
Санкт-Петербург
2024

Санкт-Петербургский
политехнический университет
Петра Великого

Министерство науки и высшего образования Российской Федерации

САНКТ-ПЕТЕРБУРГСКИЙ 
ПОЛИТЕХНИЧЕСКИЙ  УНИВЕРСИТЕТ  ПЕТРА  ВЕЛИКОГО 

Институт электроники и телекоммуникаций
Высшая школа электроники и микросистемной техники

М. С. Енученко   Н. В. Иванов

ОСНОВЫ   
ЦИФРОВОЙ  ОБРАБОТКИ  

СИГНАЛОВ

Конспект лекций



УДК 621.396.1
ББК 32.811.3
 Е64

Р е ц е н з е н т ы:
Кандидат технических наук, доцент,  

доцент Высшей школы прикладной физики и космических технологий 
Санкт-Петербургского политехнического университета Петра Великого  

А. В. Рашич
Инженер научной лаборатории  

«Специальный технологический центр-Политех»  
Санкт-Петербургского политехнического университета Петра Великого  

Е. В. Леонтьев

Енученко М. С. Основы цифровой обработки сигналов : конспект  
лекций / М. С. Енученко, Н. В. Иванов. – СПб. : ПОЛИТЕХ-ПРЕСС, 2024. – 
101 с.

Конспект лекций соответствует содержанию профильной дисциплины 
«Основы цифровой обработки сигналов» федерального государственного об-
разовательного стандарта высшего образования по направлениям подготовки 
11.04.02 «Инфокоммуникационные технологии и системы связи» и 11.04.04 
«Электроника и наноэлектроника». В конспекте отражён базовый материал, 
необходимый для освоения данного курса и подготовки к практическим рабо-
там, семинарам, зачётам и экзаменам. Способствует получению знаний по ра-
боте с цифровыми сигналами.

Предназначен для студентов Института электроники и телекоммуникаций 
СПбПУ, обучающихся по курсам «Основы цифровой обработки сигналов» 
и направлениям подготовки 11.04.02 «Инфокоммуникационные технологии 
и системы связи» и 11.04.04 «Электроника и наноэлектроника».

Ил. 110. Библиогр.: 6 назв.

Печатается по решению 
Совета по издательской деятельности Ученого совета 

Санкт-Петербургского политехнического университета Петра Великого.

© Енученко М. С., Иванов Н. В.,  2024
© Санкт-Петербургский политехнический
 университет Петра Великого, 2024

ISBN 978-5-7422-8718-6
doi:10.18720/SPBPU/2/id24-220



Peter the Great 
St.Petersburg Polytechnic 
University

Saint Petersburg
2024

The Ministry of Science and Higher Education of the Russian Federation

PETER  THE  GREAT 
ST. PETERSBURG  POLYTECHNIC  UNIVERSITY 

Institute of Electronics and Telecommunications
Higher School of Electronics and Microsystems Engineering

M. S. Yenuchenko   N. V. Ivanov

BASICS  
OF  DIGITAL  SIGNAL 

PROCESSING

Work-book



R e v i e w e r s:
PhD, Associate Professor, Associate Professor  

of the Higher School of Applied Physics and Space Technologies  
Peter the Great St. Petersburg Polytechnic University  

A. V. Rashich
Engineer of the scientific laboratory «Special Technological Center-Polytech» 

Peter the Great St. Petersburg Polytechnic University  
E. V. Leontiev

Yenuchenko M. S. Basics of digital signal processing : work-book / 
M. S. Yenuchenko, N. V. Ivanov. – St. Petersburg : POLYTECH-PRESS, 2024. – 
101 p.

The lecture notes correspond to the content of the specialized disciplines “Fun-
damentals of Digital Signal Processing” of the federal state educational standard of 
higher education in the areas of training 11.04.02 “Infocommunication technologies 
and communication systems” and 11.04.04 “Electronics and nanoelectronics”. The 
notes reflect the basic material necessary for mastering this course and for preparing 
for practical work, seminars, tests and exams. Promotes the acquisition of knowledge 
on working with digital signals. 

Intended for students of the Institute of Electronics and Telecommunications of 
SPbPU, studying in the courses “Fundamentals of Digital Signal Processing”, in the 
areas of training 11.04.02 “Infocommunication technologies and communication 
systems” and 11.04.04 “Electronics and nanoelectronics”.

Figures 110. References: 6 titles.

Printed by the Publishing Council 
of Peter the Great St. Petersburg Polytechnic University Academic Council.

© Yenuchenko M. S, Ivanov N. V.,  2024
© Peter the Great
 St. Petersburg Polytechnic University, 2024

ISBN 978-5-7422-8718-6
doi:10.18720/SPBPU/2/id24-220



5 

Content 
Introduction ...................................................................................................................................................................... 9 

Chapter 1 Basic knowledge ............................................................................................................................................. 10 

§1.1 Geometric progression and series .................................................................................................................. 10 

§1.2 Complex numbers ........................................................................................................................................... 10 

§1.3 Trigonometric expressions .............................................................................................................................. 10 

1.3.1 Basic formulas ......................................................................................................................................... 10 

1.3.2 Integrals................................................................................................................................................... 11 

1.3.3 Orthogonality .......................................................................................................................................... 11 

§1.4 Linear operators .............................................................................................................................................. 12 

§1.5 Convolution ..................................................................................................................................................... 13 

1.5.1 Linear convolution .................................................................................................................................. 13 

1.5.2 Cyclic convolution ................................................................................................................................... 15 

§1.6 Fourier series................................................................................................................................................... 15 

§1.7 Integral Fourier Transform .............................................................................................................................. 16 

1.7.1 Definition ................................................................................................................................................. 16 

1.7.2 Spectrum of signal ................................................................................................................................... 16 

1.7.3 Properties ................................................................................................................................................ 17 

1.7.4 Sine and cosine transforms ..................................................................................................................... 18 

1.7.5 Shifting theorem ..................................................................................................................................... 19 

1.7.6 Theorem of convolution.......................................................................................................................... 19 

1.7.7 General formulas..................................................................................................................................... 20 

§1.8 Laplace Transform ........................................................................................................................................... 20 

1.8.1 Definition and properties ........................................................................................................................ 20 

1.8.2 Impulse response and transfer function ................................................................................................. 21 

1.8.3 Poles and stability ................................................................................................................................... 22 

§1.9 Z-transform ..................................................................................................................................................... 22 

1.9.1 Definition ................................................................................................................................................. 22 

1.9.2 Connection with other transforms.......................................................................................................... 23 

§1.10 Dirac delta function ..................................................................................................................................... 24 

Chapter 2 Discrete sequences and systems .................................................................................................................... 27 

§2.1 Introduction .................................................................................................................................................... 27 

§2.2 Operations on discrete sequences .................................................................................................................. 28 

§2.3 Unit delay element .......................................................................................................................................... 28 

§2.4 Systems in digital signal processing ................................................................................................................ 29 

2.4.1 Discrete linear systems ........................................................................................................................... 29 

2.4.2 Time-invariant systems ........................................................................................................................... 29 



6 

2.4.3 Discrete Linear Time-Invariant (LTI) systems .......................................................................................... 29 

§2.5 Real-time systems ........................................................................................................................................... 31 

§2.6 Complexity metrics ......................................................................................................................................... 31 

Chapter 3 Sampling signals ............................................................................................................................................. 32 

§3.1 Ambiguity of signal presentation .................................................................................................................... 32 

§3.2 Discrete-Time Fourier transform .................................................................................................................... 33 

§3.3 Discrete sequence spectrum ........................................................................................................................... 33 

§3.4 Signal reconstruction ...................................................................................................................................... 35 

§3.5 Sampling low-pass signals ............................................................................................................................... 35 

§3.6 Sampling band-pass signals............................................................................................................................. 38 

3.6.1 Limits for a band-pass sampling .............................................................................................................. 38 

3.6.2 Spectrum inversion ................................................................................................................................. 40 

3.6.3 Recommendations .................................................................................................................................. 42 

Chapter 4 Discrete Fourier Transform ............................................................................................................................ 43 

§4.1 Derivation of the formula ............................................................................................................................... 43 

§4.2 Example of a DFT calculation .......................................................................................................................... 44 

§4.3 Properties of DFT ............................................................................................................................................ 45 

4.3.1 Axes conversion (magnitude and frequency) ......................................................................................... 45 

4.3.2 How T, fs and N effect on spectrum? ...................................................................................................... 46 

4.3.3 Linearity ................................................................................................................................................... 46 

4.3.4 Shifting theorem ..................................................................................................................................... 46 

4.3.5 Theorem of convolution.......................................................................................................................... 47 

4.3.6 Symmetry ................................................................................................................................................ 47 

§4.4 Symmetric DFT forms ...................................................................................................................................... 47 

§4.5 DFT matrix ....................................................................................................................................................... 47 

§4.6 DFT of typical functions................................................................................................................................... 48 

4.6.1 General rectangular function .................................................................................................................. 48 

4.6.2 Symmetric rectangular function ............................................................................................................. 49 

4.6.3 Constant level.......................................................................................................................................... 50 

4.6.4 IDFT of rectangular function ................................................................................................................... 50 

4.6.5 Complex signal ........................................................................................................................................ 51 

4.6.6 Real signal ............................................................................................................................................... 52 

§4.7 Leakage ........................................................................................................................................................... 53 

§4.8 Windows ......................................................................................................................................................... 55 

§4.9 Signal to noise ratio in DFT.............................................................................................................................. 58 

§4.10 Conclusion ................................................................................................................................................... 59 

Chapter 5 Fast Fourier Transform ................................................................................................................................... 61 



7 

§5.1 Algorithm ........................................................................................................................................................ 61 

5.1.1 Derivation ................................................................................................................................................ 61 

5.1.2 Illustration of calculation flow ................................................................................................................ 61 

5.1.3 Complexity of calculation ........................................................................................................................ 62 

§5.2 Bit-reversed order ........................................................................................................................................... 63 

§5.3 Butterfly structures ......................................................................................................................................... 64 

Chapter 6 Finite impulse response filters ....................................................................................................................... 65 

§6.1 Introduction .................................................................................................................................................... 65 

§6.2 Filter analysis ................................................................................................................................................... 66 

§6.3 Phase response ............................................................................................................................................... 67 

6.3.1 Introduction ............................................................................................................................................ 67 

6.3.2 Sufficiency condition ............................................................................................................................... 67 

6.3.3 Conclusion ............................................................................................................................................... 69 

§6.4 Structures ........................................................................................................................................................ 70 

6.4.1 Direct Forms ............................................................................................................................................ 70 

6.4.2 Transposed forms ................................................................................................................................... 70 

6.4.3 Folded Form ............................................................................................................................................ 70 

§6.5 Half-band filters .............................................................................................................................................. 71 

Chapter 7 Infinite impulse response filters ..................................................................................................................... 73 

§7.1 Introduction .................................................................................................................................................... 73 

§7.2 Filter analysis ................................................................................................................................................... 74 

§7.3 Stability ........................................................................................................................................................... 74 

§7.4 Structures ........................................................................................................................................................ 75 

7.4.1 General considerations ........................................................................................................................... 75 

7.4.2 Implementation issues ............................................................................................................................ 76 

§7.5 Pitfalls in IIR filter realization .......................................................................................................................... 77 

§7.6 Cascaded design .............................................................................................................................................. 78 

§7.7 Matrix form ..................................................................................................................................................... 79 

§7.8 Comparison of FIR and IIR filters ..................................................................................................................... 80 

Chapter 8 Sample rate conversion .................................................................................................................................. 82 

§8.1 Decimation ...................................................................................................................................................... 82 

§8.2 Interpolation ................................................................................................................................................... 83 

§8.3 Conversion with fractional coefficient ............................................................................................................ 84 

Chapter 9 Averaging ........................................................................................................................................................ 86 

§9.1 Introduction .................................................................................................................................................... 86 

§9.2 Coherent averaging ......................................................................................................................................... 86 

§9.3 Incoherent averaging ...................................................................................................................................... 87 



8 

§9.4 Realization of averaging .................................................................................................................................. 88 

§9.5 Exponential averaging ..................................................................................................................................... 89 

Chapter 10 Analytic signal ............................................................................................................................................... 91 

§10.1 Introduction ................................................................................................................................................ 91 

§10.2 Complex envelope ....................................................................................................................................... 91 

§10.3 Quadrature components ............................................................................................................................. 92 

§10.4 Why do we need it? .................................................................................................................................... 94 

Chapter 11 Hilbert transform.......................................................................................................................................... 95 

§11.1 Transfer function and impulse response of Hilbert transform ................................................................... 95 

11.1.1 Continuous time ...................................................................................................................................... 95 

11.1.2 Discrete time ........................................................................................................................................... 95 

§11.2 Hilbert converter ......................................................................................................................................... 97 

§11.3 Hilbert transform in frequency domain ...................................................................................................... 98 

References .................................................................................................................................................................... 100 

 

 



9 

Introduction 

Modern telecommunications systems tend to increase application of digital signal processing systems 

due to their flexibility and scalability. As a result, digital signal processing (DSP) is an important area of 

research. Digital signal processing encompasses a variety of techniques for transmitting, receiving, analyzing, 

transforming, and synthesizing signals with digital devices. This work-book aims to become an entry point to 

the fundamental terms and concepts of DSP, with a focus on both theoretical foundations and 

implementations issues. 

Digital signal processing systems have several features that should be carefully taken into account for 

correct processing of the signals. One of these features is discrete time. The discrete time changes an 

interpretation of signals in time-domain and their properties, particularly, spectrum representation. Besides, 

discrete time digital systems have another limitation – finite resolution, which results in inaccurate 

representation of signal values and errors in operations with them. Also, digital systems have very limited set 

of feasible operations and, consequently, digital processing requires special algorithms. 

This work-book covers the following topics: introduction to discrete sequences and systems, feasible 

operations, mathematical instruments for processing and analyzing signals. The discrete Fourier transform 

(DFT) is discussed in details. The DFT is the essential instrument for digital signal processing, which features 

assumptions, leakage, axes conversion, symmetry etc. should be deeply understood before you start to use 

it. A fast implementation of DFT – fast Fourier transform – is described. Its different realizations are presented. 

In terms of a device implementation, the work-book focuses on the basis of finite and infinite impulse 

response filters. Their different structures are discussed in details, particularly in terms of hardware costs, 

critical path and errors susceptibility. Approach for analysis of frequency and phase responses is discussed. It 

is considered that a FIR phase response demonstrates their properties to have linear phase response and 

constant group delay in the pass-band. Stability of IIR filter is discussed and a cascaded design is presented 

as its possible solution. 

Then, the mentioned filters are considered in the typical processing tasks like averaging and sample 

rate conversion. Finally, the work-book briefly reminds the basis of analytic signals and applies considered 

material for their processing. Especially, Hilbert transform and its implementation are in focus. 

 



Chapter 1 Basic knowledge 

10 

Chapter 1 Basic knowledge 

§1.1 Geometric progression and series 

A geometric progression – a sequence of numbers where each term after the first is found by 

multiplying the previous one by a fixed non-zero number called the common ratio, i.e. 

𝑏𝑛 = 𝑏𝑛−1𝑞, 

where n – a term number, q – the common ratio. Each term of the geometric progression is given by 

𝑏𝑛 = 𝑏0𝑞
𝑛, 

where b0 – the first term. For example 

𝑏0 = 1; 𝑞 = 2; 𝑏𝑛 = 1 · 2
𝑛 

𝑏𝑛 = 1, 2, 4, … 

A geometric series is a sum of numbers in a geometric progression. That is 

∑𝑏𝑛

𝑁−1

𝑛=0

= ∑ 𝑏0𝑞
𝑛

𝑁−1

𝑛=0

 

where N – a number of terms. To calculate a geometric series sum, let’s remember the following equation 

1 − 𝑞𝑁 = (1 − 𝑞)(1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑁−1)  1 + 𝑞 + 𝑞2 +⋯+ 𝑞𝑁−1 =
1 − 𝑞𝑁

1 − 𝑞
 

Now we can derivate the formula of the sum 

𝑏0∑𝑞𝑛
𝑁−1

𝑛=0

= 𝑏0(1 + 𝑞 + 𝑞
2 +⋯+ 𝑞𝑁−1) = 𝑏0

1 − 𝑞𝑁

1 − 𝑞
 

For our example, sum of N = 5 items will be 

∑1 · 2𝑛
5−1

𝑛=0

= 1 + 2 + 4 + 8 + 16 = 1 ·
1 − 25

1 − 2
=
−31

−1
= 31. 

§1.2 Complex numbers 

Let’s remember some points about complex numbers. A complex number is a pair of real numbers. And 

complex number z can be expressed as a + bi. In this case, a is a real part of z and b is an imaginary part of 

z. A mathematical form for this statement 

Re 𝑧 = 𝑎; Im 𝑧 = 𝑏. 

All complex numbers, except 0, have a polar form. We can write them like: 

𝑧 = 𝑟(cos𝜑 + 𝑗 sin𝜑), 

where r is an absolute value of complex number z, φ is an argument of complex number z. They are calculated 

by 

𝑟 = |𝑧| = √(Re 𝑧)2 + (Im 𝑧)2 = √𝑎2 + 𝑏2 

𝜑 = arg 𝑧 = arctg 
𝑏

𝑎
 

If we remember Euler's formula 

𝑒𝑗𝑥 = cos 𝑥 + 𝑗 sin 𝑥, 

the polar form can be rewritten as: 

𝑧 = 𝑟 · 𝑒𝑗𝜑. 

§1.3 Trigonometric expressions 

1.3.1 Basic formulas 

Let’s start with the basic set of formulas: 

cos(𝛼 + 𝛽) = cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) ; sin(𝛼 + 𝛽) = sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽) ; 
cos(𝛼 − 𝛽) = cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽) ; sin(𝛼 − 𝛽) = sin(𝛼) cos(𝛽) − cos(𝛼) sin(𝛽) ; 

Check some of them. Let: 



Chapter 1 Basic knowledge 

11 

𝛼 =
𝜋

6
;  𝛽 =

𝜋

3
. 

Then we can write: 

cos (
𝜋

2
) = cos (

𝜋

6
+
𝜋

3
) = cos (

𝜋

6
) · cos (

𝜋

3
) − sin (

𝜋

6
) · sin (

𝜋

3
) =

√3

2
·
1

2
−
1

2
·
√3

2
= 0, 

sin (
𝜋

2
) = sin (

𝜋

6
+
𝜋

3
) = sin (

𝜋

6
) · cos (

𝜋

3
) + cos (

𝜋

6
) · sin (

𝜋

3
) =

1

2
·
1

2
+
√3

2
·
√3

2
=
1

4
+
3

4
= 1. 

