УДК 621.671

doi:10.18720/SPBPU/2/id20-343

*Горбатов Даниил Анатольевич*¹, инженер sum1996@yandex.ru

*Калаев Владимир Анатольевич*¹, проф., д.т.н. kalayev@mail.ru

Шумилин Сергей Александрович¹, ведущий инженер, к.т.н. sashumilin@mail.ru

¹ОАО «НПО ЦКТИ», Россия, г. Санкт-Петербург

ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ПРОТОЧНОЙ ЧАСТИ КРИОГЕННОГО НАСОСА ПО ДВУХВАЛЬНОЙ СХЕМЕ РАБОТЫ

Аннотация. С целью повышения кавитационных показателей рассмотрена работа насоса по двухвальной конструктивной схеме с использованием планетарного редуктора, что позволяет существенно повысить экономическую эффективность его работы. Приведены результаты гидродинамического расчёта лопастных систем насоса для перекачки сжиженного пропана с температурой $t = -41 \, \mathrm{C}^\circ$.

Ключевые слова: насос, кавитация, шнек, редуктор, гидравлика, потери.

Gorbatov Daniil¹, engineer sum1996@yandex.ru

Kalaev Vladimir¹, Professor, Doctor of Engineering Sciences kalayev@mail.ru

Shumilin Sergei¹, leading engineer, Candidate of Technical Sciences sashumilin@mail.ru

¹JSC «NPO CKTI», Russia, St. Petersburg

HYDRAULIC CALCULATION OF THE FLOW PART OF THE CRYOGENIC PUMP ACCORDING TO THE TWO-SHAFT OPERATION SCHEME

Abstract. In order to increase cavitation indicators, the operation of the pump according to a two-shaft structural scheme using a planetary gearbox is

considered, which allows to signifi-cantly increase the economic efficiency of its operation. The results of hydrodynamic calculation of vane pump systems for pumping liquefied propane with a temperature of $t = -41 \, \text{C}^{\circ}$ are presented.

Keywords: pump, cavitation, inducer, gearbox, hydraulic, losses.

Введение

При транспортировке морским путём сжиженного углеводорода (пропан с температурой $t=-41~{\rm C}^{\circ}$) используются откачивающие погружные многоступенчатые насосные агрегаты, установленные внутри приёмного резервуара объёмом 20 000 м³. В качестве примера укажем на существующий насосный агрегат 60982 R4-600-60-100 фирмы «Atlas Copco» со следующими параметрами:

1. Подача, $м^3/ч$ ($м^3/c$)	1500 (0,417)
2. Напор, м	250
3. Частота вращения, об/мин	1500
4. Кавитационный запас, м	0,8
5. КПД, %	84,5
6. Мощность, кВт	750

Проточная часть насоса состоит из 4-х рядовых ступеней с рабочими колёсами центробежного типа и предвключенного колеса осевого типа с переменным втулочным отношением. На аналогичные параметры был выполнен также гидродинамический расчёт лопастной системы насоса [1], который показал, что основную сложность в создании данного насоса заключается в обеспечении его бескавитационной работы. Так как величина динамического разрежения при заданных величинах подачи и кавитационного запаса зависит от частоты вращения ротора, то целесообразно проектировать предвключенную ступень на пониженную частоту вращения таким образом, чтобы сохранить соосность роторов предвключенной и рядовой ступени. Это можно осуществить двумя способами: либо с применением

вращающегося направляющего аппарата рабочего колеса рядовой ступени [2], который работает в режиме центробежной гидротурбины с КПД, соответствующему значению передаточного отношения, либо с использованием планетарного редуктора, размещённого в полости между ступицей рабочего колеса и спрямляющей решёткой предвключенной ступени. В этом случае экономическая эффективность работы насоса незначительно снижается, так как КПД планетарного редуктора составляет 97-98 %. Применение планетарного редуктора позволяет увеличить частоту вращения основного ротора насоса до n = 3000 об/мин и тем самым сократить количество рядовых ступеней с 4 до 1, что существенно снижает вес и уменьшает габариты насосного агрегата. В соответствии с изложенным на рис. 1 и рис. 2 приведены проточные части насоса по двухвальной схеме с использованием вращающегося направляющего аппарата и планетарного редуктора.

