ISSN 2223-0807 Современное машиностроение: Наука и образование 2024: материалы 13-й Международной научной конференции, 20 июня 2024 года / Под ред. А.Н. Евграфова и А.А. Поповича. - СПб.: ПОЛИТЕХ-ПРЕСС, 2024.

УДК 681.2.08+57.088 doi:10.18720/SPBPU/2/id24-107

А.Л. Буляница^{1,2}, Н.А. Есикова², А.А. Евстрапов²

МНОГОКАНАЛЬНАЯ СИСТЕМА ПОДГОТОВКИ МИКРОФЛЮИДНЫХ ЧИПОВ ДЛЯ ПЦР-АНАЛИЗА

^{1,2}Антон Леонидович Буляница, Санкт-Петербургский политехнический университет Петра Великого, Россия, Санкт-Петербург Институт аналитического приборостроения Российской академии наук, Россия, Санкт-Петербург Тел.: (812)552-6750, E-mail: bulyanitsa_al@spbstu.ru

²Надежда Александровна Есикова, Институт аналитического приборостроения Российской академии наук, Россия, Санкт-Петербург Тел.: (812)363-0728, E-mail: <u>elpis-san@yandex.ru</u>.

²Анатолий Александрович Евстрапов, Институт аналитического приборостроения Российской академии наук Россия, Санкт-Петербург Тел.: (812)363-0719, E-mail: an_evs@mail.ru.

Аннотация

Создание микрофлюидных чипов с реагентами, внедренными в реакционную камеру, позволяет существенно упростить подготовительные процедуры и сократить время при анализе пробы методом ПЦР-РВ. В и обсуждены некоторые работе исследованы ключевые процессы, протекающие при проведении анализа методом ПЦР-РВ В поликарбоната лиофилизированными микрофлюидных чипах ИЗ с реагентами. Оценка деформации полимерного чипа вследствие теплового расширения при циклических режимах изменения температуры в пределах 60 – 95 °C свидетельствует о необходимости учитывать эти эффекты при конструировании термопластичных чипов материалов. ИЗ Предварительный расчет условий загрузки пробы показывает, что

поддержание температуры в интервале от 50 до 90 °C в течение 5 мин обеспечивает практически перед анализа равномерное началом всей реакционной распределение праймеров по камере за счет диффузионного перемещения и дополнительные меры по интенсификации этого процесса не требуются.

Ключевые слова: многоканальное микрофлюидное устройство, растворение, диффузия, активное перемешивание, полимеразная цепная реакция в реальном времени, заполнение реакционной камеры

Введение

Микрофлюидные чипы находят широкое применение в различных сферах, включая науки о жизни [1], клиническую диагностику [2], системы анализа point-of-care, геномные исследования и другие [3].

Одним из значимых преимуществ микрофлюидики является высокое поверхности объему площади К по сравнению соотношение С традиционными системами. Следовательно, физико-химические свойства поверхности оказывают существенное влияние на аналитические реакции микроструктурах чипа. микрофлюидных устройствах, В могут В функциональные элементы, использоваться различные такие как магнитные частицы, интегрируемые колонки, пористые мембраны или, формируемые непосредственно в чипе, массивы микро- и наноструктур, что еще в большей степени определяет влияние свойств поверхности функциональных элементов на протекающие процессы. В каждом случае необходим учет целого комплекса требований заказчика. С этой точки подобные разработки обладают признаками зрения, позаказного производства [4].

Коллектив авторов занимается разработкой микрофлюдидных устройств для проведения молекулярно-генетического анализа, в том числе, на основе полимеразной цепной реакции в реальном времени (ПЦР-РВ). В частности, недавнее исследование [5] было посвящено созданию автоматизированного устройства для формирования в микрофлюидных реакционных камерах функциональных слоев в полуавтоматическом режиме для полногеномного секвенатора 2-ого поколения.

Кроме того, в работе [5] было представлено изображение макета, изготовленного в Институте аналитического приборостроения РАН.

Ранее коллектив авторов представлял результаты исследований, связанных с реализаций различных этапов разработки микрофлюидных устройств. Соответствующие рекомендации для структуры учебного курса микро- и нанотехнологий [6], не включали разделы, относящиеся к обработке внутренних поверхностей микрофлюидного чипа, к процедурам лиофилизации реагентов в реакционных камерах и заполнению камер жидкой пробой. Это связано с тем, что указанные аспекты анализа обычно разрабатываются на завершающей стадии создания прибора.