Other set of formulas can be derived from the basic ones: 

cos(2𝛼) = cos2(𝛼) − sin2(𝛼) ; cos(𝛼) cos(𝛽) =
cos(𝛼 − 𝛽) + cos(𝛼 + 𝛽)

2
; 

sin(2𝛼) = 2 sin(𝛼) cos(𝛼) ; sin(𝛼) sin(𝛽) =
cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)

2
; 

sin2(𝛼) =
1 − cos(2𝛼)

2
; cos2(𝛼) =

1 + cos(2𝛼)

2
; 

cos(𝛼) + cos(𝛽) = cos(𝑥 + 𝑦) + cos(𝑥 − 𝑦) = 2 cos(𝑥) cos(𝑦) = 2 cos (
𝛼 + 𝛽

2
) · cos (

𝛼 − 𝛽

2
) 

cos(𝛼) − cos(𝛽) = cos(𝑥 + 𝑦) − cos(𝑥 − 𝑦) = −2sin(𝑥) sin(𝑦) = −2sin (
𝛼 + 𝛽

2
) · sin (

𝛼 − 𝛽

2
) 

sin(𝛼) + sin(𝛽) = sin(𝑥 + 𝑦) + sin(𝑥 − 𝑦) = 2 sin(𝑥) cos(𝑦) = 2 sin (
𝛼 + 𝛽

2
) · cos (

𝛼 − 𝛽

2
) 

sin(𝛼) − sin(𝛽) = sin(𝑥 + 𝑦) − sin(𝑥 − 𝑦) = 2 cos(𝑥) sin(𝑦) = 2 cos (
𝛼 + 𝛽

2
) · sin (

𝛼 − 𝛽

2
) 

(sin(𝛼))′ = cos(𝛼) (cos(𝛼))′ = −sin(𝛼) 

∫cos(𝛼) 𝑑𝑡 = sin(𝛼) + 𝑐 ∫sin(𝛼) 𝑑𝑡 = −cos(𝛼) + 𝑐 

1.3.2 Integrals 

Calculate some auxiliary integrals (assume that α∊ℤ and T – a period): 

∫cos (
2𝜋𝛼

𝑇
𝑡) 𝑑𝑡

𝑇

0

=

{
  
 

  
 
∫ cos(0)⏟  

1

𝑑𝑡

𝑇

0

, if 𝛼 = 0

sin (
2𝜋𝛼
𝑇
𝑡)

2𝜋𝛼
𝑇

|

0

𝑇

, if 𝛼 ≠ 0

= {

𝑡|0
𝑇 , if 𝛼 = 0

sin(2𝜋𝛼) − sin(0)

2𝜋𝛼
𝑇

, if 𝛼 ≠ 0 = {
𝑇, if 𝛼 = 0
0, if 𝛼 ≠ 0

 

∫sin(
2𝜋𝛼

𝑇
𝑡) 𝑑𝑡

𝑇

0

=

{
  
 

  
 

∫sin(0)⏟  
0

𝑑𝑡

𝑇

0

, if 𝛼 = 0

−cos (
2𝜋𝛼
𝑇
𝑡)

2𝜋𝛼
𝑇

|

0

𝑇

, if 𝛼 ≠ 0

= {

0, if 𝛼 = 0
−cos(2𝜋𝛼) + cos(0)

2𝜋𝛼
𝑇

, if 𝛼 ≠ 0 = 0 

 

∫cos (
2𝜋𝛼

𝑇
𝑡) 𝑑𝑡

𝑇

0

= {
𝑇, if 𝛼 = 0
0, if 𝛼 ≠ 0

;∫ sin (
2𝜋𝛼

𝑇
𝑡) 𝑑𝑡

𝑇

0

= 0 

 

1.3.3 Orthogonality 

Now, let’s have a look at the following integrals 

∫sin(
2𝜋𝑘

𝑇
𝑡) sin (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

; ∫cos(
2𝜋𝑘

𝑇
𝑡) cos (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

; ∫sin(
2𝜋𝑘

𝑇
𝑡) cos (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

; 

 𝑘, 𝑙 ∈ ℤ\{0}. 



Chapter 1 Basic knowledge 

12 

The first one. 

∫sin (
2𝜋𝑘

𝑇
𝑡) sin (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

= ∫
cos (

2𝜋(𝑘 − 𝑙)
𝑇

𝑡) − cos (
2𝜋(𝑘 + 𝑙)

𝑇
𝑡)

2
𝑑𝑡

𝑇

0

=

=

{
 
 
 
 

 
 
 
 1

2
∫ cos(0 · 𝑡) 𝑑𝑡

𝑇

0⏟        
𝑇

−
1

2
∫cos (

2𝜋 · 2𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0⏟            
0

, if 𝑘 = 𝑙

1

2
∫ cos (−

2𝜋 · 2𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0⏟              
0

−
1

2
∫ cos(0 · 𝑡) 𝑑𝑡

𝑇

0⏟        
𝑇

, if 𝑘 = −𝑙

0, if 𝑘 ≠ 𝑙

= {
±
𝑇

2
, if 𝑘 = ±𝑙

0, if 𝑘 ≠ ±𝑙
 

The second one is similar. 

∫cos (
2𝜋𝑘

𝑇
𝑡) cos (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

= ∫
cos (

2𝜋(𝑘 − 𝑙)
𝑇

𝑡) + cos (
2𝜋(𝑘 + 𝑙)

𝑇
𝑡)

2
𝑑𝑡

𝑇

0

=

=

{
 
 
 
 

 
 
 
 1

2
∫ cos(0 · 𝑡) 𝑑𝑡

𝑇

0⏟        
𝑇

+
1

2
∫cos (

2𝜋 · 2𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0⏟            
0

, if 𝑘 = 𝑙

1

2
∫ cos (−

2𝜋 · 2𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0⏟              
0

+
1

2
∫ cos(0 · 𝑡) 𝑑𝑡

𝑇

0⏟        
𝑇

, if 𝑘 = −𝑙

0, if 𝑘 ≠ 𝑙

= {

𝑇

2
, if 𝑘 = ±𝑙

0, if 𝑘 ≠ ±𝑙
 

The third one looks different. 

∫sin(
2𝜋𝑘

𝑇
𝑡) cos (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

= ∫
sin(

2𝜋(𝑘 − 𝑙)
𝑇 𝑡) + sin (

2𝜋(𝑘 + 𝑙)
𝑇 𝑡)

2
𝑑𝑡

𝑇

0

= 0 

As a result, we have 

∫sin(
2𝜋𝑘

𝑇
𝑡) sin (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

= {
0, if 𝑘 ≠ ±𝑙

±
𝑇

2
, if 𝑘 = ±𝑙

; 

∫cos (
2𝜋𝑘

𝑇
𝑡) cos (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

= {
0, if 𝑘 ≠ ±𝑙
𝑇

2
, if 𝑘 = ±𝑙

 

∫sin(
2𝜋𝑘

𝑇
𝑡) cos (

2𝜋𝑙

𝑇
𝑡) 𝑑𝑡

𝑇

0

= 0 

This all means that functions like: 

sin (
2𝜋𝑘

𝑇
𝑡)  and cos (

2𝜋𝑙

𝑇
𝑡) , if 𝑘 ≠ 𝑙 and 𝑘, 𝑙 ∈ ℤ\{0} 

are orthogonal. 

§1.4 Linear operators 

An operator – a transformation of one set into another. A linear operator – an operator that fulfills the 

next statement: 

for ∀ �̅�, �̅�, 𝜆, 𝜇 



Chapter 1 Basic knowledge 

13 

𝐴(𝜆�̅� + 𝜇�̅�) = 𝜆𝐴(�̅�) + 𝜇𝐴(�̅�) 

where A – an operator. Remind some basic information about linear operators. 

 

Operation definitions: 

1. (𝐴 + 𝐵)�̅� = 𝐴�̅� + 𝐵�̅� 

2. (𝜆𝐴)�̅� = 𝜆 · 𝐴�̅� 

3. (𝐴𝐵)�̅� = 𝐴(𝐵�̅�) 

 

Properties with constants: 

1. (𝛼𝛽)𝐴 = 𝛼(𝛽𝐴); 

2. 𝜆(𝐴𝐵) = (𝜆𝐴)𝐵 = 𝐴(𝜆𝐵) (associative multiplication). 

3. (𝛼 + 𝛽)𝐴 = 𝛼𝐴 + 𝛽𝐴 (distributive property); 

4. 𝛼(𝐴 + 𝐵) = 𝛼𝐴 + 𝛼𝐵 (distributive property); 

 

Properties with operators: 

1. 𝐴 + 𝐵 = 𝐵 + 𝐴 (commutative addition); 

2. (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) (associative multiplication); 

3. (𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶 (distributive property); 

4. 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶 (distributive property); 

 

In general case, commutativity of multiplication is not performed, i.e. AB ≠ BA. However, for symmetric 

linear operators (i.e. that have symmetric matrices) is that – AB = BA. We can show it. Symmetric operator is 

a bilinear operator that satisfy definition that for any vectors x and y 

𝐴(�̅�; �̅�) = 𝐴(�̅�; �̅�) ⇔ (𝐴�̅�; �̅�) = (�̅�; 𝐴�̅�) 

Then 

(𝐴𝐵�̅�; �̅�) = (𝐴(𝐵�̅�); �̅�) = (𝐵�̅�; 𝐴�̅�) = (�̅�; 𝐵(𝐴�̅�)) = (�̅�; 𝐵𝐴�̅�) ⇔ 𝐴𝐵 = 𝐵𝐴 

In our course, discussed systems will have this symmetry property and, as consequence, the 

commutativity of multiplication (AB = BA). 

§1.5 Convolution 

1.5.1 Linear convolution 

A convolution is defined by means of formula 

𝑦(𝑡) = (ℎ ∗ 𝑥)(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏

+∞

−∞

 

That is, a convolution is a mathematical operation over two functions x(t) and h(t) producing the third function 

y(t). The convolution is designated by asterisk ("*"). It is seen from the definition that the convolution is a 

linear operator because the linearity is performed 

(ℎ ∗ (𝛼𝑥 + 𝛽𝑦))(𝑡) = 𝛼(ℎ ∗ 𝑥)(𝑡) + 𝛽(ℎ ∗ 𝑦)(𝑡) 

due to the linearity of integral. Also it can be noticed that the convolution is symmetric, that is 

(ℎ ∗ 𝑥)(𝑡) = (𝑥 ∗ ℎ)(𝑡) 

Let’s look at this 

(ℎ ∗ 𝑥)(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏

+∞

−∞

= |𝑡 − 𝜏 → 𝑝; 𝜏 → 𝑡 − 𝑝| = ∫ 𝑥(𝑝)ℎ(𝑡 − 𝑝)𝑑(𝑡 − 𝑝)

−∞

+∞

= ∫ 𝑥(𝑝)ℎ(𝑡 − 𝑝)𝑑𝑝

+∞

−∞

= (𝑥 ∗ ℎ)(𝑡) 

The classic example is a convolution of two rectangular functions 



Chapter 1 Basic knowledge 

14 

ℎ(𝑡) = 𝑥(𝑡) = {
1 for |𝑡| ≤ 𝑎
0 for |𝑡| > 𝑎

 

Function h(t) and its convolution illustration are depicted in Figure 1.1 and 1.2 respectively. 

t

1

a-a

x(t)

 

Figure 1.1 – A function x(t) 

t

1

a-a

x(t)

t

1

a-a

x(t)

t

1

a-a

x(t)

t

1

a-a

x(t)

a)

b)

c)

d)  

Figure 1.2 – The convolution illustration (a) t<-a (b) –a<t<0 (c) 0<t<a (d) t>a 

𝑦(𝑡) = (ℎ ∗ 𝑥)(𝑡) = ∫ ℎ(𝜏)𝑥(𝑡 − 𝜏)𝑑𝜏

+∞

−∞

= ∫𝑥(𝑡 − 𝜏)𝑑𝜏

𝑎

−𝑎

= ∫ 𝑥(𝜏)𝑑𝜏

𝑡+𝑎

𝑡−𝑎

=

{
 
 
 

 
 
 

0 for 𝑡 < −2𝑎

∫ 𝑑𝜏

𝑡+𝑎

−𝑎

 for − 2𝑎 ≤ 𝑡 < 0

∫ 𝑑𝜏

𝑎

𝑡−𝑎

 for 0 ≤ 𝑡 ≤ 2𝑎

0 for 𝑡 > 2𝑎

= 

= {
0 for |𝑡| > 2𝑎

𝑡 + 𝑎 + 𝑎 for − 2𝑎 ≤ 𝑡 < 0
𝑎 − 𝑡 + 𝑎 for 0 ≤ 𝑡 ≤ 2𝑎

= {
0 for |𝑡| > 2𝑎

2𝑎 + 𝑡 for − 2𝑎 ≤ 𝑡 < 0
2𝑎 − 𝑡 for 0 ≤ 𝑡 ≤ 2𝑎

= {
0 for |𝑡| > 2𝑎

2𝑎 − |𝑡| for |𝑡| ≤ 2𝑎
 

The result of the calculation can be presented as in Figure 1.3. 



Chapter 1 Basic knowledge 

15 

t
2a-2a

y(t)

2a

 

Figure 1.3 – Convolution result 

1.5.2 Cyclic convolution 

If xT(t) and hT(t) are periodic functions with period T, i.e. 

𝑥𝑇(𝑡) = ∑ 𝑥(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

= ∑ 𝑥(𝑡 + 𝑘𝑇)

+∞

𝑘=−∞

;  ℎ𝑇(𝑡) = ∑ ℎ(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

= ∑ ℎ(𝑡 + 𝑘𝑇)

+∞

𝑘=−∞

, 

where x(t) and h(t) are aperiodic functions, then 

 

Circular convolution 

(ℎ ∗ 𝑥𝑇)(𝑡) = ∫ ℎ(𝜏)𝑥𝑇(𝑡 − 𝜏)𝑑𝜏

+∞

−∞

 

Periodic convolution 

(ℎ𝑇 ∗ 𝑥𝑇)(𝑡) = ∫ ℎ𝑇(𝜏)𝑥𝑇(𝑡 − 𝜏)𝑑𝜏

𝑡0+𝑇

𝑡0

 

Equivalence 

(ℎ ∗ 𝑥𝑇)(𝑡) = (ℎ𝑇 ∗ 𝑥𝑇)(𝑡) 

 

Prove their equivalence. 

(ℎ𝑇 ∗ 𝑥𝑇)(𝑡) = ∫ ℎ𝑇(𝜏)𝑥𝑇(𝑡 − 𝜏)𝑑𝜏

𝑡0+𝑇

𝑡0

= ∫ ∑ ℎ(𝜏 + 𝑘𝑇)

+∞

𝑘=−∞

𝑥𝑇(𝑡 − 𝜏)𝑑𝜏

𝑡0+𝑇

𝑡0

= ∑ ∫ ℎ(𝜏 + 𝑘𝑇)𝑥𝑇(𝑡 − 𝜏)𝑑𝜏

𝑡0+𝑇

𝑡0

+∞

𝑘=−∞

= |

𝜏 + 𝑘𝑇 → 𝑝
𝜏 → 𝑝 − 𝑘𝑇
𝑑𝜏 → 𝑑𝑝

| = ∑ ∫ ℎ(𝑝) 𝑥𝑇(𝑡 − 𝑝 + 𝑘𝑇)⏟          
𝑥𝑇(𝑡−𝑝)

𝑑𝑝

𝑡0+𝑘𝑇+𝑇

𝑡0+𝑘𝑇

+∞

𝑘=−∞

= ∫ ℎ(𝑝)𝑥𝑇(𝑡 − 𝑝)𝑑𝑝

+∞

−∞

= (ℎ ∗ 𝑥𝑇)(𝑡) 

In other words, a linear convolution of periodic functions is equal to a periodic convolution for their common 

period. 

§1.6 Fourier series 

If a function is periodic, we can expand it into a series of harmonic functions (sine and cosine). Such a 

series is called a Fourier Series (FS). For periodic function xT(t) with a period T the Fourier series is described 

with following formulas 

 

Fourier Series 

𝑥𝑇(𝑡) = ∑ 𝑐𝑘𝑒
𝑗𝜔𝑘𝑡

+∞

𝑘=−∞

; 𝜔𝑘 =
2𝜋𝑘

𝑇
; 𝑐𝑘 =

1

𝑇
∫𝑥𝑇(𝑡)

𝑇

0

𝑒−𝑗𝜔𝑘𝑡𝑑𝑡 



Chapter 1 Basic knowledge 

16 

 

Fourier Series coefficients represent magnitude and phase of corresponding frequencies. Let’s have a look at 

an example. Let 

𝑥𝑇(𝑡) = sin (
2𝜋𝑚

𝑇
𝑡) = sin(𝜔𝑚𝑡) ; 𝜔𝑚 =

2𝜋𝑚

𝑇
 

Calculate coefficients of the Fourier Series (remember results from §1.3.3). 

𝑐𝑘 =
1

𝑇
∫sin(𝜔𝑚𝑡)

𝑇

0

𝑒−𝑗𝜔𝑘𝑡𝑑𝑡 =
1

𝑇
∫ sin(𝜔𝑚𝑡) cos(𝜔𝑘𝑡) 𝑑𝑡

𝑇

0⏟                
0

− 𝑗
1

𝑇
∫ sin(𝜔𝑚𝑡) sin(𝜔𝑘𝑡) 𝑑𝑡

𝑇

0⏟              

±
𝑇
2

= {∓𝑗
1

𝑇
·
𝑇

2
, if 𝑘 = ±𝑚

0, if 𝑘 ≠ ±𝑚
=

= {∓𝑗
1

2
, if 𝑘 = ±𝑚

0, if 𝑘 ≠ ±𝑚
 

For the cosine function, it will be 

𝑐𝑘 =
1

𝑇
∫ cos(𝜔𝑚𝑡)

𝑇

0

𝑒−𝑗𝜔𝑘𝑡𝑑𝑡 =
1

𝑇
∫ cos(𝜔𝑚𝑡) cos(𝜔𝑘𝑡) 𝑑𝑡

𝑇

0⏟                
𝑇
2

− 𝑗
1

𝑇
∫ cos(𝜔𝑚𝑡) sin(𝜔𝑘𝑡) 𝑑𝑡

𝑇

0⏟                
0

= {
1

𝑇
·
𝑇

2
, if 𝑘 = ±𝑚

0, if 𝑘 ≠ ±𝑚

= {
1

2
, if 𝑘 = ±𝑚

0, if 𝑘 ≠ ±𝑚
 

§1.7 Integral Fourier Transform 

1.7.1 Definition 

The Integral Fourier Transform (IFT) helps us to know a magnitude and a phase of frequencies in our 

signal. It performs a transformation from a time domain into a frequency domain and back. 