Расчёт проточной части

Проточная часть состоит из предвключенной ступени, в состав которой входит водорез, осевое и центробежное колесо и спрямляющая решётка направляющего аппарата, и рабочее колесо рядовой ступени с выправляющим аппаратом.

Последовательность расчёта следующая. Задаёмся величиной кавитационного коэффициента быстроходности рабочего колеса рядовой ступени $C_{\rm kp} = 900$ и определяем по (1) необходимую величину подпора для обеспечения бескавитационной работы:

$$\Delta h_{\rm Kp} = \left(\frac{5,62 \cdot 3000 \cdot \sqrt{0,417}}{900}\right)^{1,33} = 27,7 \,\text{M}.\tag{1}$$

Тогда по (2) величина напора предвключенной ступени:

$$H_{\text{п.ст}} = \varphi \cdot \Delta h_{\text{KP}} - \Delta h_{\text{X}} = 1, 2 \cdot 27, 7 - 2 = 32 \text{ M},$$
 (2)

$$\Delta h_{\rm x} = \Delta h_{\rm r} + \Delta h_{\rm t},\tag{3}$$

где Δh_t — величина термодинамической поправки, значение которой определяется расчётным путём и составляет 1,29 м [3].

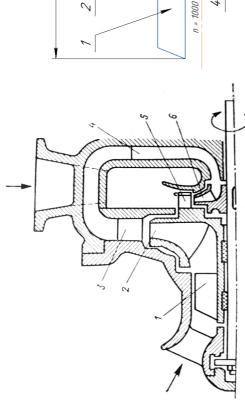


Рис. І. Вариант исполнения проточной части по двухвальной схеме
 с вращающимся направляющим аппаратом:
 І – предвключённый шнек; 2 – центробежное колесо первой ступени; 3 – лопаточный отвод;
 4 – лопатка обратного канала; 5 – радиальная турбина;
 6 – центробежное колесо второй ступени

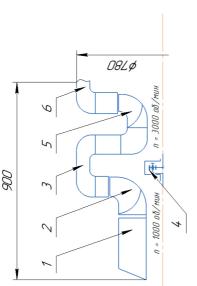


Рис. 2. Вариант исполнения проточной части по двухвальной схеме

с планетарным редуктором:
— осевое вабочее колесо предвк поченной

I — осевое рабочее колесо предвключенной ступени; 2 — центробежное рабочее колесо предвключенной ступени; 3 — направляющий

аппарат предвключенной ступени; 4- планетарный редуктор; 5- центробежное рабочее колесо рядовой ступени;

6 — направляющий аппарат рядовой ступени

Величина напора рядовой ступени по (4) равна:

$$H_{\rm p} = H - H_{\rm \Pi,CT} = 250 - 32 = 218 \,\mathrm{M} \,.$$
 (4)

Параметры рядовой ступени, следующие: $Q=1500~{\rm m}^3/{\rm q}$ (0,417 ${\rm m}^3/{\rm c}$); $\Delta h_{\rm kp}=28~{\rm m}$; $H=218~{\rm m}$; $n_s=125$; $n=3000~{\rm of/muh}$; $D_2=0,440~{\rm m}$; $\Delta h=32~{\rm m}$.

Проектирование и гидравлический расчёт лопастных систем на первоначальном этапе работы выполнялся с использованием САПР ЛС [4] с последующим проверочным расчётом в ANSYS CFX.

Диаметр рабочего колеса $D_2 = 0,440$ м, быстроходность $n_s = 125$ и расчётные параметры в приведённых величинах составили следующие значения: $n_1' = 89,4$ об/мин; Q_1' , = 0,146 м $^3/c$; $\sigma \le 0,13$.

Основные геометрические значения проточной части и лопастной системы К1706 следующие:

$$b_2 = 0.09 \cdot D_2, \ D_{\Gamma} = 0.66 \cdot D_2, \ d_{\text{BT}} = 0.4 \cdot D_2, \ z = 7;$$

$$\beta_{\text{H}} = 28 - 28 - 28;$$

$$\beta_{\text{BC}} = 15.5 - 21 - 28;$$

$$\phi = 118 - 118 - 118;$$

$$l/t = 2.4 - 2.48 - 2.59.$$

Результаты гидродинамического расчёта даны в таблице 1.