Данная работа посвящена исследованию ключевых процессов, протекающих при загрузке пробы в реакционную камеру с лиофилизированными реагентами для последующего проведения анализа методом ПЦР-РВ.

Методы

Используемые методы решения поставленной задачи следует разделить на две группы: методы изготовления устройства и методы оценки основных характеристик устройства и условий анализа, обеспечивающих требуемую эффективность.

К первой группе методов, наряду с методами изготовления полимерных микрофлюидных чипов следует отнести и методы лиофилизации, в том числе с применением сахарозы.

второй группе относятся оценки: Ко величины деформаций конструкции основных элементов устройств, связанные с циклическими процессами нагрева/охлаждения в диапазоне температур 60 – 95 °C, достигнутой концентрации растворения сахарозы – среды с внедренными короткими фрагментами нуклеотидов (праймерами), диффузии праймеров на этапе загрузке пробы, изменения гидравлического сопротивления объединенного микроканала с реакционной камерой и связанного с ними градиента давления [7]. Очевидно, что для решения последней задачи требуется рассчитать гидравлическое сопротивление канала прямоугольного сечения переменной ширины.

Результаты

Микрофлюидные чипы были изготовлены из поликарбоната Novattro по технологии, подробно описанной в работе [8]. Изображения четырехканальных микрофлюидных чипов из поликарбоната приведены на рисунке 1. Лиофилизация реакционной смеси в камерах микрофлюидного чипа проводились в АУ РАН им. Ж. И. Алферова и в ООО «НПК Синтол» в соответствии с протоколом, разработанным сотрудниками этих организаций. В первом случае использовалась лиофильная сушилка Alpha 1–2 LDplus, MartinChrist (Германия), не предусматривающая заморозку реагентов и проведения этапа вторичной сушки. Во втором - вакуумная сублимационная сушилка типа LGJ-100F Vacuum Freeze Dryer (Китай).

При лиофилизации в АУ РАН использовался «Набор реагентов для обнаружения ДНК растений в продуктах питания, пищевом сырье, семенах

и кормах методом полимеразной цепной реакции в реальном времени «Растение универсал» (ООО «Синтол», Россия).

В ООО «Синтол» в чипах из поликарбоната была проведена лиофилизация реактивов для ПЦР, аналогичных «Набору реагентов для выявления РНК короновируса SARS-CoV-2 методом полимеразной цепной реакции в реальном времени (ОТ-ПЦР-РВ-SARS-CoV-2)» (ТУ 20.20.23-002-97313483-2020).

После стадии лиофилизации рассматривались два возможных варианта подготовки микрофлюидных чипов к анализу. Первый: порты (входные и выходные отверстия) микрофлюидных чипов заклеивались защитной пленкой, чипы помещались в пакеты с зип-застежкой, второй – чипы герметично запаивались в плотный полиэтилен. Далее до применения чипы хранились в холодильнике при температуре 4 °C.

Перед проведением ПЦР-РВ микрофлюидные чипы выдерживались при комнатной температуре и извлекались из упаковки, камеры чипов с помощью дозатора заполнялись пробой. Затем порты чипа вновь герметизировались защитной пленкой, а чип устанавливался в макет прибора для ПЦР-РВ, обеспечивающий нагрев и охлаждение реакционных камер по заданной программе и детектирование сигнала флуоресценции.

Рис. 1. Изображение четырехканальных микрофлюидных чипов для проведения анализа методом ПЦР-РВ

368

Перед проведением ПЦР-РВ микрофлюидные чипы выдерживались при комнатной температуре, защитная пленка удалялась и через входной порт с помощью дозатора вводилась проба. Затем порты чипа вновь герметизировались защитной пленкой, а чип устанавливался в макет прибора для ПЦР-РВ, обеспечивающий нагрев и охлаждение реакционных камер по заданной программе и детектирование сигнала флуоресценции.

Оценка деформации микрофлюидного чипа вследствие теплового расширения показала, что при циклических режимах изменения температуры в пределах 60 – 95 °C относительное увеличение всех линейных размеров составляет примерно 2,5%, что может приводить к созданию напряженных состояний в микрочиипе. За основу взяты данные по коэффициентам линейного теплового расширения поликарбоната $(6,5\div7,2)\cdot10^{-5}$ K⁻¹) [9]. В работе [10] отмечено, что в некоторых полимерах рост трещин начинается уже при деформациях порядка 1%, а при 5-7% уже может происходить критическое разрушение полимерного образца. Однако, в реальных конструкциях микрофлюидного чипа это явление экспериментально не наблюдалось. Тем не менее, этот факт следует учитывать при разработке конструкций чипов из разных материалов.