 

Direct Integral Fourier Transform (Direct IFT) 

𝐹(𝜔) = ℱ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

. 

Inverse Integral Fourier Transform (Inverse IFT) 

𝑓(𝑡) = ℱ−1{𝐹(𝜔)} =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

. 

 

The Direct IFT provides us a complex function of a frequency. The Inverse IFT provides a complex (in 

general case) function of time. 

1.7.2 Spectrum of signal 

A spectrum is a signal representation in the frequency domain. To get this representation, Fourier 

Transform is needed. To put it simply, F(ω) is a spectrum density function or just a spectrum. As F(ω) is a 

complex function, the spectrum is described by means of two characteristics: magnitude and phase. 

The simplest example for a signal spectrum is a spectrum of a harmonic function x(t). The harmonic is 

shown in figure 1.4 and has amplitude 1 and frequency f0. Its spectrum X(f) (magnitude and phase) is 

presented in figure 1.5; there is a tone at frequency f0 with magnitude value 0.5 and phase value -π/2. 

Calculation is the following 



Chapter 1 Basic knowledge 

17 

∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫ sin(𝜔0𝑡)𝑒
−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫
𝑒𝑗𝜔0𝑡 − 𝑒−𝑗𝜔0𝑡

2𝑗
𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

=
1

2𝑗
∫ 𝑒𝑗(𝜔0−𝜔)𝑡𝑑𝑡

+∞

−∞

−
1

2𝑗
∫ 𝑒−𝑗(𝜔0+𝜔)𝑡𝑑𝑡

+∞

−∞

=
𝛿(𝜔0 −𝜔) − 𝛿(𝜔0 +𝜔)

2𝑗

= −
𝑗

2
(𝛿(𝜔0 −𝜔) − 𝛿(𝜔0 +𝜔)) 

(We discuss Dirac delta function more detailed in §1.10.) 

t

x(t)

1

 

Figure 1.4 – A sine function x(t) 

arg X(f)

π/2 

f

|X(f)|

f0

1
2

-f0

f
f0

-f0

-π/2 

 

Figure 1.5 – A magnitude and a phase of x(t) 

Best practice for the FT calculation is to evaluate a constant level (by averaging all samples) and subtract 

it from the signal. In most applications, the constant level doesn’t carry information, so there is no need to 

represent it in the spectrum. Also note that a real signal spectrum is symmetric: the magnitude is symmetric, 

the phase is anti-symmetric. 

1.7.3 Properties 

1. Linearity 

It can be seen from Fourier Transform definition that the next statement is true: 

ℱ{𝛼𝑥(𝑡) + 𝛽𝑦(𝑡)} = 𝛼ℱ{𝑥(𝑡)} + 𝛽ℱ{𝑦(𝑡)} 

for all x(t), y(t), α, β. It means that Fourier Transform is a linear operator and has all its properties. 

2. Invertibility 



Chapter 1 Basic knowledge 

18 

Declaration 

The Fourier Transform is also an invertible operator. That is: 

ℱ−1{ℱ{𝑥(𝑡)}} = 𝑥(𝑡) and ℱ{ℱ−1{𝑋(𝜔)}} = 𝑋(𝜔). 

Proof 

𝐹(𝜔) = ℱ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

; 𝑓(𝑡) = ℱ−1{𝐹(𝜔)} =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

 

𝑓(𝑥) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑥𝑑𝜔

+∞

−∞

=
1

2𝜋
∫ ( ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

)𝑒𝑗𝜔𝑥𝑑𝜔

+∞

−∞

=
1

2𝜋
∫ 𝑓(𝑡) ∫ 𝑒𝑗𝜔(𝑥−𝑡)𝑑𝜔

+∞

−∞⏟          
2𝜋·𝛿(𝑥−𝑡)

𝑑𝑡

+∞

−∞

=
2𝜋

2𝜋
∫ 𝑓(𝑡) · 𝛿(𝑥 − 𝑡)𝑑𝑡

+∞

−∞

= 𝑓(𝑥) 

1.7.4 Sine and cosine transforms 

Fourier Transform has sine and cosine forms. Let’s look at them 

𝐹(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫ 𝑓(𝑡)(cos𝜔𝑡 − 𝑗 sin𝜔𝑡)𝑑𝑡

+∞

−∞

= 

= ∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

−∞

− 𝑗 ∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

−∞

= 𝐹𝑐(𝜔) − 𝑗𝐹𝑠(𝜔) 

where Fc(ω) –  the Fourier cosine transform, Fs(ω) –  the Fourier sine transform, and their formulas: 

𝐹𝑐(𝜔) = ∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

−∞

;  𝐹𝑠(𝜔) = ∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

−∞

 

For an even function f(t) the Fourier cosine transform can be simplified: 

𝐹𝑐(𝜔) = ∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

−∞

= ∫𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

0

−∞

+∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

0

= 

= ∫𝑓(−𝑡) cos𝜔(−𝑡) 𝑑(−𝑡)

0

+∞

+∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

0

= ∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

0

+ 

+∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

0

= 2∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

0

 

That is: 

𝐹𝑐(𝜔) = 2∫ 𝑓(𝑡) cos𝜔𝑡 𝑑𝑡

+∞

0

 

The same story with an odd function f(t) and the sine transform. The Fourier sine transform can also be 

simplified: 

𝐹𝑠(𝜔) = ∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

−∞

= ∫𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

0

−∞

+∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

0

= 

= ∫𝑓(−𝑡) sin𝜔(−𝑡) 𝑑(−𝑡)

0

+∞

+∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

0

= ∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

0

+ 

+∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

0

= 2∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

0

 

That is: 



Chapter 1 Basic knowledge 

19 

𝐹𝑠(𝜔) = 2∫ 𝑓(𝑡) sin𝜔𝑡 𝑑𝑡

+∞

0

 

1.7.5 Shifting theorem 

Declaration 

Now we discuss what happens with a spectrum of a time shifted signal. Shifting theorem states that 

𝑦(𝑡) = 𝑥(𝑡 − 𝜏)  ↔ 𝑌(𝜔) = 𝑒−𝑗𝜔𝜏 · 𝑋(𝜔) 

𝑌(𝜔) = 𝑋(𝜔 − 𝜏) ↔ 𝑦(𝑡) = 𝑒𝑗𝜔𝜏 · 𝑥(𝑡). 

Proof 

Assume that our original signal x(t) is shifted in time by τ. It can be written as: 

𝑦(𝑡) = 𝑥(𝑡 − 𝜏); 

And we know that: 

ℱ{𝑦(𝑡)} = 𝑌(𝜔);  ℱ{𝑥(𝑡)} = 𝑋(𝜔) 

Do FT from both sides: 

ℱ{𝑦(𝑡)} = ℱ{𝑥(𝑡 − 𝜏)} 

𝑌(𝜔) = ∫ 𝑥(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= |𝑡 − 𝜏 → 𝑝; 𝑡 → 𝑝 + 𝜏| = ∫ 𝑥(𝑝)𝑒−𝑗𝜔(𝑝+𝜏)𝑑(𝑝 + 𝜏)

+∞

−∞

= 𝑒−𝑗𝜔𝜏 ∫ 𝑥(𝑝)𝑒−𝑗𝜔𝑝𝑑𝑝

+∞

−∞

= 𝑒−𝑗𝜔𝜏 · ℱ{𝑥(𝑡)} = 𝑒−𝑗𝜔𝜏 · 𝑋(𝜔) 

That is: 

𝑌(𝜔) = 𝑒−𝑗𝜔𝜏 · 𝑋(𝜔) 

For inverse FT it will be similar: 

𝑌(𝜔) = 𝑋(𝜔 − 𝛺) 

ℱ−1{𝑌(𝜔)} = ℱ−1{𝑋(𝜔 − 𝛺)} 

𝑦(𝑡) = ∫ 𝑋(𝜔 − 𝛺)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

= 𝑒𝑗𝛺𝑡 ∫ 𝑋(𝑝)𝑒𝑗𝑝𝑡𝑑𝑝

+∞

−∞

= 𝑒𝑗𝛺𝑡 · ℱ−1{𝑋(𝜔)} = 𝑒𝑗𝛺𝑡 · 𝑥(𝑡) 

𝑦(𝑡) = 𝑒𝑗𝛺𝑡 · 𝑥(𝑡) 

Here we see that real signal transforms into complex signal (spectrum now is not symmetric). We discuss such 

signals in Chapter 10 Analytic signal. 

1.7.6 Theorem of convolution 

Assume that: 

ℱ{𝑦(𝑡)} = 𝑌(𝜔);  ℱ{𝑥(𝑡)} = 𝑋(𝜔);  ℱ{ℎ(𝑡)} = 𝐻(𝜔) 

Then next equivalences are performed: 

𝑦(𝑡) = (𝑥 ∗ ℎ)(𝑡) ↔ 𝑌(𝜔) = 𝑋(𝜔) · 𝐻(𝜔) 

𝑦(𝑡) = 𝑥(𝑡) · ℎ(𝑡) ↔ 𝑌(𝜔) =
1

2𝜋
· (𝑋 ∗ 𝐻)(𝜔) 

Let’s prove it. Start with the first equivalence: 

𝑦(𝑡) = (𝑥 ∗ ℎ)(𝑡) = ∫ 𝑥(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏

+∞

−∞

 

𝑌(𝜔) = ℱ{𝑦(𝑡)} = ℱ{(𝑥 ∗ ℎ)(𝑡)} = ∫ ∫ 𝑥(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏

+∞

−∞

𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= 

= ∫ ℎ(𝜏)( ∫ 𝑥(𝑡 − 𝜏)

+∞

−∞

𝑒−𝑗𝜔𝑡𝑑𝑡)𝑑𝜏

+∞

−∞

= ∫ ℎ(𝜏) · 𝑒−𝑗𝜔𝜏 · 𝑋(𝜔)𝑑𝜏

+∞

−∞

= 𝑋(𝜔) ∫ ℎ(𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏

+∞

−∞

= 𝑋(𝜔) · 𝐻(𝜔) 

The second equivalence: 



Chapter 1 Basic knowledge 

20 

𝑌(𝜔) = (𝑋 ∗ 𝐻)(𝜔) = ∫ 𝑋(𝜔 − 𝛺)𝐻(𝛺)𝑑𝛺

+∞

−∞

 

𝑦(𝑡) = ℱ−1{𝑌(𝜔)} = ℱ−1 {
1

2𝜋
· (𝑋 ∗ 𝐻)(𝜔)} =

1

2𝜋
·
1

2𝜋
∫ ∫ 𝑋(𝜔 − 𝛺)𝐻(𝛺)𝑑𝛺

+∞

−∞

𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

= 

=
1

2𝜋
∫ 𝐻(𝛺)(

1

2𝜋
∫ 𝑋(𝜔 − 𝛺)

+∞

−∞

𝑒𝑗𝜔𝑡𝑑𝜔)𝑑𝛺

+∞

−∞

=
1

2𝜋
∫ 𝐻(𝛺) · 𝑒𝑗𝛺𝑡 · 𝑥(𝑡)𝑑𝛺

+∞

−∞

= 𝑥(𝑡) ·
1

2𝜋
∫ 𝐻(𝛺)𝑒𝑗𝛺𝑡𝑑𝛺

+∞

−∞

= 𝑥(𝑡) · ℎ(𝑡) 

 

1.7.7 General formulas 

Declaration 

If 𝑓(𝑡) ↔ 𝐹(𝜔), then the following equivalences are correct: 

1. 
𝑑𝑓(𝑡)

𝑑𝑡
↔ 𝑗𝜔𝐹(𝜔) 

2. ∫𝑓(𝑡)𝑑𝑡 ↔
𝐹(𝜔)

𝑗𝜔
 

3. 𝑓(𝛼𝑡) ↔
1

𝛼
𝐹 (

𝜔

𝛼
) 

 

Proof 

Initially we know that: 

𝑓(𝑡) =
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

; 

1. Differentiation 

𝑑𝑓(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
(
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

) =
1

2𝜋
∫
𝑑

𝑑𝑡
(𝐹(𝜔)𝑒𝑗𝜔𝑡)𝑑𝜔

+∞

−∞

=
1

2𝜋
∫ 𝑗𝜔𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

= ℱ−1{𝑗𝜔𝐹(𝜔)} 

2. Integration 

∫𝑓(𝑡)𝑑𝑡 = ∫(
1

2𝜋
∫ 𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

)𝑑𝑡 =
1

2𝜋
∫ (∫𝐹(𝜔)𝑒𝑗𝜔𝑡𝑑𝑡)𝑑𝜔

+∞

−∞

=
1

2𝜋
∫
𝐹(𝜔)

𝑗𝜔
𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

= ℱ−1 {
𝐹(𝜔)

𝑗𝜔
} 

3. Scaling 

∫ 𝑓(𝛼𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= |𝛼𝑡 → 𝑝; 𝑡 →
𝑝

𝛼
; 𝑑𝑡 →

𝑑𝑝

𝛼
| = ∫ 𝑓(𝑝)𝑒−𝑗𝜔

𝑝
𝛼
𝑑𝑝

𝛼

+∞

−∞

=
1

𝛼
∫ 𝑓(𝑝)𝑒−𝑗

𝜔
𝛼
𝑝𝑑𝑝

+∞

−∞

=
1

𝛼
 𝐹 (
𝜔

𝛼
) 

§1.8 Laplace Transform 

1.8.1 Definition and properties 

Definition 

Fourier Transform gives us information only about homogeneous in time processes. To analyze 

transition processes in a linear system, it needs to perform the Laplace transform. 

 

Direct Laplace Transform 

𝐹(𝑝) = ℒ{𝑓(𝑡)} = ∫ 𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡

+∞

0

 

Inverse Laplace Transform 



Chapter 1 Basic knowledge 

21 

𝑓(𝑡) = ℒ−1{𝑓(𝑡)} =
1

2𝜋𝑗
∫ 𝐹(𝑝)𝑒𝑝𝑡𝑑𝑝

𝜎0+𝑗∞

𝜎0−𝑗∞

 

 

where σ0 – an arbitrary real number, p – a complex variable that is written usually as 

𝑝 = 𝜎 + 𝑗𝜔 

The Laplace transform simplifies solving of differential linear equations by means of conversion them into 

regular linear equations. 

 

Properties 

3. Linearity 

As we can see from the definition, the Laplace transform is a linear operator, because 

ℒ{𝛼𝑥(𝑡) + 𝛽𝑦(𝑡)} = 𝛼ℒ{𝑥(𝑡)} + 𝛽ℒ{𝑦(𝑡)} 

4. Invertibility 

This transform like the Fourier Transform is also invertible 

ℒ−1{ℒ{𝑓(𝑡)}} = 𝑓(𝑡);  ℒ{ℒ−1{𝐹(𝑝)}} = 𝐹(𝑝) 

5. Theorem of convolution 

The same theorem of convolution is fulfilled for the Laplace Transform: 

𝑦(𝑡) = (𝑥 ∗ ℎ)(𝑡) ↔ 𝑌(𝑝) = 𝑋(𝑝) · 𝐻(𝑝) 

𝑦(𝑡) = 𝑥(𝑡) · ℎ(𝑡) ↔ 𝑌(𝑝) =
1

2𝜋𝑗
(𝑋 ∗ 𝐻)(𝑝) 

1.8.2 Impulse response and transfer function 

For linear systems, we can define a transfer function T(p): 

𝑇(𝑝) =
𝑌(𝑝)

𝑋(𝑝)
, 

where X(p) – the Laplace transform of the input function, Y(p) – the Laplace transform of the output function. 

In other words, the output of our system can be calculated by: 

𝑌(𝑝) = 𝑇(𝑝) · 𝑋(𝑝) 

By theorem of convolution, it is equivalent to: 

𝑦(𝑡) = (𝑥 ∗ ℎ)(𝑡) 

where h(t) – the inverse Laplace Transform of T(p) or an impulse response h(t). 

𝑇(𝑝) = ∫ ℎ(𝑡)𝑒−𝑝𝑡𝑑𝑡

+∞

0

 

If the input is a delta function, then 

𝑦(𝑡) = ∫ 𝛿(𝑡 − 𝜏)ℎ(𝜏)𝑑𝜏

+∞

−∞

= ℎ(𝑡) 

In other words, the output will be equaled to the impulse response, if the input is a delta function. Let’s 

designated the following integral as A 

∫ ℎ(𝜏)𝑑𝜏

+∞

−∞

= 𝐴 

A corresponds to the output of the system, if the input is a unity valued constant level. So that A-1 corresponds 

to a transfer coefficient for the constant level: 

1

𝐴
=

1

∫ ℎ(𝜏)𝑑𝜏
+∞

−∞

= 𝑇(0). 



Chapter 1 Basic knowledge 

22 

1.8.3 Poles and stability 

Typically, the transfer function is a fraction of polynomials 

𝑇(𝑝) =
𝐴(𝑝)

𝐵(𝑝)
=
∑ 𝑏𝑖𝑝

𝑖𝑀

𝑖=0

∑ 𝑎𝑖𝑝
𝑖𝑁

𝑖=0

 

Let pk are roots (also called as poles) of the polynomial B(p). Then 

𝑇(𝑝) =
𝐴(𝑝)

∑ (𝑝 − 𝑝𝑘)
𝐾
𝑘=0

; 

The Inverse Laplace transform from this expression will be 

ℎ(𝑡) = ∑ 𝑐𝑘𝑒
𝑝𝑘𝑡

𝐾

𝑘=0

; 

where ck – coefficients obtained by the Inverse Laplace transform. Now, analyze different cases for pk. These 

cases are shown in figure 1.3. 

σ 

jω 

t

h(t)

 

σ 

jω

jω0

jω0

t

h(t)

 
𝜎 < 0, 𝑗𝜔 = 0 𝜎 < 0, 𝑗𝜔 = ±𝑗𝜔0 

σ 

jω 

t

h(t)

 

σ 

jω

jω0

jω0

t

h(t)

 
𝜎 = 0, 𝑗𝜔 = 0 𝜎 = 0, 𝑗𝜔 = ±𝑗𝜔0 

σ 

jω 

t

h(t)

 

σ 

jω

jω0

jω0

t

h(t)

 
𝜎 > 0, 𝑗𝜔 = 0 𝜎 > 0, 𝑗𝜔 = ±𝑗𝜔0 

Figure 1.3 – Different cases of poles and their impulse responses 

 

 If σ < 0 (a real part of pk), then an impulse response h(t) approaches zero and system is stable; 

 If σ = 0, then h(t) is constant and system is conditionally stable; 

 If σ < 0, then h(t) approaches the infinity and system is unstable. 