 Таблица 1

 Результаты гидродинамического расчёта

	1 ЛТ	3 ЛТ	5 ЛТ	7 ЛТ	9 ЛТ
RV_u , M^2/c	1,25	1,27	1,27	1,26	0,23
h _{πp} , %	4,5	3,5	2,7	2,1	1,7
$h_{ m yg},\%$	0	0	0	0	0,4
σ	0,12	0,11	0,12	0,11	0,1

Из представленных данных следует, что профильные потери в рабочем колесе составляют 2,9 %, ударные потери практически отсутствуют, а с учётом вторичных потерь, обусловленных трением жидкости об ограничивающие диски и перетекани-

ем жидкости поперёк лопастного канала от стороны давления к стороне разрежения, которые по данным Г. Ю. Степанова пропорциональны профильным потерям и зависят от соотношения ширины и высоты межлопастного канала, суммарные гидравлические потери в колесе рядовой ступени составляют 5,8 %. Величина динамического разрежения $\sigma = 0,11$, чему соответствует $\Delta h = 0,11 \cdot 218 = 24$ м и $C_{\kappa p} = 1004$, что больше принятой в расчёте величины. Следовательно, обеспечивается бескавитационная работа насоса при условии создания напора предвключенной ступени напора H = 32 м. Осреднённая величина момента скорости на выходе из рабочего колеса $RV_u = 1,26$ м²/с. Этому значению соответствует теоретический напор $H_{\rm T} = 262$ м. Действительный напор равен H = 236 м, т. е. обеспечивается с запасом в 8 %.

Проточная часть предвключенной ступени, как указывалось ранее, состоит из рабочего колеса осевого типа SL1706 и рабочего колеса центробежного типа Кп 1706. Исходные параметры следующие: расход $Q=1500~{\rm m}^3/{\rm q}$, частота вращения ротора $n=1000~{\rm of/muh}$, напор $H=32~{\rm m}$.

Определим величину напора осевого колеса для обеспечения бескавитационной работы центробежного колеса. Исходя из принятого значения $C_{\rm kp} = 950$, определим величину $\Delta h_{\rm kp}$:

$$\Delta h_{\text{Kp}} = \left(\frac{5,62 \cdot 1000 \cdot \sqrt{0,417}}{950}\right)^{1,33} = 6 \text{ M}.$$

Тогда величина напора предвключенного осевого колеса составит:

$$H_{\Pi K} = \varphi \cdot \Delta h_{KD} - \Delta h_{X} = 1,35 \cdot 6 - 2 = 6 \text{ M}.$$

Величина напора центробежного колеса:

$$H_{\text{H},6} = 32 - 6 = 26 \text{M}$$
.

Основные расчётные параметры предвключенной ступени составили следующие значения: $Q=0,417~{\rm m}^3/{\rm c};~H=26~{\rm m};$ $n=1000~{\rm of/muh}.$

Рабочее осевое колесо имеет следующие геометрические параметры:

$$\begin{split} D_{\Gamma} &= 0.8 \cdot D_2, \ d_{BT} = 0.29 \cdot D_2, \ z = 3; \\ \beta_{H} &= 19 - 27.2 - 45.8; \\ \beta_{BC} &= 11 - 18.3 - 30.6; \\ \phi &= 219 - 254 - 270; \\ \Delta \phi &= 0 - 35 - 51; \\ l/t &= 1.91 - 2.29 - 2.94. \end{split}$$

Результаты гидродинамического расчёта SL1706 даны в таблице 2.