Оценка диффузионного перемещения праймера в объеме реакционной камеры осуществлялась с учетом того, что при лиофилизации формируется слой реагентов на ее дне. Максимальная ширина камеры составляет 6 мм, ее глубина – от 300 до 400 мкм. Праймером является короткий (порядка 20 оснований) фрагмент цепочки ДНК. С учетом длины основания 0,34 нм, полная длина праймера 25 оснований составит 8,5 нм. В частности, в работе [11] указаны в качестве оптимальной длины для праймеров число оснований от 18 до 25. Для оценки коэффициента диффузии такого короткого фрагмента можно использовать оценку Стокса-Эйнштейна, применяемую к сферическим частицам радиуса г (1). В нашем случае можно вместо радиуса сферической частицы взять радиус инерции, аналогично радиусу инерции прямолинейного стержня, что даст оценку г равную 3,5 нм. В водоподобной среде при температуре 60 °C коэффициента диффузии выполнен по формуле (1):

$$D = \frac{k \cdot T}{6 \cdot \pi \cdot \mu \cdot r} \tag{1}$$

Здесь k – постоянная Больцмана, T – абсолютная температура (333 К). Соответственно, оценка величины D равна $1,5 \cdot 10^{-10}$ м²/с. Можно определить диффузионное расстояние δ , пройденное за время t равное 5 мин, по формуле Смолуховского (2)

$$\delta^2 = 2 \cdot D \cdot t \,. \tag{2}$$

369

Оценка диффузионного расстояния δ (2) составит около 0,3 мм. Т.о. за это время диффузионное перемещение праймера практически равно полной глубине реакционной камеры.

Анализ кинетики растворения сахарозы, изначально размещенной на дне реакционной камеры, в которую внесены праймеры, в водной среде проведен при температурах 60, 70 и 80 °C. Как указано в [12], растворение сахарозы в воде с учетом избытка воды адекватно описывается реакцией первого порядка. В статье [13] приводится формула Г. Вавринца, рекомендованная Международной комиссией ICUMSA, которая позволяет рассчитать растворимость сахарозы в чистой воде в зависимости от температуры. Для указанных выше температур она составит 74,3%, 76,5% и 78,7% соответственно. Повышение температуры до 95 °C позволит увеличить растворимость примерно до 82%. Следовательно, объем лиофилизированного слоя ограничен указанными уровнями растворимости и не должен их достигать.

Расчет гидравлического сопротивления R для случая прямоугольного сечения проводится по формуле [7]

$$R = \frac{12 \cdot \mu \cdot L}{b \cdot a^3}.$$
 (3)

В формуле (3) b – ширина, a – высота сечения канала (0,3 мм), L – его длина. Канал транспортировки пробы разбивается на 3 части: постоянного сечения шириной 0,4 мм, часть реакционной камеры постоянного сечения шириной 6 мм, переходная часть «реакционная камера – канал», представляющая собой четверть окружности радиуса z равного 2,8 мм. Таким образом, на закруглении длиной 2,8 мм происходит сужение полуширины канала с 3 мм до 0,2 мм.

Тогда усредненная по участку закругления полуширина канала вычисляется по формуле (4), как интеграл

$$\int_{0}^{x} \frac{dx}{b - \sqrt{z^2 - x^2}},$$
(4)

деленный на z. Этот интеграл (4) вычисляется с помощью универсальной тригонометрической замены с использованием тангенса половинного угла. Оценка средней полуширины составит примерно 2,18 мм. Требуемую разность давлений ΔР для обеспечения расхода Q водоподобной пробы 5 мкл/с при ее вводе в реакционную камеру рассчитали по известной

формуле $\Delta P = R \cdot Q$.