Thus, if all poles of a transfer function are located in the left half of p-plane, then the system will be stable. If 

there is a pole in the right half of p-plane, then system will be unstable. Also note that transfer function with 

real coefficients always has conjugated pole pairs. 

§1.9 Z-transform 

1.9.1 Definition 

The Laplace transform helps to analyze continuous time system. What about discrete time system? For 

this purpose, there is a Z-transform. 

 



Chapter 1 Basic knowledge 

23 

Direct Z-transform 

𝐻(𝑧) = 𝒵{ℎ(𝑛)} = ∑ ℎ(𝑛)𝑧−𝑛
+∞

𝑛=−∞

, 

Inverse Z-transform 

ℎ(𝑛) = 𝒵−1{𝐻(𝑧)} =
1

2𝜋𝑖
∮ 𝐻(𝑧)𝑧𝑛−1𝑑𝑧

𝐶

 

 

where H(z) – a transfer function of a discrete system, z – a complex variable, C – a counterclockwise closed 

path encircling the origin and entirely in the region of convergence (ROC). The complex variable z-n, like e-pt, 

is a general form of discrete equation solution. As we can see from the definition, the linearity property for 

Z-transform is performed, so Z-transform is also a linear operator. 

A special case of the contour integral in the Inverse Transform occurs when C is the unit circle. This 

contour can be used when the ROC includes the unit circle, which is always guaranteed when H(z) is stable, 

that is, when all the poles are inside the unit circle. With this contour, the Inverse Z-transform simplifies to 

the Inverse Discrete-Time Fourier Transform, or Fourier series, of the periodic values of the Z-transform 

around the unit circle: 

ℎ(𝑛) =
1

2𝜋𝑗
∫ 𝐻(𝑒𝑗𝜔𝑡𝑠)𝑒𝑗𝜔𝑡𝑠(𝑛−1)𝑑(𝑒𝑗𝜔𝑡𝑠)

+∞

−∞

=
1

2𝜋𝑗
∫ 𝐻(𝑒𝑗𝜔𝑡𝑠)𝑒𝑗𝜔𝑡𝑠(𝑛−1)𝑒𝑗𝜔𝑡𝑠𝑗𝑡𝑠𝑑𝜔

+∞

−∞

=
1

2𝜋
∫ 𝐻(𝑒𝑗𝜔𝑡𝑠)𝑒𝑗𝑛𝜔𝑡𝑠𝑑(𝜔𝑡𝑠)

+∞

−∞

. 

1.9.2 Connection with other transforms 

Variable z may be represented as 

𝑧 = 𝑒𝑝𝑡𝑠;  𝑡𝑠 =
1

𝑓𝑠
 

where fs – sampling frequency of a discrete system. We remember that: 

𝑝 = 𝜎 + 𝑗𝜔 

Then 

𝑧 = 𝑒𝑝𝑡𝑠;  𝑡𝑠 =
1

𝑓𝑠
 

and 

𝑧 = 𝑒(𝜎+𝑗𝜔)𝑡𝑠 = 𝑒𝜎𝑡𝑠⏞
𝑟

· 𝑒𝑗𝜔𝑡𝑠 = 𝑟𝑒𝑗𝜔𝑡𝑠;  |𝑧| = 𝑟; arg 𝑧 = 𝜔𝑡𝑠 

𝐻(𝑟𝑒𝑗𝜔𝑡𝑠) = ∑ ℎ(𝑛) · 𝑧−𝑛
+∞

𝑛=−∞

= ∑ ℎ(𝑛) · (𝑟𝑒𝑗𝜔𝑡𝑠)
−𝑛

+∞

𝑛=−∞

= ∑ (ℎ(𝑛)𝑟−𝑛) · 𝑒−𝑗𝑛𝜔𝑡𝑠

+∞

𝑛=−∞

 

If r = 1 (σ = 0), then 

𝐻(𝑒𝑗𝜔𝑡𝑠) = 𝐻′(𝑗𝜔) = ∑ ℎ(𝑛)𝑒−𝑗𝑛𝜔𝑡𝑠

+∞

𝑛=−∞

 

It is a Discrete-Time Fourier Transform (DTFT). Y-axis (where σ = 0) from p-plane transforms to a unit circle 

on z-plane (figure 1.6). The left half of p-plane (where σ < 0 and r < 1) transforms into interior part of the unit 

circle, the right half of p-plane (where σ > 0 and r > 1) – into outer part of the unit circle. 



Chapter 1 Basic knowledge 

24 

Re z

Im z

1

 

Figure 1.6 – A unit circle on the z-plane 

Thus, if poles are inside the unit circle on the z-plane, then your system is stable; if there is at least one pole 

outside the unit circle – your system is unstable. 

As ωts – an angle on z-plane, z is periodic by frequency. Let’s find this period: 

𝜔𝑇𝑡𝑠 = 2𝜋 ⇔ 2𝜋𝑓𝑇 =
2𝜋

𝑡𝑠
⇔ 𝑓𝑇 =

1

𝑡𝑠
= 𝑓𝑠 

Thus, sampling frequency is a period of z and, as consequence, of H(z). Magnitude and phase responses of 

such a system (discrete-time system) is periodic by frequency with period equaled to sampling frequency. 

If we choose interest interval as (-π; π], then: 

𝜔𝑡𝑠 ∈ (−𝜋;  𝜋] ⇔ 2𝜋𝑓 ∈ (−
𝜋

𝑡𝑠
;  
𝜋

𝑡𝑠
] ⇔ 𝑓 ∈ (−

𝑓𝑠
2
;  
𝑓𝑠
2
] 

We may choose any another interval with length fs, but this interval is more convenient for us. 

§1.10 Dirac delta function 

Definition 

Delta function is a function that satisfy the following statements: 

 𝛿(𝑥) = {
+∞, 𝑥 = 0
0, 𝑥 ≠ 0

; 

 ∫ 𝛿(𝑥)𝑑𝑥
+∞

−∞
= 1. 

 

Properties 

1. Filter property 

∫ 𝑓(𝑥)𝛿(𝑥)𝑑𝑥
+∞

−∞

= 𝑓(0) 

In general case for any shift T: 

∫ 𝑓(𝑥)𝛿(𝑥 − 𝑇)𝑑𝑥
+∞

−∞

= 𝑓(𝑇) 

 

2. Discrete case 

For the discrete case, the definition of the delta function transforms into 

𝛿(𝑛) = {
1, 𝑛 = 0
0, 𝑛 ≠ 0

, 𝑛 ∈ ℤ 

 



Chapter 1 Basic knowledge 

25 

3. Unit and scaled delta function 

Let’s take unit step function (figure 1.7). Take a derivation in point 0. 

1(𝑡) = {
1 for 𝑡 ≥ 0
0 for 𝑡 < 0

 

 

t

f(t)

1

0
 

Figure 1.7 – A unit step function f(t) 

A unit step function derivation gives a delta function and: for t > 0: 

∫ 𝛿(𝑥)𝑑𝑥
𝑡

−∞

= ∫ 𝛿(𝑥)𝑑𝑥
+∞

−∞

= 1 

There is an issue with scaled unit step function, it is shown in figure 1.8. 

t

f(t)

a

0
 

Figure 1.8 – A scaled unit step function f(t) 

Formally, its derivation is the same: just a delta function. But if we take integral, we won’t get a, we will also 

get 1. To solve this confusion, it is accepted to write down the such derivation as: 

𝑑𝑓(𝑡)

𝑑𝑡
= 𝑎𝛿(𝑡) 

Then (for t > 0) 

∫ 𝑎𝛿(𝑥)𝑑𝑥
𝑡

−∞

= 𝑎∫ 𝛿(𝑥)𝑑𝑥
+∞

−∞

= 𝑎 

Take into consideration this example, we will assume that in point 0 a delta function is equaled to 1. 

4. Spectrum 

Spectrum S(ω) of delta function is: 

𝑆(𝜔) = ∫ 𝛿(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞

= 𝑒−𝑗𝜔·0 = 1 

So that it is independent of frequency. Delta function can be present by inverse Fourier Transform as: 



Chapter 1 Basic knowledge 

26 

𝛿(𝑡) =
1

2𝜋
∫ 𝑆(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

=
1

2𝜋
∫ 𝑒𝑗𝜔𝑡𝑑𝜔

+∞

−∞

 

5. Fourier series 

Let’s assume f(t) that is repeating delta functions with period T: 

𝑓(𝑡) = ∑ 𝛿(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

 

As f(t) is a periodic function, we can expand it in a Fourier series: 

𝑓(𝑡) = ∑ 𝑐𝑘 · 𝑒
𝑗
2𝜋
𝑇
𝑘𝑡

+∞

𝑘=−∞

 

where ck is: 

𝑐𝑘 =
1

𝑇
∫𝛿(𝑡)𝑒−𝑗

2𝜋
𝑇
𝑘𝑡𝑑𝑡

𝑇
2

−
𝑇
2

=
1

𝑇
∫ 𝛿(𝑡)𝑒−𝑗

2𝜋
𝑇
𝑘𝑡𝑑𝑡

+∞

−∞

=
1

𝑇
· 𝑒−𝑗

2𝜋
𝑇
𝑘·0 =

1

𝑇
· 1 =

1

𝑇
 

Then 

𝑓(𝑡) = ∑
1

𝑇
· 𝑒𝑗

2𝜋
𝑇
𝑘𝑡

+∞

𝑘=−∞

=
1

𝑇
∑ 𝑒𝑗

2𝜋
𝑇
𝑘𝑡

+∞

𝑘=−∞

 

Finally, we got that: 

∑ 𝛿(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

=
1

𝑇
∑ 𝑒𝑗

2𝜋
𝑇
𝑘𝑡

+∞

𝑘=−∞

 

 

 



Chapter 2 Discrete sequences and systems 

27 

Chapter 2 Discrete sequences and systems 

§2.1 Introduction 

Let’s start with understanding what digital signal processing is. A digital code – a code presented by 

means of digits. Signal processing – a transformation of a signal. Thus, digital signal processing – a 

transformation of a signal presented with numbers by arithmetic operations. 

How can we get a signal presented with numbers? This process is illustrated in Figure 2.1. At first, we 

have some analog signal s(t), which is continuous by time and by value. It goes through N-bit analog-to-

digital converter (ADC) with sampling frequency fs. The output of the ADC is a discrete sequence of numbers 

x(n). The discrete sequence x(n) is discretized signal s(t) by time and by value. 

t

ADCs(t) x(n)

fs

t
0ts 1ts 2ts nts

s(t) x(n)

 

Figure 2.1 – Analog-to-digital conversion of signal s(t) into discrete sequence x(n) 

Interval between x(n) samples equals sampling period ts. Relation between sampling period and 

sampling frequency fs is obvious 

𝑡𝑠 =
1

𝑓𝑠
. 

Sampling frequency determines time resolution, bits number of the ADC determines value resolution. 

Hereinafter, we will neglect quantization error and consider that samples exactly equal signal values, i.e 

𝑥(𝑛) = 𝑠(𝑛𝑡𝑠). 

Sometimes, you can find such an expression 

𝑥cont(𝑡) = 𝑠(𝑡) ∑ 𝛿(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

 

but it is not a sequence of samples (xcont is a continuous-time function) and it is not the output of the ADC. 

The output of the ADC is a sequence of index n. Such an expression is used to get continuous-time (analog) 

representation of the sequence x. Taking into account that delta function equals zero almost everywhere, we 

can rewrite the expression above as 

𝑥cont(𝑡) = 𝑠(𝑡) ∑ 𝛿(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

= ∑ 𝑠(𝑘𝑡𝑠) · 𝛿(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

. 

We got discrete convolution of s and δ. As we know, from the theorem of convolution 

𝑦(𝑡) = (𝑥 ∗ ℎ)(𝑡) ↔ 𝑌(𝜔) = 𝑋(𝜔) · 𝐻(𝜔) 

Spectrum of the delta function is unit-valued frequency independent function.  

(𝑠 ∗ 𝛿)(𝑡) = 𝑆(𝜔) · Δ(𝜔)⏟  
1

= 𝑆(𝜔) 

Thus, such a representation xcont of a discrete sequence does not change the spectrum. In terms of spectrum, 

xcont(t) and x(n) are equivalent. In particular, this representation is assumed in Discrete-Time Fourier Transform 

(§3.2). 



Chapter 2 Discrete sequences and systems 

28 

§2.2 Operations on discrete sequences 

In digital signal processing, there are only several operations available. By combination of these 

operations, all transformations are done. These three main operations are illustrated in figure 2.2. They are 

 Sequence summation; 

 Sequence multiplication; 

 Delay unit (memory cell). 

a c

b

c = a + b

a c

b

c = a ×  b

a(n) b(n)

b(n) = a(n-1)

Delay

 

Figure 2.2 – Operations in digital signal processing 

In analog processing, we know the next processing blocks: amplifiers, adders, mixers, generators, 

detectors and filters. In digital signal processing, their functions can also be done, namely: 

 Amplifier – a multiplication of sequence by a constant; 

 Adder – sequences summation; 

 Mixer – sequences multiplication; 

 Generator – a source of a determinate sequence; 

 Filter – a digital filter; 

 Detector – a Hilbert converter (digital filter) with an envelope selection. 

All these devices, except digital filter and detector, have obvious realization. 

Virtually, any transformation in DSP is done by means of a digital filter. Any combination of summations, 

multiplications and delays is a structure of some digital filter. That is, a digital filter is not only a frequency 

selection device, but a transformation device in general. 

§2.3 Unit delay element 

Look at a unit delay element (Figure 2.3). We know a relationship between the input and the output for 

this element: 

𝑦(𝑛) = 𝑥(𝑛 − 1). 

Do z-transform from the output: 

 

𝑌(𝑧) = ∑ 𝑦(𝑛)𝑧−𝑛
+∞

𝑛=−∞

= ∑ 𝑥(𝑛 − 1)𝑧−𝑛
+∞

𝑛=−∞

= ∑ 𝑥(𝑚)𝑧−(𝑚+1)
+∞

𝑚=−∞

= 𝑧−1 ∑ 𝑥(𝑚)𝑧−𝑚
+∞

𝑚=−∞

= 𝑧−1𝑋(𝑧) 

 

It means that a unit delay element has a transfer function equals to z-1. Therefore, both representations 

depicted in Figure 2.3 are equivalent. 

a(n) b(n)

b(n) = a(n-1)

Delay a(n) b(n)

B(z) = z
-1

 · A(z)

z
-1

 



Chapter 2 Discrete sequences and systems 

29 

Figure 2.3 – Two ways of representation for a unit delay element 

§2.4 Systems in digital signal processing 

2.4.1 Discrete linear systems 

Definition 

Discrete linear system (DLS) – a discrete system that is a linear operator for an input-output transform. 

 

For example, The Fourier Transform is a linear operator. So that, a device performing Fourier Transform 

with discrete sequences is a discrete linear system. But systems that perform such functions: 

𝑦(𝑛) = |𝑥(𝑛)|;  𝑦(𝑛) = 𝑥2(𝑛);  𝑦(𝑛) = sin 𝑥(𝑛) 

are nonlinear, and linearity property is not executed. The output signal of such systems will have a distortion, 

that is spurious spectral components. 

2.4.2 Time-invariant systems 

Except linear systems, we are also interested in another independent class of systems – time-invariant 

systems. Time-invariance means that a time shift of the input signal cause the similar shift of the output signal. 

If input sequence x causes output sequence y, i. e. 

𝑥(𝑛) → 𝑦(𝑛), 

then we can write the time-invariance property as 

𝑥(𝑛 + 𝑘) → 𝑦(𝑛 + 𝑘). 

And for time-invariance systems, it is true for every k. In other words, a time-invariance system is invariant for 

a time reference point. As an example, look at the system, where 

𝑦(𝑛) = 𝛼𝑥(𝑛). 

The input and the output test signals are presented in Figure 2.4. Shifting the input signal x(n) by a 

quarter period similarly changes shifting in time of the output sequence y(n). 

n

x(n)

n

n

y(n)

n

 

Figure 2.4 – A system response before (top) and after (bottom) time shift 

It should be noticed that for time-variant systems an impulse response cannot be unambiguously 

defined. This is due to dependence of the output response from the initial time shift. From this point, time-

variant systems are similar with nonlinear systems, where the output response depends on an absolute value 

of the input. 

2.4.3 Discrete Linear Time-Invariant (LTI) systems 



Chapter 2 Discrete sequences and systems 

30 

Combination of two mentioned independent properties (linearity and time-invariance) gives us a very 

convenient class of systems – discrete Linear Time-Invariant (LTI) systems. 

 

Properties of discrete time-invariant linear systems 

1. Linearity (superposition) 

Assume that every input sequence has corresponding output sequence: 

𝑥𝑘(𝑛) → 𝑦𝑘(𝑛) 

Then a linear combination of the input sequences corresponds to the same linear combination of the output 

sequences: 

𝑥(𝑛) =∑𝑎𝑘𝑥𝑘(𝑛) → 𝑦(𝑛) =∑𝑎𝑘𝑦𝑘(𝑛) 

2. Convolution with impulse response 

For LTI systems, impulse response is extremely important. If we know the impulse response, we can say 

that we know everything about our system behavior. In other words, it is possible to know the output signal 

for every input signal, because the output signal can be calculated as a convolution of the impulse response 

and the input signal. For LTI, it will be: 

𝑦(𝑛) = ∑ ℎ(𝑘) · 𝑥(𝑛 − 𝑘)

𝐾−1

𝑘=0

, 

where y(n) – the output sequence, x(n) – the input sequence, h(k) – the impulse response, K – the length of 

the impulse response. This relation is possible due to the properties of LTI system. In nonlinear systems 

response depends on an absolute value of the input, in time-variant systems it depends on time when 

sequence starts. In LTI systems both dependencies are absent, impulse response is unambiguity and can be 

applied with any input signal. 

Let’s proof that combination of linearity and time-invariance allow us to use convolution for getting 

output response. Let our system be an operator A that transforms space of u to space of t, i.e. 

𝑦(𝑡) = 𝐴𝑡{𝑥(𝑢); 𝑢}. 

