YNPaBIATh CKBAXHUHOW HaWaydimuM oOpa3oMm. B manHoi paboTe mpencraBiieH
aHaJIN3 JaHHBIX Ui OECKOHTAKTHOT'O METOJIa U3MEPEHUS Ta30BOi (pakiuu B IBYX(a3HBIX
HE(PTSIHBIX MOTOKaX MPOAYKLIMH CKBAXMH HAa OCHOBE IPSIMOIO M PACCESTHHOTO Tramma-
n3Iy4deHus. MeToJl OCHOBaH Ha KiacCH(UKAIMN WHTEPBAIOB HAONIOJICHHS ABYX(pa3zHOTO
MOTOKAa C  HWCHOJh30BAHMEM  CTATUCTHYECKMX  ONEHOK. (OCOOEHHOCTh  OIICHOK
WHPOPMATUBHOCTH TIOJIY4YCHAa C KCIOJIb30BaHHEeM pacxoxaeHus KymwOaka-JleiiOnepa,
KOTOpas BbIIBWJIA BJIHMSHUE AKTUBHOCTH MCTOYHHKA M3Iy4eHus, 3(PQeKTuBHOCTH
JIETEKTOpa, a TAKXKE POJHM PACCESTHHOTO TaMMa-M3JIy4YCHHUs Ul BBISBICHHS MOMEHTOB
OTCYTCTBUSI CBOOOJTHOTO Ta3a B AKCIUTYaTallMOHHOM IIOTOKE, YTO CYIIECTBCHHO BIUSET Ha
usMepenusi. Kpome Toro, mpuBeicHa QopMmyna Juis OICGHKH Tra30BOW  (hpakiiuu,
MPUCYTCTBYIOIIEH B HE()TEra30BOM MOTOKE.
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