Полное гидравлическое сопротивление вычисляется с учетом длин: входного канала длины 20 мм постоянной ширины 0,4 мм и участка

реакционной камеры 15 мм с постоянной шириной равной 6 мм. Расчет полного гидравлического сопротивления численно дает величину 1,12^{.10¹⁰}. Следовательно, требуемый перепад давления примерно равен 51,2 Па. Этот перепад легко обеспечивается использованием широкой номенклатуры насосов. Фактором изгиба канала, который учтен через потерю напора в соответствии с рекомендациями работы [14], можно пренебречь, поскольку увеличение гидравлического сопротивления не превысит нескольких процентов. Потери напора вызваны трехкратными поворотами на 90 град с достаточно большим радиусом поворота.

Температура, °С	Длина праймера, оснований	
	18	25
	Диффузионное расстояние, мкм	
50	322	273
60	354	300
70	386	328
80	418	355
90	450	382

Таблица 1. Диффузионное расстояние (в мкм) для праймеров различной длины при разных температурах

Данные, представленные в таблице 1 свидетельствуют о линейном возрастании диффузионного расстояния (2) с возрастанием температуры, как для праймеров длины 18 оснований, так и для праймеров 25 оснований. В обоих случаях при изменении температуры от 50 до 90 °C относительное увеличение диффузионного расстояния составило 40%.

Обсуждение

На основе полученных оценок растворимости лиофилизированного слоя с праймерами – короткими фрагментами ДНК длиной порядка 20 оснований, определено, что 5 мин достаточно для его растворения. Для повышения скорости растворения можно применить активные методы перемешивания пробы в реакционной камере, например, описанные в [15, 16]. Анализ факторов, влияющих на скорость растворения сахарозы в воде в зависимости от ее концентрации, рН среды, температуры и т.д. приведен, например, в работе [17]. Т.к. изначально лиофилизированный слой с реагентами размещен на дне камеры, данные таблицы 1 свидетельствуют, что за время порядка 5 мин при температуре от 50 до 90 °C, благодаря

диффузии праймеры могут эффективно распределиться по всему ее объему, поскольку расчет диффузионного расстояния по формуле Смолуховского дает значения в диапазоне 270 ÷ 450 мкм. При этом, требуемое значение расхода пробы при загрузке (порядка 5 мкл/с) может быть обеспечено гидравлическим вводом с перепадом давлений менее 100 Па. Последнее не накладывает особо жестких требований к номенклатуре выбираемых насосов ввода пробы в многоканальный микрофлюидный чип для проведения ПЦР-РВ.

Заключение

При расчете конструкции многоканальных микрофлюидных чипов и выборе режима его работы, включая стадию загрузки реагентов, предшествующую проведение ПЦР-РВ, выполнена стадия лиофилизации с использованием сахарозы. Этот подход рассматривался, например, в [18].

1. Лиофилизация реагентов в камере микрофлюидного чипа позволяет существенно упростить и сократить время при анализе пробы методом ПЦР-РВ)

2. При создании микрофлюидного чипа для ПЦР следует учитывать эффекты, наблюдаемые при тепловом расширении материалов, используемых в конструкции чипа.

3. Предварительные оценки условий ввода пробы для реализации анализа методом ПЦР-РВ показывает, что поддержание температуры 50÷90 °C в течение 5 мин перед началом анализа за счет диффузионного перемещения обеспечивает равномерное распределение праймеров по всей реакционной камере и дополнительные меры по интенсификации этого процесса не требуются.

Работа выполнена в рамках Государственного задания Министерства науки и высшего образования Российской Федерации № 075-00439-24-00.

СПИСОК ЛИТЕРАТУРЫ

- [1] Zhao, Y., Lv X., Li, X., Rcheulishvili, N., Chen, Y., Li, Z., Deng, Y. Microfluidic Actuated and Controlled Systems and Application for Lab-on Chip in Space Life Science. Space Sci. Technol., 2023, 3(4), Article ID 0008, pp. 1-17.
- [2] Blanca, H. Lapizco-Encinas, Yan, Victoria Zhang Microfluidic systems in clinical diagnosis. Electrophoresis, 2023, 44, pp. 217–245.
- [3] Bruijns, B., Knotter, J., Tiggelaar, R. A Systematic Review on Commercially Available Integrated Systems for Forensic DNA Analysis, Sensors, 2023, 23(3), pp.1075.