Due to linearity the following statement is true 

𝐴𝑡 { ∫ 𝑐𝜏 · 𝑥(𝑢)𝑑𝜏

+∞

−∞

; 𝑢} = ∫ 𝑐𝜏 · 𝐴𝑡{𝑥(𝑢); 𝑢}𝑑𝜏

+∞

−∞

 

Due to time-invariance the following statement is true 

𝑦(𝑡 − 𝜏) = 𝐴𝑡−𝜏{𝑥(𝑢); 𝑢} = 𝐴𝑡{𝑥(𝑢 − 𝜏); 𝑢} 

Impulse response in this notation will be 

ℎ(𝑡) = 𝐴𝑡{𝛿(𝑢); 𝑢} 

Thus, the convolution is 

𝑥 ∗ ℎ(𝑡) = ∫ 𝑥(𝜏) · ℎ(𝑡 − 𝜏)𝑑𝜏

+∞

−∞

= ∫ 𝑥(𝜏) · 𝐴𝑡−𝜏{𝛿(𝑢); 𝑢}𝑑𝜏

+∞

−∞

= ∫ 𝑥(𝜏) · 𝐴𝑡{𝛿(𝑢 − 𝜏); 𝑢}𝑑𝜏

+∞

−∞

= 𝐴𝑡 { ∫ 𝑥(𝜏) · 𝛿(𝑢 − 𝜏)𝑑𝜏

+∞

−∞

; 𝑢} = 𝐴𝑡{𝑥(𝑢); 𝑢} = 𝑦(𝑡) 

3. Commutativity 

For LTI systems, it is possible to change their order without affecting the output sequence (Figure 2.5). 

This is a consequence of the previous property. Let’s prove it. Consider 

𝑥 ∗ ℎ1(𝑡) = 𝑦1; 𝑥 ∗ ℎ2(𝑡) = 𝑦′1; 𝑦1 ∗ ℎ2(𝑡) = 𝑦2 

then 



Chapter 2 Discrete sequences and systems 

31 

𝑦2(𝑡) = 𝑦1 ∗ ℎ2(𝑡) = ∫ ℎ2(𝜏) · 𝑦1(𝑡 − 𝜏)𝑑𝜏

+∞

−∞

= ∫ ℎ2(𝜏) · ( ∫ ℎ1(𝑝) · 𝑥(𝑡 − 𝜏 − 𝑝)𝑑𝑝

+∞

−∞

)𝑑𝜏

+∞

−∞

= ∫ ( ∫ ℎ2(𝜏) · ℎ1(𝑝) · 𝑥(𝑡 − 𝜏 − 𝑝)𝑑𝑝

+∞

−∞

)𝑑𝜏

+∞

−∞

= ∫ ℎ1(𝑝) · ( ∫ ℎ2(𝜏) · 𝑥(𝑡 − 𝑝 − 𝜏)

+∞

−∞

𝑑𝜏)𝑑𝑝

+∞

−∞

= ∫ ℎ1(𝑝) · 𝑦′1(𝑡 − 𝑝)𝑑𝑝

+∞

−∞

= 𝑦′1 ∗ ℎ1(𝑡). 

LTI #1 LTI #2

LTI #2 LTI #1

x(n)

x(n)

y(n)

y(n)

 

Figure 2.5 – Commutativity property 

§2.5 Real-time systems 

Real-time system – a system that guarantees a response for each input sample at a fixed time interval. 

A real-time system may have a delay for an input action, but this delay is guaranteed and fixed. A typical real-

time system has equal rate of input and output data streams, and each new input sample changes an output 

sample. An exception is systems for sample rate conversion. Systems that imply block processing (like 

microprocessors or CPU) are not inherently real-time systems. However, they can function as real-time 

systems if they are capable of processing a data block at least N times faster than input rate (N – a block size). 

For example, CPUs can process audio signals in real-time due to high performance in comparison with audio 

stream rate. 

§2.6 Complexity metrics 

In comparison with digital systems, typically, we are interested in performance, power consumption and 

hardware costs (or area). From all the mentioned operations (summation, multiplication and delay), 

multiplication block is the most complex one. It requires plenty of logic gates, which results in more area, 

power consumption and time for processing signal. Thus, we will evaluate the complexity and performance 

of digital systems by multipliers number. 

 



Chapter 3 Sampling signals 

32 

Chapter 3 Sampling signals 

§3.1 Ambiguity of signal presentation 

Let’s take a discrete sequence x(n) that is illustrated in Figure 3.1 and try to restore a harmonic signal 

x(t). One person may see here harmonic signal with one period, another – with 3 periods. These situations are 

shown in Figure 3.2. And both variants are absolutely right without any additional information about the 

signal x(t). 

n

x(n)

 

Figure 3.1 – A discrete sequence x(n) 

 

n

x(n)

 

Figure 3.2 – Two different signals correspond to the sequence x(n) 

It means that a discrete sequence without an additional information may represent an infinite number 

of frequencies. Let’s determine this frequency family. At first, take a discrete sequence as 

𝑥(𝑛) = sin(2𝜋𝑓0𝑛𝑡𝑠) 

Add up 2πm (m⋲ℤ) to the phase. It doesn’t change the sequence, so 

𝑥(𝑛) = sin(2𝜋𝑓0𝑛𝑡𝑠) = sin(2𝜋𝑓0𝑛𝑡𝑠 + 2𝜋𝑚) = sin(2𝜋(𝑓0𝑛𝑡𝑠 +𝑚)) = sin(2𝜋(𝑓0𝑛𝑡𝑠 +𝑚𝑓𝑠𝑡𝑠))

= sin (2𝜋 (𝑓0 +
𝑚

𝑛
𝑓𝑠) 𝑛𝑡𝑠). 

From here, we see that each sample of x(n) corresponds to the family with frequencies 

𝑓0 +
𝑚

𝑛
𝑓𝑠. 

To determine the family for the whole sequence, we need to exclude a family dependence of the sequence 

index n. For this, we choose m = kn. Then 

𝑥(𝑛) = sin(2𝜋(𝑓0 + 𝑘𝑓𝑠)𝑛𝑡𝑠) 

Thus, the discrete sequence x(n) corresponds to signals with frequencies 



Chapter 3 Sampling signals 

33 

𝑓0 + 𝑘𝑓𝑠. 

Such a family is demonstrated in Figure 3.3. This correspondence between the discrete sequence and the 

frequency family means that a spectrum of a discrete sequence is periodic. A spectrum repetition period is fs. 

The images corresponded to k ≠ 0 are called aliases. 

fs-fs 2fs0-fs+f0 f0 fs+f0 f

|X(f)|

 

Figure 3.3 – A frequencies family represented by the sequence x(n) 

§3.2 Discrete-Time Fourier transform 

We already know several instruments for getting a spectrum, namely: The Fourier Series and Integral 

Fourier Transform (IFT). But they have a requirement – function must be continuous in time. As a result, we 

cannot use them for discrete sequences. Therefore, we need other instrument that is capable to operate with 

discrete sequences. Such an instrument is called the Discrete-Time Fourier Transform (DTFT). 

 

Direct Discrete-Time Fourier Transform Inverse Discrete-Time Fourier Transform 

𝑋(𝜔) = ∑ 𝑥(𝑛)

+∞

𝑛=−∞

· 𝑒−𝑗𝜔𝑛𝑡𝑠 𝑥(𝑛) =
1

𝜔𝑠
∫ 𝑋(𝜔)

𝜔𝑠
2

−
𝜔𝑠
2

· 𝑒𝑗𝜔𝑛𝑡𝑠𝑑𝜔 

 

This transform can be obtained from the Integral Fourier Transform. The IFT requires a continuous-time 

function, so we use the continuous-time representation of a discrete sequence from §2.1. 

𝑥cont(𝑡) = 𝑠(𝑡) ∑ 𝛿(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

= ∑ 𝑠(𝑘𝑡𝑠) · 𝛿(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

= ∑ 𝑥(𝑘) · 𝛿(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

 

If we apply the IFT to xcont, we will get 

𝑋(𝜔) = ∫ 𝑥cont(𝑡) · 𝑒
−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫ ∑ 𝑥(𝑘) · 𝛿(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

· 𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∑ 𝑥(𝑘)

+∞

𝑘=−∞

∫ 𝛿(𝑡 − 𝑘𝑡𝑠) · 𝑒
−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∑ 𝑥(𝑘)

+∞

𝑘=−∞

· 𝑒−𝑗𝜔𝑘𝑡𝑠 = ∑ 𝑥(𝑘)

+∞

𝑘=−∞

· 𝑒−𝑗𝜔𝑘𝑡𝑠 . 

Thus, we get the Direct DTFT expression. Note, a spectrum of DTFT is periodic with period ωs, i.e. 

𝑋(𝜔 + 𝑘𝜔𝑠) = 𝑋(𝜔), 𝑘ϵℤ. 

▲ Home exercise: check that spectrum is periodic. 

The spectrum of the DTFT will be discussed in detail in the next section. 

§3.3 Discrete sequence spectrum 



Chapter 3 Sampling signals 

34 

From the previous sections, we have learned a relation between a continuous signal s(t) and its discrete 

sequence x(n) and known that X(ω) is periodic, i.e. 

𝑠(𝑛𝑡𝑠) → 𝑥(𝑛);  𝑋(𝜔 + 𝑘𝜔𝑠) = 𝑋(𝜔), 𝑘ϵℤ. 

But still there is a question. What is relation between spectrums S(ω) and X(ω)? 

𝑆(𝜔)
?
→ 𝑋(𝜔) 

To know it, let’s calculate X(ω) using DTFT. 

𝑋(𝜔) = ∑ 𝑥(𝑛)

+∞

𝑛=−∞

· 𝑒−𝑗𝜔𝑛𝑡𝑠 = ∑ 𝑠(𝑛𝑡𝑠)

+∞

𝑛=−∞

· 𝑒−𝑗𝜔𝑛𝑡𝑠 

Present s(t) using its Inverse Integral Fourier Transform (see §1.7.1) 

𝑠(𝑡) =
1

2𝜋
∫ 𝑆(Ω) · 𝑒𝑗Ω𝑡𝑑Ω

+∞

−∞

→ 𝑠(𝑛𝑡𝑠) =
1

2𝜋
∫ 𝑆(Ω) · 𝑒𝑗Ω𝑛𝑡𝑠𝑑Ω

+∞

−∞

 

where S(Ω) – the original signal spectrum. Then 

∑ 𝑠(𝑛𝑡𝑠)

+∞

𝑛=−∞

· 𝑒−𝑗𝜔𝑛𝑡𝑠 = ∑ (
1

2𝜋
∫ 𝑆(Ω) · 𝑒𝑗Ω𝑛𝑡𝑠𝑑Ω

+∞

−∞

) · 𝑒−𝑗𝜔𝑛𝑡𝑠

+∞

𝑛=−∞

=
1

2𝜋
∫ 𝑆(Ω) · ∑ 𝑒𝑗(Ω−𝜔)𝑛𝑡𝑠

+∞

𝑛=−∞

𝑑Ω

+∞

−∞

 

From §1.10 we know that 

∑ 𝛿(𝑡 − 𝑘𝑇)

+∞

𝑘=−∞

=
1

𝑇
∑ 𝑒𝑗

2𝜋
𝑇
𝑘𝑡

+∞

𝑘=−∞

 

So summation of exponents can be replaced by 

∑ 𝑒𝑗(Ω−𝜔)𝑘𝑡𝑠

+∞

𝑘=−∞

= 𝜔𝑠 ∑ 𝛿(Ω − 𝜔 − 𝑘𝜔𝑠)

+∞

𝑘=−∞

 

where 

𝑡 ↔ Ω − 𝜔; 𝑘 ↔ 𝑘; 
2𝜋

𝑇
↔ 𝑡𝑠; 

𝑇 ↔
2𝜋

𝑡𝑠
= 2𝜋𝑓𝑠 = 𝜔𝑠 

Using this, we get 

1

2𝜋
∫ 𝑆(Ω) · ∑ 𝑒𝑗(Ω−𝜔)𝑛𝑡𝑠

+∞

𝑛=−∞

𝑑Ω

+∞

−∞

=
1

2𝜋
∫ 𝑆(Ω) · 𝜔𝑠 ∑ 𝛿(Ω − 𝜔 − 𝑛𝜔𝑠)

+∞

𝑛=−∞

𝑑Ω

+∞

−∞

=
𝜔𝑠
2𝜋

∫ 𝑆(Ω) · ∑ 𝛿(Ω − 𝜔 − 𝑛𝜔𝑠)

+∞

𝑛=−∞

𝑑Ω

+∞

−∞

=
𝜔𝑠
2𝜋

∑ ∫ 𝑆(Ω) · 𝛿(Ω − 𝜔 − 𝑛𝜔𝑠)𝑑Ω

+∞

−∞

+∞

𝑛=−∞

=
𝜔𝑠
2𝜋

∑ 𝑆(𝜔 + 𝑛𝜔𝑠)

+∞

𝑘=−∞

 

Finally, the result is 

𝑋(𝜔) =
𝜔𝑠
2𝜋

∑ 𝑆(𝜔 + 𝑛𝜔𝑠)

+∞

𝑛=−∞

, 𝑛 ∈ ℤ 

It means that spectrum of a discrete sequence is a summation of periodically repeating original signal 

spectrum. This effect is illustrated in Figure 3.4. 



Chapter 3 Sampling signals 

35 

ω

|S(ω)|

ωs-ωs  

Figure 3.4 – The result of a spectrum summation after sampling 

§3.4 Signal reconstruction 

We have discussed aspects concerning transition from continuous-time signals to discrete sequences. 

What about inverse transitions? That is, we want to reconstruct a continuous-time signal r(t) from a discrete 

sequence x(n). How can we do this? Will r(t) be equal s(t)? 

To make a reconstruction, we need some reconstruction function h(t). Virtually, we have already done 

a reconstruction by means of the Dirac delta function for xcont(t) in §3.2. In general case, a reconstructed signal 

r(t) will be a function defined as 

𝑟(𝑡) = ∑ 𝑥(𝑘) · ℎ(𝑡 − 𝑘𝑡𝑠)

+∞

𝑘=−∞

= (𝑥 ∗ ℎ)(𝑡). 

Thus, h(t) can be interpreted as an impulse response of a reconstruction device. What about spectrum? By 

the convolution theorem, we get that 

𝑅(𝜔) = 𝑋(𝜔) · 𝐻(𝜔). 

Take as an example a digital-to-analog converter. Typically, it has a rectangular reconstruction function. 

Example of corresponding convolution is illustrated in Figure 3.5. 

n

x(n)

t

s(t)

ts

h(t)

1

ts t

*

=

 

Figure 3.5 – Reconstruction function an ideal DAC 

▲ Home exercise: get spectrum of the ideal DAC. 

§3.5 Sampling low-pass signals 

In this paragraph we talk about low-pass signals, i.e. signals having the most their energy around 0 

frequency. Consider frequency range of interest from -fs/2 to fs/2, which is known as “baseband”. In general 



Chapter 3 Sampling signals 

36 

case, we can consider any frequency range having width fs. Look at a spectrum of a low-pass signal with 

bandwidth B (Figure 3.6). This spectrum is symmetric because of the properties of a real signal. 

0 f

|X(f)|

B-B
 

Figure 3.6 – A spectrum of a low-pass real signal 

If we sample this signal with a sampling frequency fs, we will get a spectrum illustrated in Figure 3.7. 

The spectrum is periodic with period fs. From here, we can understand requirements for the sampling 

frequency. In shown example, a repetition of the spectrum doesn’t distort our signal. But if we take the 

sampling frequency smaller as demonstrated in Figure 3.8, we will get a distortion for our signal because the 

spectrum copies (or “aliases”) overlap one another. Such an effect is called aliasing. 

0 f

|X(f)|

B-B fs

2

fs-fs fs

2
-

 

Figure 3.7 – A spectrum after sampling with fs frequency 

0 f

|X(f)|

Bfs

2

fs

 

Figure 3.8 – Aliasing of spectrums 

From here we see that for distortion absence, we need that: 



Chapter 3 Sampling signals 

37 

𝑓𝑠
2
> 𝐵 ⇔ 𝑓𝑠 > 2𝐵 

This condition is called Nyquist criteria. The fulfilment of this condition provides us a non-distorted signal. To 

choose sampling frequency more than doubled signal bandwidth is not enough to exclude aliasing. If our 

signal has noise like in Figure 3.9, then after sampling we still will have a distortion that is illustrated in figure 

3.10. 

0 f

|X(f)|

B-B
 

Figure 3.9 – Spectrum of the input signal with noise 

0 f

|X(f)|

B-B fs

2

fs-fs fs

2
-

 

Figure 3.10 – Spectrum of the input signal with noise after sampling 

The resulting spectrum will be a sum of repeating spectrums (see §3.3). To avoid this, it is necessary to put a 

low-pass filter before an ADC. Such a diagram is presented in Figure 3.11. The low-pass filter has to cut-off 

all out of a signal bandwidth (Figure 3.12). The low-pass filter before the ADC is called antialiasing filter. 

LPF ADCs(t) x(n)

 

Figure 3.11 – Using a low-pass filter for antialiasing 



Chapter 3 Sampling signals 

38 

0 f

|X(f)|

B-B
 

Figure 3.12 – Required magnitude response of the low-pass filter. 

§3.6 Sampling band-pass signals 

3.6.1 Limits for a band-pass sampling 

Now we discuss the sampling of a band-pass signal. Consider a band-pass signal with carrier f0 and 

band B. A spectrum of such a signal is depicted in Figure 3.13. Using the Nyquist criteria, the sampling 

frequency for such signal should be 

𝑓𝑠 > 2𝑓𝑚𝑎𝑥 = 2(𝑓0 +
𝐵

2
) = 2𝑓0 + 𝐵 

But such sampling frequency may be very high. Moreover, we have an empty band from -f0+B/2 to f0-B/2. 

Let’s employ aliasing of spectrum to our advantage. 

f

|S(f)|

f00-f0

B

 

Figure 3.13 – A spectrum of a pass-band signal 

Choose sampling as the lowest frequency in spectrum, i.e. 

𝑓𝑠 = 𝑓0 −
𝐵

2
 

Then the spectrum after the sampling will be as illustrated in Figure 3.14. Blue spectrum – a spectrum of the 

original signal; green spectrum – a spectrum of the alias in the main band; grey spectrums – spectrums of 

other aliases. 