 Таблица 2

 Результаты гидродинамического расчёта

	1 ЛТ	3 ЛТ	5 ЛТ	7 ЛТ	9 ЛТ
RV_u , M^2/c	0,365	0,38	0,365	0,32	0,1
$h_{\mathrm{np}},$ %	3,7	2,9	2,1	1,3	1,0
$h_{ m y_{ m I}}, \%$	0	0	0	0	0
σ	0,061	0,059	0,062	0,061	0,055

Из представленных данных следует, что суммарные гидравлические потери в осевом колесе составляют 4,8 %, ударные потери отсутствуют. Величина максимального динамического разрежения составляет $\sigma=0,061$, т. е обеспечивается запас по отсутствию кавитационных явлений, так как $\Delta h_{\rm x}=0,061\cdot 32=1,95$ м и $\Delta h=\Delta h_{\rm x}-\Delta h_{\rm f}=1,95-1,29=0,66$ м, что меньше требуемой величины. Среднее значение момента скорости на выходе $RV_u=0,316$ м²/с, чему соответствует теоретический напор $H_{\rm T}=8,5$ м, а действительный напор составил $H=H_{\rm T}\cdot 0,9=7,6$ м, что больше требуемой величины для обеспечения работы центробежного колеса предвключенной ступени без кавитационных явлений.

Центробежное рабочее колесо предвключенной ступени Кп 1707. Основные геометрические параметры проточной части и лопастной системы приняты следующими:

$$b_2 = 0.2 \cdot D_2, \ D_{\Gamma} = 0.74 \cdot D_2, \ d_{\text{BT}} = 0.29 \cdot D_2, \ z = 7.$$

$$\beta_{\text{H}} = 26.5 - 26 - 25.5;$$

$$\beta_{\text{BC}} = 22 - 26.3 - 30.1;$$

$$\phi = 80 - 85 - 90;$$

$$l/t = 1.71 - 1.89 - 2.0.$$

Результаты гидродинамического расчёта рабочего колеса Кп 1707 ланы в таблице 3.

 Таблица 3

 Результаты гидродинамического расчёта

	1 ЛТ	4 ЛТ	7 ЛТ
$RV_{u \text{ BX}}, \text{ M}^2/\text{c}$	0,36	0,34	0,10
$RV_{u \text{ H}}, \text{ M}^2/\text{c}$	1,38	1,40	1,48
h_{np} , %	1,45	0,90	1,4
h _{уд} , %	0	0	0
σ	0,16	0,16	0,17

Из представленных данных следует, что величина теоретического напора составляет $H_{\rm T}=31$ м. Действительный напор равен H=28 м, что больше требуемой величины для обеспечения бескавитационной работы рядовой ступени. Величина динамического разрежения $\sigma=0,16$ чему соответствует $C_{\rm kp}=1245$, что больше принятого значения в расчёте.

Таким образом, все лопастные системы по своим энергокавитационным показателям обеспечивают параметры назначения. Выполним расчётную характеристику насоса на режиме расчётной полачи.

Теоретический напор предвключенной ступени составил:

$$H_{\text{T,IIC}} = 8,5 + 31 = 39,5 \text{ M}.$$

Теоретический напор рядовой ступени составил:

$$H_{\rm r.pc} = 262 \text{ M}.$$

Теоретический напор насоса по (5) составил:

$$H_{\rm T} = 39,5 + 262 = 301,5 \text{ m}.$$
 (5)

Суммарные гидравлические потери в предвключенной ступени составили:

$$\Delta h_{\text{II.c.}} = \Delta h_{\text{O.K.}} + \Delta h_{\text{II.б.}} + \Delta h_{\text{OHa}} = 4,8 + 2,8 + 3,0 = 10,6 \%.$$

Суммарные гидравлические потери в рядовой ступени по (6) составили:

$$\Delta h_{\text{p.c.}} = \Delta h_{\text{H.6.}} + \Delta h_{\text{Ha}} = 5,8 + 2,5 = 8,3 \%.$$
 (6)

Расчётное значение напора предвключенной ступени составило:

$$H = H_{\text{T}} (1 - \Delta h_{\text{II.c.}}) = 39,5 (1 - 0,106) = 35,3 \text{ M}.$$

Расчётное значение напора рядовой ступени насоса по (7) составило:

$$H = H_{\rm T} (1 - \Delta h_{\rm p.c.}) = 262 (1 - 0.083) = 240 \text{ M}.$$
 (7)

Напор насоса составил H=35,3+240=275,3 м. Таким образом, напор насоса обеспечен с запасом в 10 %. Расчётное значение гидравлического КПД проточной части составило: $\eta_{\Gamma}=275,3/301,5=91,3$ %.