- [4] Gasyuk, D.P., Kosova, V.A. The Problem of Selecting the Optimal Kind of Mechanical Engineering Process Under Modern Conditions. 2023. MMESE 2022. Lecture Notes in Mechanical Engineering. pp. 10-18.
- [5] Bulyanitsa, A.L., Esikova, N.A., Evstrapov, A.A. Automated Device for Surface Modification and Synthesis of Functional Layers in Microfluidic Chips. 2024. MMESE 2023. Lecture Notes in Mechanical Engineering. pp. 115-122.
- [6] Буляница А.Л., Евстрапов А.А., Посмитная Я.С., Белоусов К.И. Принципы формирования курса микро- и нанотехнологии в биологических и медицинских исследованиях для магистров и аспирантов. Современное машиностроение: Наука и образование. 2016. С. 1329-1336.
- [7] Bruus, H. Theoretical Microfluidics. 2008. Oxford Univ. Press Ink., New York, pp.74-86.
- [8] Есикова H.A., Гермаш H.H., Евстрапов A.A. Оперативное ПЦР-анализа изготовление микрочипов для полимерных ИЗ материалов в лабораторных условиях, Научное приборостроение, 2020, 30, 4, C. 21-26.
- [9] Технические характеристики сотового поликарбоната. URL: https://www.unikumplast.ru/catalog/sotovyj-polikarbonat/harakteristiki/ (Дата обращения: 15.03.2024)
- [10] Баженов С.Л., Гринева Н.С., Берлин А.А. Рост трещины в пластичных полимерах, Высокомолекулярные соединения, серия А, 1998, 40, 11, С. 1797-1802.
- [11] Гарафутдинов Р.Р., Баймиев Ан.Х., Малеев Г.В., Алексеев Я.И. и др. Разнообразие праймеров для ПЦР и принципы их подбора, Биомика, 2019, 11, 1, С. 23-70.
- [12] Чесноков Н.В., Яценкова О.В., Чудина А.И. и др. Изучение реакции кислотно-каталитического гидролиза сахарозы, Journal of Siberian Federal University. Chemistry 3, 2012, 5, C. 311-319.
- [13] Арапов Д.В., Подвальный С.Л., Тихомиров С.Г. Моделирование растворения и роста сахарных кристаллов, Вестник Воронежского государственного технического университета, 2019, 15, 2, С. 29-39.
- [14] Гидравлическое сопротивление ... Режим доступа: URL: https://www.nektonnasos.ru/articles/gidravlicheskoe-soprotivlenie/ (Дата обращения: 22.03.2024)
- [15] Hilber, W. Stimulus-active polymer actuators for next-generation microfluidic devices. Applied Physics A, 2016, 122(8), p. 751.
- [16] Owen, D., Ballard, M., Alexeev, A., Hesketh, P.J. Rapid microfluidic mixing via rotating magnetic microbeads, Sensors and Actuators A: Physical, 2016, 251, pp. 84-91.

- [17] Мищук Р.Ц. Кинетика разложения сахаров в растворе (Сообщение 1), Сахар, 2016, 1, С. 44-51.
- [18] Блынская Е.В., Тишков С.В., Алексеев К.В. Технологические подходы к совершенствованию процесса лиофилизации белковых и пептидных лекарственных препаратов, Российский биотерапевтический журнал, 2017, 16, 1, С. 6-11.

A.L. Bulyanitsa^{1,2}, N.A. Esikova², A.A. Evstrapov²

MULTICHANNEL MICROFLUIDIC CHIP PREPARATION SYSTEM FOR PCR ANALYSIS

¹Peter the Great St. Petersburg Polytechnic University, Russia; ²Institute for Analytical Instrumentation RAS, St. Petersburg, Russia.

Abstract

The creation of microfluidic chips with reagents embedded in the reaction chamber can significantly simplify preparatory procedures and reduce the time when analyzing a sample using RT-PCR. The work examines and discusses some of the key processes that occur during RT-PCR analysis in microfluidic polycarbonate chips with lyophilized reagents. An assessment of the deformation of a polymer chip due to thermal expansion under cyclic temperature changes in the range of 60–95 °C indicates the need to take these effects into account when designing chips from thermoplastic materials. A preliminary calculation of the sample loading conditions shows that maintaining the temperature in the range from 50 to 90 °C for 5 minutes before starting the analysis ensures an almost uniform distribution of primers throughout the reaction chamber due to diffusion movement and additional measures to intensify this process are not required.