Let’s calculate possible sampling frequencies for such case. We know that the empty band has the width 

𝑓0 −
𝐵

2
− (−𝑓0 +

𝐵

2
) = 2𝑓0 − 𝐵. 

In this band, we may have only integer number m of spectrum copies. A width of each copy is fs. So 

𝑚𝑓𝑠 = 2𝑓0 − 𝐵 ⇔ 𝑓𝑠 =
2𝑓0 − 𝐵

𝑚
. 

This is an upper limit for the sampling frequency. And the situation, depicted in Figure 3.14, corresponds to 

m = 2, i. e. 

𝑓𝑠 =
2𝑓0 − 𝐵

2
= 𝑓0 −

𝐵

2
 



Chapter 3 Sampling signals 

39 

f-f0 f0

B

|S(f)|

0 fsB-B-fs  

Figure 3.14 – A spectrum of the signal for fs = f0-B/2 (m = 2) 

Can we increase fs? No, we will have distortions. Can we decrease fs? Yes. An example of such a situation 

is illustrated in Fig. 3.15. Here we see that there is no possibility to decrease fs further. That is, it is a lower 

limit for the sampling frequency. 

B

f-f0 f0

|S(f)|

0 fs-fs  

Figure 3.15 – A spectrum of the signal for lower limit of fs (m = 2) 

Let’s estimate the lower limit. We still have the same number of copies, but they present in the narrower 

band. The band is decreased by value 2x, i. e. 

𝑚𝑓𝑠 = 2𝑓0 −𝐵 − 2𝑥 

Value x is shown in Figure 3.16 and can be calculated, for example, using a copy of the spectrum in the band 

from 0 to fs as 

2𝑥 = 𝑓𝑠 − 2𝐵. 

Thus, 

𝑚𝑓𝑠 = 2𝑓0 − 𝐵 − (𝑓𝑠 − 2𝐵) ⇔ (𝑚 + 1)𝑓𝑠 = 2𝑓0 +𝐵 ⇔ 𝑓𝑠 =
2𝑓0 + 𝐵

𝑚 + 1
 

And 

2𝑓0 + 𝐵

𝑚 + 1
≤ 𝑓𝑠 ≤

2𝑓0 −𝐵

𝑚
 

B

f-f0 f0

|S(f)|

0 fs-fs

xxx xBB

 

Figure 3.16 – Calculation of x value 

It is recommended not to choose the sampling frequency exactly at the upper/lower limit because 

frequency at edges will be distorted by the aliasing. In other words, requirements for the band-pass sampling 

is 



Chapter 3 Sampling signals 

40 

2𝑓0 +𝐵

𝑚 + 1
< 𝑓𝑠 <

2𝑓0 − 𝐵

𝑚
 

Moreover, it can be noticed that for m = 0, we obtain our first estimation for the sampling frequency, namely 

2𝑓0 + 𝐵

0 + 1
< 𝑓𝑠 <

2𝑓0 − 𝐵

0
⇔ 2𝑓0 + 𝐵 < 𝑓𝑠 < ∞⇔ 𝑓𝑠 > 2𝑓0 + 𝐵 

That is, low-pass sampling is included into conditions for the band-pass sampling. 

What is the lowest sampling frequency? Here we need to remind Nyquist criteria and restrict lower limit 

by the doubled band of the signal, that is 

2𝑓0 + 𝐵

𝑚 + 1
> 2𝐵 ⇔

2𝑓0 + 𝐵

2𝐵
> 𝑚 + 1 ⇔ 𝑚 <

2𝑓0 + 𝐵

2𝐵
− 1 =

2𝑓0 − 𝐵

2𝐵
=
𝑓0
𝐵
−
1

2
 

So, we obtain an upper limit for m as 

𝑚 <
𝑓0
𝐵
−
1

2
 

3.6.2 Spectrum inversion 

Let’s have a look at a spectrum for m = 3; it is shown in Figures 3.17 and 3.18 (upper and lower limit 

cases respectively). The spectrum for lower limit in the main band is flipped. This effect is called “an inversion 

of a spectrum” and illustrated additionally in Figure 3.17. You can detect the inversion by an orientation of 

spectrums that are closest to the 0 Hz. The inversion happens only for odd m and is important only for signals 

with an asymmetric band. 

f-f0 f0

|S(f)|

0 fs-fs  

Figure 3.17 – A spectrum for m = 3 and the upper limit 

f-f0 f0

|S(f)|

0 fs-fs  

Figure 3.18 – A spectrum for m = 3 and the lower limit 



Chapter 3 Sampling signals 

41 

f

|S(f)|

Original

f

Inversion

 

Figure 3.19 – Illustration of an inversion of a spectrum 

If you’ve got an undesirable inversion, it is not a critical problem. The inversion can be cured by the 

following operation 

𝑥′(𝑛) = 𝑥(𝑛) · (−1)𝑛 

This operation is equivalent to a shift of the spectrum by fs/2. Why? Let’s show this. The second term of the 

multiplication can be presented as 

cos (2𝜋
𝑓𝑠
2
𝑛𝑡𝑠) = cos(𝜋𝑛) = (−1)

𝑛 

For example, if 

𝑥(𝑛) = cos(2𝜋𝑓𝑛𝑡𝑠) 

Then 

𝑥(𝑛) · (−1)𝑛 = cos(2𝜋𝑓𝑛𝑡𝑠) · cos (2𝜋
𝑓𝑠
2
𝑛𝑡𝑠) =

cos (2𝜋𝑓𝑛𝑡𝑠 + 2𝜋
𝑓𝑠
2 𝑛𝑡𝑠) + cos (2𝜋𝑓𝑛𝑡𝑠 − 2𝜋

𝑓𝑠
2 𝑛𝑡𝑠)

2

=
cos (2𝜋 (𝑓 +

𝑓𝑠
2) 𝑛𝑡𝑠) + cos (2𝜋 (𝑓 −

𝑓𝑠
2)𝑛𝑡𝑠)

2
 

After some evaluations 

cos (2𝜋 (𝑓 −
𝑓𝑠
2
)𝑛𝑡𝑠) = cos (2𝜋 (𝑓 −

𝑓𝑠
2
) 𝑛𝑡𝑠 + 2𝜋𝑛) = cos (2𝜋 (𝑓 −

𝑓𝑠
2
) 𝑛𝑡𝑠 + 2𝜋𝑓𝑠𝑛𝑡𝑠)

= cos (2𝜋 (𝑓 −
𝑓𝑠
2
+ 𝑓𝑠)𝑛𝑡𝑠) = cos (2𝜋 (𝑓 +

𝑓𝑠
2
) 𝑛𝑡𝑠) 

Thus, 

𝑥(𝑛) · (−1)𝑛 =
cos(2𝜋 (𝑓 +

𝑓𝑠
2)𝑛𝑡𝑠) + cos (2𝜋 (𝑓 −

𝑓𝑠
2) 𝑛𝑡𝑠)

2
=
2 cos (2𝜋 (𝑓 +

𝑓𝑠
2)𝑛𝑡𝑠)

2
= cos (2𝜋 (𝑓 +

𝑓𝑠
2
) 𝑛𝑡𝑠) 

After applying the mentioned operation, the modified spectrum will be as in Figure 3.20. There is no inversion 

and the spectrum in the main band locates at 0 frequency. 



Chapter 3 Sampling signals 

42 

f-f0 f0

|S(f)|

0 fs-fs 2fs

f-f0 f0fs-fs
·(-1)

n

 

Figure 3.20 – The cure of the spectrum inversion 

3.6.3 Recommendations 

Situations, in which the spectrums are in contact at ±fs/2 frequency (as in Figures 3.15 and 3.17), are 

undesirable for the following processing (since your signal is still band-pass and, as consequence, your band 

for processing is wider than it is necessary). So, to get an asymmetric spectrum at 0 frequency without the 

inversion, there are 2 options: 

1. Use the upper limit for even m; 

2. Use the upper limit for odd m and then multiply the signal by (-1)n; 

For a symmetric spectrum (the inversion doesn’t matter), there are 2 additional options: 

1. Use the lower limit for odd m. 

2. Use the lower limit for even m and then multiply the signal by (-1)n; 

 

Moreover, some other approaches exist for choosing the sampling frequency. 

1. Take the average value of lower and upper limits, then fs is expressed by 

𝑓𝑠 =
1

2
(
2𝑓0 + 𝐵

𝑚 + 1
+
2𝑓0 − 𝐵

𝑚
) 

2. Take the sampling frequency as 

𝑓𝑠 =
4𝑓0
𝑚
,𝑚 − odd 

Then spectrum will be centered at fs/4 frequency. 

▲ Home exercise: prove the statement above. 

 



Chapter 4 Discrete Fourier Transform 

43 

Chapter 4 Discrete Fourier Transform 

§4.1 Derivation of the formula 

In digital signal processing, we deal with finite time discrete sequences. So we can’t use the Discrete 

Time Fourier Transform (DTFT) or even more the Integral Fourier Transform (IFT) to get a spectrum of a signal. 

But there is the Discrete Fourier Transform (DFT) that can help us. To get it, let’s start with the Fourier series. 

Present our original continuous signal as the Fourier series: 

𝑠(𝑡) = ∑ 𝑐𝑘𝑒
𝑗𝜔𝑘𝑡

+∞

𝑘=−∞

;  𝜔𝑘 =
2𝜋𝑘

𝑇
 

This equation performs for a periodic continuous signal with a period equals T. Let’s sample this signal. 

𝑠(𝑛𝑡𝑠) = 𝑥(𝑛) = 𝑥𝑛 = ∑ 𝑐𝑘𝑒
+𝑗𝜔𝑘𝑛𝑡𝑠

+∞

𝑘=−∞

= ∑ 𝑐𝑘𝑒
𝑗
2𝜋𝑘
𝑇
𝑛𝑡𝑠

+∞

𝑘=−∞

= ∑ 𝑐𝑘𝑒
𝑗
2𝜋𝑘
𝑁𝑡𝑠

𝑛𝑡𝑠

+∞

𝑘=−∞

= ∑ 𝑐𝑘𝑒
𝑗
2𝜋𝑘𝑛
𝑁

+∞

𝑘=−∞

 

Then rewrite the summation in such a way: 

𝑥𝑛 = ∑ 𝑐𝑘𝑒
𝑗
2𝜋𝑘𝑛
𝑁

+∞

𝑘=−∞

= ∑ ∑ 𝑐𝑘+𝑚𝑁 · 𝑒
𝑗
2𝜋(𝑘+𝑚𝑁)𝑛

𝑁

𝑁−1

𝑘=0

+∞

𝑚=−∞

= ∑ ∑ 𝑐𝑘+𝑚𝑁 · 𝑒
𝑗
2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

+∞

𝑚=−∞

· 𝑒𝑗
2𝜋𝑚𝑁𝑛
𝑁

= ∑ ∑ 𝑐𝑘+𝑚𝑁 · 𝑒
𝑗
2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

+∞

𝑚=−∞

· 𝑒𝑗2𝜋𝑚𝑛⏟    
1

= ∑ 𝑒𝑗
2𝜋𝑘𝑛
𝑁 · ∑ 𝑐𝑘+𝑚𝑁

+∞

𝑚=−∞⏟        
𝑋𝑘

𝑁−1

𝑘=0

= ∑ 𝑋𝑘 · 𝑒
𝑗
2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

 

That is 

𝑥𝑛 = ∑ 𝑋𝑘 · 𝑒
𝑗
2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

;  𝑋𝑘 = ∑ 𝑐𝑘+𝑚𝑁

+∞

𝑚=−∞

 

It is the formula for the inverse Discrete Fourier Transform. Go further 

∑𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

= ∑∑𝑋𝑘 · 𝑒
𝑗
2𝜋𝑘𝑛
𝑁 · 𝑒−𝑗

2𝜋𝑚𝑛
𝑁

𝑁−1

𝑘=0

𝑁−1

𝑛=0

= ∑ 𝑋𝑘 · ∑ 𝑒𝑗
2𝜋(𝑘−𝑚)𝑛

𝑁

𝑁−1

𝑛=0

𝑁−1

𝑘=0

 

The last summation is a geometric progression, where 

𝑏0 = 1; 𝑞 = 𝑒
𝑗
2𝜋(𝑘−𝑚)

𝑁  

Thus, according to material from §1.1, the summation, can be transformed to 

∑𝑒𝑗
2𝜋(𝑘−𝑚)𝑛

𝑁

𝑁−1

𝑛=0

= {
1 ·
1 − 𝑞𝑁

1 − 𝑞
, if 𝑘 ≠ 𝑚

𝑁, if 𝑘 = 𝑚

= {

1 − 𝑒𝑗2𝜋(𝑘−𝑚)

1 − 𝑒𝑗
2𝜋(𝑘−𝑚)

𝑁

, if 𝑘 ≠ 𝑚

𝑁, if 𝑘 = 𝑚

= {
0, if 𝑘 ≠ 𝑚
𝑁, if 𝑘 = 𝑚

 

Because if k = m 

𝑒𝑗
2𝜋(𝑘−𝑚)𝑛

𝑁 = 𝑒𝑗0 = 1; ∑ 𝑒𝑗
2𝜋(𝑘−𝑚)𝑛

𝑁

𝑁−1

𝑛=0

= ∑ 1

𝑁−1

𝑛=0

= 𝑁 

If k ≠ m, then 

𝑒𝑗2𝜋(𝑘−𝑚) = 𝑒𝑗2𝜋𝑙 = 1;  1 − 𝑒𝑗2𝜋(𝑘−𝑚) = 0 

Thus, we have 

∑𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

= 𝑁 · 𝑋𝑚  𝑋𝑚 =
1

𝑁
· ∑ 𝑥𝑛 · 𝑒

−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

 

This is direct DFT. 

Typically, we are of interest in ratio between spectrum components (and use dBs for that), and there is 

no need to have multiplication by 1/N factor in Direct transform. So, in DSP this factor is set at Inverse 

transform and our formulas finally become 



Chapter 4 Discrete Fourier Transform 

44 

𝑋𝑚 = ∑ 𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

 Direct DFT 

𝑥𝑛 =
1

𝑁
· ∑ 𝑋𝑚 · 𝑒

𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑚=0

 Inverse DFT 

 

§4.2 Example of a DFT calculation 

Take, for example, sequence x(n) as: 

𝑥(𝑛) = sin(2𝜋𝑓1𝑛𝑡𝑠) + 0,5 sin (2𝜋𝑓2𝑛𝑡𝑠 +
3𝜋

4
) 

where f1 = 1000 Hz, f2 = 2000 Hz, ts = 1/8000 s. The main period of this signal is T = 1/1000 s. As a consequence 

𝑁 = 𝑇 · 𝑓𝑠 =
1

1000
· 8000 = 8 

m

|X(m)|

0

0.25

0.50

0.75

1.00

-0.25

-0.50

-0.75

-1.00

-1.25

-1.50

1 2 3 4 5 6 7

1.25

 

Figure 4.1 – Input sequence samples 

Calculate input sequence samples: 

n/m x(n) X(m) |X(m)| arg X(m) 

0 0,3536 0 + 0i 0 0 

1 0,3536 0 - 4j 4 -π/2 

2 0,6464 1,4142 + 1,4142j 2 π/4 

3 1,0607 0 + 0j 0 0 

4 0,3536 0 + 0j 0 0 

5 -1,0607 0 + 0j 0 0 

6 -1,3536 1,4142 - 1,4142j 2 -π/4 

7 -0,3536 0 + 4j 4 π/2 

 

Plots of spectrum magnitude and phase are presented in Figures 4.2 and 4.3. 



Chapter 4 Discrete Fourier Transform 

45 

m

|X(m)|

0

4

2

1 2 3 4 5 6 7
 

Figure 4.2 – Magnitude of spectrum 

 

m

arg X(m)

-π/2 

2 3 4 5 7
-π/4

π/4

π/2 

 

Figure 4.3 – Phase of spectrum 

§4.3 Properties of DFT 

4.3.1 Axes conversion (magnitude and frequency) 

As we have seen from the previous paragraph, a spectrum sample Xm depends on a dimensionless index 

m. So, there is a question: how to convert an index into a frequency? The answer is at the beginning of our 

derivation. We expanded our signal into a Fourier series with frequencies: 

𝜔𝑘 =
2𝜋𝑘

𝑇
  𝑓𝑘 =

𝑘

𝑇
=
𝑘

𝑁𝑡𝑠
=
𝑘𝑓𝑠
𝑁
;  𝑚 ∈ ℤ 

That is, k corresponds to a frequency fk, as well as, n corresponds to a time point tn: 

𝑘 → 𝑓𝑘 =
𝑘

𝑇
; 𝑛 → 𝑡𝑛 = 𝑛𝑡𝑠 

Moreover, from the example we have seen that an amplitude of our signal in a spectrum isn’t 1. There 

are 2 reasons for it: 

1. After derivation, we have changed a position of the factor 1/N from direct to inverse FT. As usually, 

we are interested in a ratio between spectrum components and plot it in dB, there is no need in the 

division by N; 

2. As our signal is real, it has a symmetric spectrum. It means that the energy and the amplitude divide 

into 2 parts: with negative frequencies and with positive frequencies. 

It results in the next equations for actual spectrum component amplitude Am: 

𝐴𝑚 =
𝑋𝑚
𝑁
2⁄
=
2𝑋𝑚
𝑁

 for real signal 



Chapter 4 Discrete Fourier Transform 

46 

𝐴𝑚 =
𝑋𝑚
𝑁

 for complex signal 

4.3.2 How T, fs and N effect on spectrum? 

Let’s start from a basic equation for a DFT calculation: 

𝑇 · 𝑓𝑠 = 𝑁 

There are only 2 independent variables: analysis time T and sampling frequency fs. A number of samples N 

can be obtained from these 2 parameters. Now, let’s discuss 2 cases of changing these variables. 

 

1. Constant fs 

We know that sampling frequency determines our repetition period of a spectrum. In other words, it 

determines our frequency band for observation. If we fix this value and increase samples number, it will result 

into an analysis time increase. 

𝑓𝑠 − 𝑐𝑜𝑛𝑠𝑡; ↑ 𝑁 ↑ 𝑇 

How does it change spectrum? Let’s have a look at frequencies at in a spectrum. From the previous point we 

know that frequencies are: 

𝑓𝑘 =
𝑘

𝑇
 

That is, an interval between spectrum samples is: 

∆𝑓 =
1

𝑇
 

This is a spectrum resolution. So that, if we increase T or N with a constant fs, we will increase the resolution 

of our spectrum. 

 

2. Constant T 

If analysis time is constant, an increase of a samples number results into an increase of sampling 

frequency. 