Ориентировочные значения объёмного и внутреннего механического КПД определены по формулам Ломакина А. А. [5,6] и составили следующие значения: $\eta_0 = 97.6 \%$, $\eta_{i,\text{mex}} = 98.2 \%$.

Расчётное значение КПД насоса с учётом потерь в системе разгрузки (2 %) и внешних механических потерь трения (1 %) по (8) составило [7, 8]:

$$\eta = \eta_{\rm r} \eta_{\rm o} \eta_{i_{\rm M}} - 3 \% = 84,3 \%. \tag{8}$$

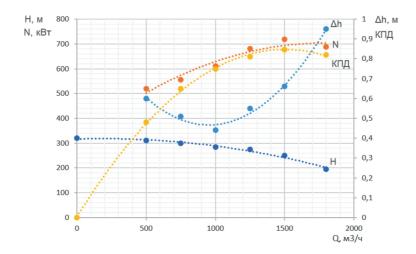


Рис. 3. Расчётная характеристика НВПО 1500—250 с частотой вращения ротора n = 3000 об/мин

На рис. 3 представлена прогнозная характеристика НВПО 1500—250. Рабочий диапазон 500—1800 м³/ч, крутизна характеристики H—Q не менее 25 %. Величина допускаемого кавитационного запаса определена с учётом термодинамической поправки. Максимальная величина мощности не превышает 700 кВт. В качестве привода насоса может быть использован электродвигатель N = -750 кВт и n = -3000 об/мин.

Выводы

- 1. Применение планетарного редуктора по двухвальной схеме исполнения позволяет:
- а) сохранить соосность роторов предвключенной и основной ступеней;
- б) принять повышенную частоту вращения основного ротора, что сокращает количество ступеней, уменьшает габариты и вес насосного агрегата;
 - в) сохранить экономическую эффективность работы насоса;

- г) использовать предвключенную ступень с пониженной частотой вращения для получения необходимой величины динамического разрежения и расширения диапазона работы насоса по подаче с заданной величиной Δh .
- 2. Результаты выполненного расчёта и проектирования проточной части насоса показывают, что он по своим энергокавитационным показателям не уступает аналогичным образцам импортного производства.

Список литературы

- 1. **Иванов Е. А.**, **Макеев Х. Н.**, **Калаев В. А.**, **Шумилин С. А.** Разработка проточной части криогенного насоса на заданные параметры : сборник н-т трудов международной научно-технической конференции, 06.2018 г. СПб. : Издательство СПбПУ Петра Великого. с. 100—111.
- 2. **Зимницкий В. А.**, **Умов В. А.** Лопастные насосы : справочник. Л. : Машиностроение, 1986. 334 с.
- 3. **Овсянников Б. В., Чебаевский В. Ф.** Высокооборотные лопаточные насосы. М. : Машиностроение, 1975. 370 с.
- 4. **Жарковский А. А.**, **Морозов М. П.**, **Шумилин С. А.** Математические модели рабочих процессов лопастных гидромашин. Автоматизированное проектирование и оценка энергокавитационных показателей лопастных систем. СПб. : Издательство СПбГПУ, 2007. 47 с.
- 5. **Ломакин А. А.** Центробежные и осевые насосы. М. ; Л. : Машиностроение, 1966.-364 с.
- 6. **Малюшенко В. В.** Динамические насосы: Атлас. М. : Машиностроение, 1984. 84 с. : ил.
- 7. Алексанян С. А. Разработка питательного насоса двустороннего действия с параллельной работой по подаче рабочего тела для энергоустановок ТЭС гигаватного класса // ECOPUMP-RUS'2015. Эффективность и инновации в насосостроении. Импортозамещение и локализация производства в России : докл. Межд. научн.-техн. конф. (Москва, МВЦ «Крокус Экспо». —М. : Типография ООО «Цифра 101», 2015. С. 5—13.
- 8. **Пфлейдерер К.** Лопаточные машины для жидкостей и газов. М.: Машгиз, 1960. 682 с.