Key words: multichannel microfluidic device, dissolution, diffusion, active mixing, real-time polymerase chain reaction, filling of the reaction chamber

REFERENCES

- [1] Zhao, Y., Lv X., Li, X., Rcheulishvili, N., Chen, Y., Li, Z., Deng, Y. Microfluidic Actuated and Controlled Systems and Application for Lab-on Chip in Space Life Science. Space Sci. Technol., 2023, 3(4), Article ID 0008, pp. 1-17.
- [2] Blanca, H. Lapizco-Encinas, Yan, Victoria Zhang Microfluidic systems in clinical diagnosis. Electrophoresis, 2023, 44, pp. 217–245.

- [3] Bruijns, B., Knotter, J., Tiggelaar, R. A Systematic Review on Commercially Available Integrated Systems for Forensic DNA Analysis, Sensors, 2023, 23(3), pp.1075.
- [4] Gasyuk, D.P., Kosova, V.A. The Problem of Selecting the Optimal Kind of Mechanical Engineering Process Under Modern Conditions. 2023. MMESE 2022. Lecture Notes in Mechanical Engineering. pp. 10-18.
- [5] Bulyanitsa, A.L., Esikova, N.A., Evstrapov, A.A. Automated Device for Surface Modification and Synthesis of Functional Layers in Microfluidic Chips. 2024. MMESE 2023. Lecture Notes in Mechanical Engineering. pp. 115-122.
- [6] Bulyanitsa, A.L., Evstrapov, A.A., Posmitnaya, Ya.S., Belousov, K.I. Principy formirovaniya kursa micro- i nanotechnologiy v biologicheskikh i medicinskikh issledovaniyakh dlya magistrov i aspirantov. Sovrem. Mashinostroenie: Nauka I obrazovanie. 2016. Pp. 1329-1336. (rus.)
- [7] Bruus, H. Theoretical Microfluidics. 2008. Oxford Univ. Press Ink., New York, pp.74-86.
- [8] Esikova, N.A., Germash, N.N., Evstrapov, A.A. Rapid fabrication of microchips for PCR analysis from polymer materials in the laboratory conditions, Scientific Instrumentation, 2020, 30, 4, Pp. 21-26. (rus.)
- [9] Technicheskie characteristiky sotovogo karbonata. URL: https://www.unikumplast.ru/catalog/sotovyj-polikarbonat/harakteristiki/ (Accessed: 03/15/2024) (rus.)
- [10] Bazhenov, S.L., Grineva, N.S., Berlin, A.A. Rost tretshiny v plastichbykh polimerakh, Visokomoleculyarnie soedineniya, ser. A, 1998, 40, 11, Pp. 1797-1802. (rus.)
- [11] Garafutdinov, R.R., Baymiev, An.Kh., Maleev, G.V., Alexeev, Ya.I. et al. Raznoobrazie praimerov dlya PCR i prncipy ih podbora, Biomika, 2019, 11, 1, Pp. 23-70. (rus.)
- [12] Chenokov, N.V., Yatsenkova, O.V., Chudina, A.I. et al. Izuchenie reactsiy kislotno-kataliticheskogo gidroliza sakharozy, Journal of Siberian Federal University. Chemistry 3, 2012, 5, Pp. 311-319. (rus.)
- [13] Arapov, D.V., Podvalniy, S.L., Tikhomirov, S.G. Modelirovanie rastvoreniya i rosta sakharnikh kristallov, Vestnik voronezhskogo technicheskogo universiteta, 2019, 15, 2, Pp. 29-39. (rus.)
- [14] Hydraulic resistance ... –URL: https://www.nektonnasos.ru/articles/gidravlicheskoe-soprotivlenie/ (Accessed: 03/22/2024) (rus.)
- [15] Hilber, W. Stimulus-active polymer actuators for next-generation microfluidic devices. Applied Physics A, 2016, 122(8), p. 751.
- [16] Owen, D., Ballard, M., Alexeev, A., Hesketh, P.J. Rapid microfluidic mixing via rotating magnetic microbeads, Sensors and Actuators A: Physical, 2016, 251, pp. 84-91.

- [17] Mitshuk R.Tc. Kinetika razlogeniya Sakharov v rastvore (Report 1), Sakhar, 2016, 1, Pp.44-51 (rus.)
- [18] Blynskaya E.V., Tishkov S.V., Alekseev K.V. Technological approaches to improving the process lyophilization of protein and peptide drugs. Russian Journal of Biotherapy, 2017, 16, 1, Pp. 6-11. (rus.)