𝑇 − 𝑐𝑜𝑛𝑠𝑡; ↑ 𝑁 ↑ 𝑓𝑠 

In this case, a spectrum resolution remains the same, but an observation frequency band becomes wider. 

4.3.3 Linearity 

Remind formulas for DFT: 

𝑋𝑚 = ∑ 𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

;  𝑥𝑛 =
1

𝑁
· ∑ 𝑋𝑘 · 𝑒

𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑚=0

 

From here, it is seen that DFT, as other Fourier Transforms, is linear operator: 

ℱ{𝛼𝑥(𝑛) + 𝛽𝑦(𝑛)} = 𝛼ℱ{𝑥(𝑛)} + 𝛽ℱ{𝑦(𝑛)} 

▲ Home exercises: proof linearity. 

4.3.4 Shifting theorem 

If we shift our signal in time by k samples, it will affect only phase shift of the spectrum. 

𝑥(𝑛 − 𝑘) ↔ 𝑒−𝑗
2𝜋𝑚𝑘
𝑁 · 𝑋(𝑚) 

Consider shifted sequence x’(n) is: 

𝑥′(𝑛) = 𝑥(𝑛 − 𝑘) 

Then its DFT: 

𝑋′(𝑚) = ∑ 𝑥′(𝑛) · 𝑒−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

= ∑ 𝑥(𝑛 − 𝑘) · 𝑒−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

= |
𝑛 − 𝑘 → 𝑙

𝑛 → 𝑙 + 𝑘
| = ∑ 𝑥(𝑙) · 𝑒−𝑗

2𝜋𝑚(𝑙+𝑘)
𝑁

𝑁−1−𝑘

𝑙=−𝑘

= 𝑒−𝑗
2𝜋𝑚𝑘
𝑁 · ∑ 𝑥(𝑙) · 𝑒−𝑗

2𝜋𝑚𝑙
𝑁

𝑁−1−𝑘

𝑙=−𝑘

= 𝑒−𝑗
2𝜋𝑚𝑘
𝑁 · 𝑋(𝑚) 



Chapter 4 Discrete Fourier Transform 

47 

For the last step it has been assumed that: 

∑ 𝑥(𝑙) · 𝑒−𝑗
2𝜋𝑚𝑙
𝑁

𝑁−1−𝑘

𝑙=−𝑘

= ∑ 𝑥(𝑙) · 𝑒−𝑗
2𝜋𝑚𝑙
𝑁

𝑁−1

𝑙=0

= 𝑋(𝑚) 

And it is true, because our sequence for DFT is assumed to be periodic with period of N samples. 

▲ Home exercise: proof equivalence above. 

4.3.5 Theorem of convolution 

For DFT, theorem of convolution is the same as for other transforms. That is 

𝑥 ∗ ℎ(𝑛) ↔ 𝑋(𝑚) · 𝐻(𝑚). 

𝑦(𝑛) = 𝑥 ∗ ℎ(𝑛) = ∑ 𝑥(𝑘) · ℎ(𝑛 − 𝑘)

𝑁−1

𝑘=0

 

▲ Home exercise: proof theorem of convolution. 

4.3.6 Symmetry 

For a real signal there is a following property: 

𝑋(−𝑚) = 𝑋∗(𝑚) 

It requires an easy proof. We know for real signal: 

𝑥∗(𝑛) = 𝑥(𝑛) 

So: 

𝑋(−𝑚) = ∑ 𝑥(𝑛) · 𝑒−𝑗
2𝜋(−𝑚)𝑛

𝑁

𝑁−1

𝑛=0

= ∑ 𝑥(𝑛) · 𝑒𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

 

𝑋∗(𝑚) = (∑ 𝑥(𝑛) · 𝑒−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

)

∗

= ∑ 𝑥∗(𝑛) · 𝑒𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

= ∑ 𝑥(𝑛) · 𝑒𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

= 𝑋(−𝑚) 

As our spectrum is periodic 

𝑋(−𝑚) = 𝑋(𝑁 −𝑚) = 𝑋(𝑘𝑁 −𝑚),where 𝑘 ∈ ℤ 

In other words: 

𝑋(𝑁 −𝑚) = 𝑋∗(𝑚) 

This property may help in DFT calculation: half of spectrum samples can be obtained by complex conjugating 

another half. 

§4.4 Symmetric DFT forms 

There are symmetric DFT forms. 

𝑋𝑚 =
1

√𝑁
· ∑ 𝑥𝑛 · 𝑒

−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

 Direct DFT 

𝑥𝑛 =
1

√𝑁
· ∑ 𝑋𝑘 · 𝑒

𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑚=0

 Inverse DFT 

They have an identical scale factor, and we see that DFT forms differ only by a sign in the exponent. This 

feature can slightly simplify design of systems utilizing DFT in the both directions (you can use exactly the 

same block without need of scale adjustment). Magnitude scale of Xm and xn is still not the same as in ordinary 

DFT, but more close to one another (differs by √N times instead of N times). Truly the same scale of Xm and 

xn has form that has been obtained from the derivation of DFT. 

§4.5 DFT matrix 



Chapter 4 Discrete Fourier Transform 

48 

A calculation of DFT can be done by means of matrixes. A vector of spectrum samples X̅(m) is defined 

from a vector of input samples x̅(n) as: 

�̅�(𝑚) = [

𝑋(0)

𝑋(2)
…

𝑋(𝑁 − 1)

] =

[
 
 
 
 𝑒−𝑗2𝜋

0·0
𝑁 𝑒−𝑗2𝜋

0·1
𝑁 … 𝑒−𝑗2𝜋

0·(𝑁−1)
𝑁

𝑒−𝑗2𝜋
1·0
𝑁 … … …

… … … …

𝑒−𝑗2𝜋
(𝑁−1)·0
𝑁 𝑒−𝑗2𝜋

(𝑁−1)·1
𝑁 … 𝑒−𝑗2𝜋

(𝑁−1)·(𝑁−1)
𝑁 ]

 
 
 
 

⏟                                  
𝐷

[

𝑥(0)

𝑥(2)
…

𝑥(𝑁 − 1)

]

⏟      
�̅�(𝑛)

= 𝐷�̅�(𝑛) 

where D – a DFT matrix. 

§4.6 DFT of typical functions 

4.6.1 General rectangular function 

In this section we calculate DFT for several common functions. At first, let’s take general rectangular 

function depicted in Figure 4.4. 

x(n)

n-n0

K

N
2

0N
2

+1-
-n0+K-1

 

Figure 4.4 – General rectangular function 

This function can be expressed by 

𝑥(𝑛) = {

0, 𝑛 < −𝑛0
1, −𝑛0 ≤ 𝑛 ≤ −𝑛0 + (𝐾 − 1)
0, 𝑛 > −𝑛0

 

Calculate DFT for it. 

𝑋𝑚 = ∑ 𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

𝑁
2

𝑛=−
𝑁
2
+1

= ∑ 𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

−𝑛0+(𝐾−1)

𝑛=−𝑛0

= ∑ 𝑒−𝑗
2𝜋𝑚𝑛
𝑁

−𝑛0+(𝐾−1)

𝑛=−𝑛0

= 𝑒−𝑗
2𝜋𝑚(−𝑛0)

𝑁 ·
1 − 𝑒−𝑗2𝜋𝑚

𝐾
𝑁

1 − 𝑒−𝑗
2𝜋𝑚
𝑁

= 𝑒−𝑗
2𝜋𝑚(−𝑛0)

𝑁 ·
𝑒−𝑗

2𝜋𝑚𝐾
2𝑁

𝑒−𝑗
2𝜋𝑚
2𝑁

·
𝑒𝑗
2𝜋𝑚𝐾
2𝑁 − 𝑒−𝑗

2𝜋𝑚𝐾
2𝑁

𝑒𝑗
2𝜋𝑚
2𝑁 − 𝑒−𝑗

2𝜋𝑚
2𝑁

= 𝑒
−𝑗
2𝜋𝑚
𝑁
(−𝑛0+

𝐾−1
2
)
·
sin (𝜋𝑚

𝐾
𝑁)

sin (𝜋𝑚
1
𝑁)

 

Finally, we get 

𝑋𝑚 = 𝑒
−𝑗
2𝜋𝑚
𝑁
(−𝑛0+

𝐾−1
2
)
·
sin (𝜋𝑚

𝐾
𝑁)

sin (𝜋𝑚
1
𝑁)
. 

This expression has indeterminate form at m = 0. Use L'Hospital's rule 

𝑋0 = lim
𝑚→0

sin (𝜋𝑚
𝐾
𝑁)

sin (𝜋𝑚
1
𝑁)
= lim
𝑚→0

(sin (𝜋𝑚
𝐾
𝑁))

′

(sin (𝜋𝑚
1
𝑁))

′ = lim𝑚→0

𝜋
𝐾
𝑁 · cos (𝜋𝑚

𝐾
𝑁)

𝜋
1
𝑁 · cos (𝜋𝑚

1
𝑁)
=𝐾 

Magnitude of the spectrum is expressed by 

|𝑋𝑚| = |
sin (𝜋𝑚

𝐾
𝑁)

sin (𝜋𝑚
1
𝑁)
| 

and is illustrated in Figure 4.5. 



Chapter 4 Discrete Fourier Transform 

49 

 

|X(m)|

mN
K

-
N
K

K

 

Figure 4.5 – Spectrum of general rectangular function 

for N → ∞, 

|𝑋𝑚| = |
sin (𝜋𝑚

𝐾
𝑁)

sin (𝜋𝑚
1
𝑁
)
| ≈ |

sin (𝜋𝑚
𝐾
𝑁)

𝜋𝑚
1
𝑁

| 

Find zeroes of the spectrum 

𝜋𝑚
𝐾

𝑁
= 𝜋𝑙 ⇔ 𝑚 = 𝑙 ·

𝑁

𝐾
, 𝑙 ∈ ℤ\{0} 

4.6.2 Symmetric rectangular function 

Now, let’s consider symmetric rectangular function, i.e. 

𝑥(𝑛) = 𝑥(−𝑛). 

Calculate shift n0 for this case. Due to the symmetry, the left and the right boundaries for n should have 

opposite values, that is 

−𝑛0 + 𝐾 − 1 = −(−𝑛0) 

Then 

𝑛0 = −𝑛0 + 𝐾 − 1; 𝑛0 =
𝐾 − 1

2
 

An example of the symmetric rectangular function is depicted in Figure 4.6. 

x(n)

nN
2

+1-

K

N
2

0K-1
2

-
K-1
2  

Figure 4.6 – Symmetric rectangular function 

So the result will be 

𝑋𝑚 = 𝑒
−𝑗
2𝜋𝑚
𝑁
(−
𝐾−1
2
+
𝐾−1
2
)

⏟            
1

·
sin (𝜋𝑚

𝐾
𝑁)

sin (𝜋𝑚
1
𝑁)
=
sin (𝜋𝑚

𝐾
𝑁)

sin (𝜋𝑚
1
𝑁)

 

As seen, the spectrum is real. A graph of the spectrum coincides with its magnitude in figure 4.5. 



Chapter 4 Discrete Fourier Transform 

50 

X(m)

mN
K

-
N
K

K

 

Figure 4.7 – Spectrum of symmetric rectangular function 

4.6.3 Constant level 

Now let’s have a look at constant level (Figure 4.8). Spectrum of a constant level can be obtained from 

the previous result. If we assume 

𝐾 = 𝑁, 

then the DFT transforms to 

𝑋𝑚 =
sin (𝜋𝑚

𝑁
𝑁
)

sin (𝜋𝑚
1
𝑁)
=

sin(𝜋𝑚)

sin (𝜋𝑚
1
𝑁)
= {
𝑁,𝑚 = 0
0,𝑚 ≠ 0

 

x(n)

nN
2

+1-

K

N
2

0

 

Figure 4.8 – Constant level 

X(m)

m

K

1-1 0

 

Figure 4.9 – Spectrum of the constant level 

4.6.4 IDFT of rectangular function 

Consider Inverse DFT. Also, take general rectangular function (Figure 4.10). This function can be 

expressed by 

𝑋(𝑚) = {

0, 𝑚 < −𝑚0
1, −𝑚0 ≤ 𝑚 ≤ −𝑚0 + (𝐾 − 1)
0, 𝑚 > −𝑚0

 



Chapter 4 Discrete Fourier Transform 

51 

X(m)

m-m0

K

N
2

0N
2

+1-
-m0+K-1

 

Figure 4.10 – Rectangular function in the frequency domain 

Calculate DFT for it. 

𝑥𝑛 =
1

𝑁
∑ 𝑋𝑚 · 𝑒

𝑗
2𝜋𝑚𝑛
𝑁

𝑁
2

𝑚=−
𝑁
2
+1

 

Calculation flow is the same as in point 4.6.1. So we can just exchange n and m and change sign in the 

exponent. Result will be 

𝑥𝑛 =
1

𝑁
· 𝑒
+𝑗
2𝜋𝑛
𝑁
(−𝑚0+

𝐾−1
2
)
·
sin (𝜋𝑛

𝐾
𝑁
)

sin (𝜋𝑛
1
𝑁)

 

Such a spectrum is depicted in Figure 4.11 and is similar to another one in Figure 4.5. You can see that 

sequence x(n) is complex. It is due-to asymmetric spectrum. If we imply symmetric spectrum (like in point 

4.6.2), sequence becomes 

𝑥𝑛 =
1

𝑁
·
sin (𝜋𝑛

𝐾
𝑁
)

sin (𝜋𝑛
1
𝑁)
, 

that is real sequence. 

|x(n)|

nN
K

-
N
K

K
N

 

Figure 4.11 – Signal x(n) with the rectangular spectrum 

4.6.5 Complex signal 

Introduce complex signal xn with frequency ωk 

𝑥𝑛 = 𝑒
𝑗𝜔𝑘𝑡𝑛; 𝜔𝑘 = 2𝜋 ·

𝑘

𝑇
. 

Rewrite the exponent argument 

𝜔𝑘𝑡𝑛 = 2𝜋 ·
𝑘

𝑇
· 𝑛𝑡𝑠 = 2𝜋 ·

𝑘𝑛

𝑇 · 𝑓𝑠
= 2𝜋

𝑘𝑛

𝑁
. 

So signal can be expressed as 

𝑥𝑛 = 𝑒
𝑗2𝜋

𝑘𝑛
𝑁  

where k – number of periods, N – number of samples. Illustration of signal xn is presented in Figure 4.12. 



Chapter 4 Discrete Fourier Transform 

52 

Im x

t

Re x

 

Figure 4.12 – Illustration of complex signal xn 

Now calculate DFT of this signal. We take it with symmetric bounds to eliminate phase shift (as we know 

from 4.6.2) and, as consequence, N should be odd. 

𝑋𝑚 = ∑ 𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1
2

𝑛=−
𝑁−1
2

= ∑ 𝑒𝑗2𝜋
𝑘𝑛
𝑁 · 𝑒−𝑗

2𝜋𝑚𝑛
𝑁 =

𝑁−1
2

𝑛=−
𝑁−1
2

∑ 𝑒−𝑗
2𝜋(𝑚−𝑘)𝑛

𝑁

𝑁−1
2

𝑛=−
𝑁−1
2

= 𝑒
−𝑗
2𝜋(𝑚−𝑘)

𝑁
(−
𝑁−1
2
)
·
1 − 𝑒−𝑗

2𝜋(𝑚−𝑘)𝑁
𝑁

1 − 𝑒−𝑗
2𝜋(𝑚−𝑘)

𝑁

= 𝑒
−𝑗
2𝜋(𝑚−𝑘)

𝑁
·(−
𝑁−1
2
)
·
𝑒−𝑗

2𝜋(𝑚−𝑘)𝑁
2𝑁

𝑒−𝑗
2𝜋(𝑚−𝑘)
2𝑁

·
𝑒𝑗
2𝜋(𝑚−𝑘)

2 − 𝑒−𝑗
2𝜋(𝑚−𝑘)

2

𝑒𝑗
2𝜋(𝑚−𝑘)
2𝑁 − 𝑒−𝑗

2𝜋(𝑚−𝑘)
2𝑁

= 𝑒
−𝑗
2𝜋(𝑚−𝑘)

𝑁
·(−
𝑁−1
2
+
𝑁−1
2
)

⏞          
0

·
sin (

2𝜋(𝑚 − 𝑘)
2

)

sin (
2𝜋(𝑚 − 𝑘)

2𝑁 )
=
sin(𝜋(𝑚 − 𝑘))

sin (𝜋
𝑚 − 𝑘
𝑁

)
. 

Spectrum of such a signal is depicted in Figure 4.13. For the expressions above, we can see that for k ≠ 

0 this function is not even. That is, the spectrum is not symmetrical about the y-axis. It is a feature of a complex 

signal. 

X(m)

mk

N

 

Figure 4.13 – Spectrum of the complex signal 

4.6.6 Real signal 

Take real signal, for instance 

𝑥𝑛 = cos𝜔𝑘𝑡𝑛 ; 𝜔𝑘 = 2𝜋 ·
𝑘

𝑇
. 

To simplify DFT calculations, we can present it as 



Chapter 4 Discrete Fourier Transform 

53 

𝑥𝑛 = cos𝜔𝑘𝑡𝑛 =
𝑒𝑗𝜔𝑘𝑡𝑛 + 𝑒−𝑗𝜔𝑘𝑡𝑛

2
 

Result for the complex signal is already known. As consequence, we can immediately write the spectrum 

𝑋𝑚 =
1

2
·
sin(𝜋(𝑚 − 𝑘))

sin (𝜋
𝑚 − 𝑘
𝑁 )

+
1

2
·
sin(𝜋(𝑚 + 𝑘))

sin (𝜋
𝑚 + 𝑘
𝑁 )

 

Spectrum in all point, except m = ±k, equals 0. Show it for m = k. 

𝑋𝑘 =
1

2
·
sin(𝜋(𝑘 − 𝑘))

sin (𝜋
𝑘 − 𝑘
𝑁

)
+
1

2
·
sin(𝜋(𝑘 + 𝑘))

sin (𝜋
𝑘 + 𝑘
𝑁

)
=
1

2
· 1 + 0 =

1

2
. 

Thus, we get 

𝑋𝑚 = {
0, 𝑚 ≠ ±𝑘
1

2
, 𝑚 = ±𝑘

 

We see that signal has real spectrum due to evenness of a cosine function. The spectrum is depicted in 

Figure 4.14. 

X(m)

mk-k

N
2

 

Figure 4.14 – Spectrum of the real cosine signal 

A DFT for the signal of sine can be obtained similarly. Present such a signal as 

𝑥𝑛 = sin𝜔𝑘𝑡𝑛 =
𝑒𝑗𝜔𝑘𝑡𝑛 − 𝑒−𝑗𝜔𝑘𝑡𝑛

2𝑗
 

Then DFT will be 

𝑋𝑚 =
1

2𝑗
·
sin(𝜋(𝑚 − 𝑘))

sin (𝜋
𝑚 − 𝑘
𝑁 )

−
1

2𝑗
·
sin(𝜋(𝑚 + 𝑘))

sin (𝜋
𝑚 + 𝑘
𝑁 )

= {
0, 𝑚 ≠ ±𝑘

∓
𝑗

2
, 𝑚 = ±𝑘

 

The spectrum is illustrated in Figure 4.15. 

X(m)

mk

-k

N
2

j

N
2

j-

 

Figure 4.15 – Spectrum of the real sine signal 

§4.7 Leakage 



Chapter 4 Discrete Fourier Transform 

54 

Now we have a look at very important feature of the DFT. Take two discrete sequences with different 

number of periods (Figure 4.16). A calculation of their DFTs give us spectrums shown in Figure 4.17. 

n

x(n)
3 periods

3.4 periods

n

 

Figure 4.16 – Discrete sequences with 3 and 3.4 periods 

|X(m)|

m
 

m

|X(m)|

 

a) b) 

Figure 4.17 – DFT module of a discrete sequence a) with 3 periods, b) with 3.4 periods 

You see that spectrum in Figure 4.17a looks normal, but another one in Figure 4.17b looks strange. Why is it 

that? Because there was an effect called leakage. Let’s have a deep look to their DFTs. 

As we know from §4.6.6, a DFT of a harmonic discrete sequence with k periods is the following function: 

𝑋(𝑚) =
1

2
𝑒
𝑗𝜋(𝑘−𝑚−

𝑘−𝑚
𝑁
) sin(𝜋(𝑘 − 𝑚))

sin (𝜋
𝑘 −𝑚
𝑁 )

+
1

2
𝑒
𝑗𝜋(𝑘+𝑚−

𝑘+𝑚
𝑁
) sin(𝜋(𝑘 +𝑚))

sin (𝜋
𝑘 +𝑚
𝑁 )

 

There will be only two non-zero values – for m = ±k (see Figure 4.14). However, m unlike k can be only integer. 

As consequence, we can get different spectrum images in dependence of k, even though X(m) is the same. 

These possible situations are depicted in Figure 4.18. If k – an integer number, then non-zero values coincide 



Chapter 4 Discrete Fourier Transform 

55 

with spectrum samples and we get a typical spectrum for a harmonic function. On the other hand, if k – not 

an integer number, then picture will be different and zero samples are absent. In the both cases the spectrum 

is a sampled function 

sin(𝜋𝑥)

sin (𝜋
𝑥
𝑁)
. 

|X(m)|

ml=k l+1l-1

ml l+1l-1 k

 

Figure 4.18 – Spectrum of a harmonic signal for integer k (top) and non-integer k (bottom) 

You may notice that spectrum in Figure 4.17b is asymmetric unlike function in Figure 4.18. This is 

because non-zero samples of X(m) terms are summed up. 

§4.8 Windows 

We have already understood that the leakage is due to the form of a function enveloping each signal 

frequency in the spectrum. Herein, the main cause deteriorates the spectrum is a level of side lobes. Can we 

change this enveloping function and reduce side lobes? Yes. For this purpose, there are window functions or 

just windows. 

The most common windows are a triangular, a Hanning and a Hamming ones depicted in Figure 4.19. 

In addition to them a rectangular window is introduced representing window absence. From the figure, you 

can see that all windows have lower side lobes in comparison with the rectangular window. And this aspect 

very important in terms of leakage. In time domain, these function looks like in Figure 4.20 and can be 

expressed as 

 

Window Function w(t) 

Rectangular 1 for 𝑛 ∈ {0,… ,𝑁 − 1} 

Triangular 𝑛

𝑁
2⁄
 and 2 −

𝑛

𝑁
2⁄
 for 𝑛 ∈ {0,… ,

𝑁

2
}  and 𝑛 ∈ {

𝑁

2
+ 1,… ,𝑁 − 1}  respectively 

Hanning 0.5 − 0.5 · cos (2𝜋
𝑛

𝑁 − 1
) for 𝑛 ∈ {0,… ,𝑁 − 1} 

Hamming 0.54 − 0.46 · cos (2𝜋
𝑛

𝑁 − 1
) for 𝑛 ∈ {0,… ,𝑁 − 1} 



Chapter 4 Discrete Fourier Transform 

56 

 

f f

ff

|W(f)| |W(f)|

|W(f)||W(f)|

HammingHanning

Rectangular Triangular

 

Figure 4.19 – Spectrums of common window functions 

t

w(t) w(t)

w(t)w(t)

t t

Hanning Hamming

Rectangular Triangle

 

Figure 4.20 – Common window functions in time domain 

How do we apply window? For this purpose, we just multiply our signal x(n) by the window function 

w(n), i.e. 

𝑥𝑤𝑖𝑛(𝑛) = 𝑤(𝑛) · 𝑥(𝑛) 

In case of the rectangular window, we get 

𝑥𝑤𝑖𝑛(𝑛) = 𝑤(𝑛) · 𝑥(𝑛) = 1 · 𝑥(𝑛) = 𝑥(𝑛), 

that is, signal itself. Examples of applying window are illustrated in Figure 4.21. 



Chapter 4 Discrete Fourier Transform 

57 

t

tt

t

w(t),

x(t)

w(t),

x(t)

w(t),

x(t)

w(t),

x(t)

Rectangular Triangular

Hanning Hamming

 

Figure 4.21 – Examples of applying window function 

How does it work? We know that a multiplication in time domain means a convolution in frequency 

domain, i.e. 

𝑥𝑤𝑖𝑛(𝑛) = 𝑤(𝑛) · 𝑥(𝑛) ↔ 𝑋𝑤𝑖𝑛(𝑚) = (𝑊 ∗ 𝑋)(𝑚). 

Here W(m) is a sampled window spectrum (see its envelope in Figure 4.19). If we assume x(n) as a harmonic 

signal with frequency fk, then a convolution result Xwin(m) will be a spectrum of window W(m) shifted by signal 

frequency fk. In other words, Xwin(m) – a sampled window spectrum, which is centered at fk. We have seen it 

for the rectangular window in Figure 4.18. There, a spectrum of the rectangular window has form 

sin(𝜋𝑥)

sin (𝜋
𝑥
𝑁)
, 

and it Is centered at k and sampled (k corresponds to frequency fk = k/T). 

Let’s illustrate an effect of changing window. Take fk so that signal has 

𝑘 =
𝑝 + 1

2
; 𝑝 ∈ ℕ 

periods. In such a case, spectrum Xwin(m) will have leakage, since spectrum samples don’t get to zeroes of an 

envelope function. You can see it in Figure 4.22 for the rectangular window, which is similar to Figure 4.18. 

Herewith, spectrums for the other windows even though have leakage, but allow to distinct our frequency 

better due to lower side lobes. However, we didn’t get this enhancement for free. Side lobes lowering widens 

the main lobe, and now it contains 4 samples instead of 2. Nevertheless, in spite of the main component blur, 

windows are still an effective instrument in fight against the leakage. 



Chapter 4 Discrete Fourier Transform 

58 

ml+1l

k

l+1l

k

l+1l

k

l+1l

k

m

mm

Hanning Hamming

Rectangular Triangular|Xwin(m)| |Xwin(m)|

|Xwin(m)| |Xwin(m)|

 

Figure 4.22 – Leakage effect for different windows 

§4.9 Signal to noise ratio in DFT 

The Signal-to-Noise Ratio (SNR) indicates relation between wanted signal and unwanted signals (noise). 

Typical, expression for the SNR is 

𝑆𝑁𝑅 =
Power of wanted signal

Power of noise
. 

On the one hand, an amplitude of a harmonic signal increases in a proportion of N. An amplitude of noise is 

described as standard deviation, which increases as √N due to its random nature (see dispersion of random 

values sum). So their ratio will increase as N/√N=√N. On the other hand, it is known that noise signal has 

random nature (both in terms of amplitude and frequency), so the probability of its frequency coinciding with 

a certain sample on the spectrum axis tends to 0. Thus, noise energy is spread across finite number of 

spectrum samples and noise level occurs quite high. An increase of analysis time enlarges a number of 

spectrum samples and resolution. It results in lower amplitude of noise sample and higher SNR value. The 

relation between number of samples and SNR enhancement is the following: 

𝑆𝑁𝑅𝑁 = 𝑆𝑁𝑅𝑁′ + 20 log10√
𝑁

𝑁′
= 𝑆𝑁𝑅𝑁′ + 10 log10

𝑁

𝑁′
 

This effect is illustrated in Figure 4.23. The top spectrum has noise sample at -40 dB. Enlargement of samples 

number by 100 times give lowering of noise sample to -60 dB level for the bottom spectrum. 



Chapter 4 Discrete Fourier Transform 

59 

0

-10

-20

-40

-30

-60

-50

0

-10

-20

-40

-30

-60

-50

f

f

|X(f)|

|X(f)|

 

Figure 4.23 – Example of SNR enhancement for N/N’ = 100 

§4.10 Conclusion 

Here we conclude essential information about discrete sequence spectrum. 

1) Relationship between periodicity and discreteness 

Signal  Spectrum 

Discrete ↔ Periodic 

Periodic ↔ Discrete 
 

2) Relation between signal, spectrum and transformation tool 

Set up a correspondence between type of the signal and type of the spectrum. 

 

IFT Integral Fourier Transform 

FS Fourier Series 

DTFT Discrete-Time Fourier Transform 

DFT Discrete Fourier Transform 

 

Signal Periodic Aperiodic  

Discrete 
Periodic, discrete Periodic, continuous Spectrum 

DFT DTFT Tool 

Continuous Aperiodic, discrete Aperiodic, continuous Spectrum 



Chapter 4 Discrete Fourier Transform 

60 

FS IFT Tool 

 

3) Spectrum enhancement FAQ 

 

- How to increase observable frequency band? 

- Increase fs. 

- How to increase spectrum resolution? 

- Increase T. 

 

4) Leakage essence 

 

The cause of leakage is finite time of analysis 

 

How to avoid or reduce the leakage? 

1. Choose correct time of analysis; 

2. Enhance resolution in frequency; 

3. Use windows. 

 

 



Chapter 5 Fast Fourier Transform 

61 

Chapter 5 Fast Fourier Transform 

§5.1 Algorithm 

5.1.1 Derivation 

The Fast Fourier Transform (FFT) is an algorithm of DFT calculation. This algorithm stands out for its 

high efficiency and low hardware costs. To achieve this, FFT introduces the following limitation on the number 

of samples N, i.e. 

𝑁 = 2𝑙; 𝑙 ∈ ℕ 

Taking into account this limitation let’s derivate the FFT algorithm. 

𝑋(𝑚) =∑ 𝑥𝑛 · 𝑒
−𝑗
2𝜋𝑚𝑛
𝑁

𝑁−1

𝑛=0

=∑ 𝑥2𝑘 · 𝑒
−𝑗
2𝜋𝑚·2𝑘
𝑁

𝑁
2
−1

𝑘=0

+∑ 𝑥2𝑘+1 · 𝑒
−𝑗
2𝜋𝑚·(2𝑘+1)

𝑁

𝑁
2
−1

𝑘=0

= |𝑊𝑁 = 𝑒
−𝑗
2𝜋
𝑁 |

= ∑ 𝑥2𝑘 · 𝑊𝑁
2𝑘𝑚

𝑁
2
−1

𝑘=0

+𝑊𝑁
𝑚 ·∑ 𝑥2𝑘+1 · 𝑊𝑁

2𝑘𝑚

𝑁
2
−1

𝑘=0

= |(𝑊𝑁)
2 = 𝑒−𝑗

2𝜋
𝑁
·2 = 𝑒

−𝑗
2𝜋
𝑁
2⁄ = 𝑊𝑁

2
|

= ∑ 𝑥2𝑘 · 𝑊𝑁
2

𝑘𝑚

𝑁
2
−1

𝑘=0

+𝑊𝑁
𝑚 ·∑ 𝑥2𝑘+1 · 𝑊𝑁

2

𝑘𝑚

𝑁
2
−1

𝑘=0

= 𝐴(𝑚) +𝑊𝑁
𝑚 · 𝐵(𝑚). 

Do the same operations for the second half of spectrum samples. 

𝑋 (𝑚 +
𝑁

2
) =∑ 𝑥2𝑘 · 𝑊𝑁

2

𝑘(𝑚+
𝑁
2
)

𝑁
2
−1

𝑘=0

+𝑊
𝑁

𝑚+
𝑁
2 ·∑ 𝑥2𝑘+1 · 𝑊𝑁

2

𝑘(𝑚+
𝑁
2
)

𝑁
2
−1

𝑘=0

= |
|

(𝑊𝑁)
𝑚+𝑁 = 𝑒−𝑗

2𝜋
𝑁
·(𝑚+𝑁) = 𝑒−𝑗

2𝜋𝑚
𝑁
· · 𝑒−𝑗

2𝜋𝑁
𝑁 = 𝑊𝑁

𝑚 · 𝑒−𝑗2𝜋⏟  
1

= 𝑊𝑁
𝑚

(𝑊𝑁)
𝑚+

𝑁
2 = 𝑒−𝑗

2𝜋
𝑁
·(𝑚+

𝑁
2
) = 𝑊𝑁

𝑚 · 𝑒−𝑗
2𝜋𝑁
𝑁·2 = 𝑊𝑁

𝑚 · 𝑒−𝑗𝜋⏟
−1

= −𝑊𝑁
𝑚
|
|

= ∑ 𝑥2𝑘 · 𝑊𝑁
2

𝑘𝑚

𝑁
2
−1

𝑘=0

−𝑊𝑁
𝑚 ·∑ 𝑥2𝑘+1 · 𝑊𝑁

2

𝑘𝑚

𝑁
2
−1

𝑘=0

= 𝐴(𝑚) −𝑊𝑁
𝑚 · 𝐵(𝑚). 

Summarizing it, we will get 

𝑋(𝑚) = 𝐴(𝑚) +𝑊𝑁
𝑚 · 𝐵(𝑚) 

𝑋 (𝑚 +
𝑁

2
) = 𝐴(𝑚) −𝑊𝑁

𝑚 · 𝐵(𝑚) 

5.1.2 Illustration of calculation flow 

Now let’s illustrate the obtained result. For N = 8, it can be illustrated as in Figure 5.1. 



Chapter 5 Fast Fourier Transform 

62 

A(m)

B(m)

x0

x2

x4

x6

x1

x3

x5

x7

x0

x1

x2

x3

x4

x5

x6

x7

W
8

0
W

8
1

W
8

2
W

8
3

-W8
0

-W8
1

-W8
2

-W8
3

 

Figure 5.1 – N-point DFT calculation using two N/2-point DFTs 

As number of samples is still even (thanks to the introduced limitation), we can continue splitting each DFT 

into even and odd samples. Finally, we stop the evaluation at 2-point DFT structure with coefficients 

𝑊2
0 = 𝑊𝑁

0 = 𝑒−𝑗
2𝜋
𝑁
·0 = 1;𝑊2

1 = 𝑊𝑁
𝑁
2⁄ = 𝑒−𝑗

2𝜋
𝑁
·
𝑁
2 = 𝑒−𝑗𝜋 = −1 

And whole calculation flow shown will be as in Figure 5.2. 

x0

x2

x4

x6

x1

x3

x5

x7

W4
0

W4
1

-W4
0

-W4
1

-1

1

-1

1

W4
0

W4
1

-W4
0

-W4
1

-1

1

-1

1

x0

x1

x2

x3

x4

x5

x6

x7

-W8
0

-W8
1

-W8
2

-W8
3

W
8

0
W

8
1

W
8

2
W

8
3

 

Figure 5.2 – 8-point Fast Fourier Transform calculation flow 

5.1.3 Complexity of calculation 

We can ask a question: why do we need it? The answer is low number of multiplications and, as a 

consequence, higher efficiency of calculation. Expressions for the typical DFT flow and FFT algorithm are 

presented in the table below. 

Number of complex multiplications M 

Conventional DFT Fast Fourier Transform 

𝑁2 
𝑁

2
· log2𝑁 



Chapter 5 Fast Fourier Transform 

63 

You can see in Figure 5.3 graphical representation of these expressions, where advantage of FFT is evident. 

2 3 4 5 6 7 8 N

M

30

20

10

0

25

15

5

FFT

DFT

 

Figure 5.3 – Graphical representation of expressions for number of complex multiplications in DFT and FFT. 

§5.2 Bit-reversed order 

Now we try to answer the question: how to get this magic order of input sequence indices. The way is 

the following: 

1. Write index in ascending order from 0 to N-1; 

2. Convert each index into the binary code; 

3. Revert order of bits in each code; 

4. Convert each code into decimal format. 

In the table below, you can see an example of this way for N = 8, where n – initial order of samples, n’ – bit-

reversed order of samples. 

n Binary code Bit-reversed order n’ 

0 000 000 0 

1 001 100 4 

2 010 010 2 

3 011 110 6 

4 100 001 1 

5 101 101 5 

6 110 011 3 

7 111 111 7 

Bit-reversed order can be used not only for input samples, but also for the output samples. Let’s take 

into account the fact that 

𝑊𝑁·𝑘
𝑚·𝑘 = 𝑒−𝑗2𝜋

𝑚·𝑘
𝑁·𝑘 = 𝑒−𝑗2𝜋

𝑚
𝑁 = 𝑊𝑁

𝑚 

Assuming for all coefficients N = 8, the FFT with regular order of input samples and bit-reversed order of the 

output samples will look like in Figure 5.4. 



Chapter 5 Fast Fourier Transform 

64 

x0

x2

x4

x6

x1

x3

x5

x7

0

0

4

4

4

0

6

2

2

2

6

6

5

1

7

3

x0

x1

x2

x3

x4

x5

x6

x7

4

4

4

4

0
0

0
0

 

Figure 5.4 – The FFT flow for decimation-in-time and bit-reversed order of the output samples 

During the derivation of the algorithm, we divided samples in time domain into even and odd. This 

approach is called “decimation-in-time”. However, the similar derivation can be done with a division of 

samples into even and odd in frequency domain – “decimation-in- frequency”. 

§5.3 Butterfly structures 

There we will introduce different forms of butterfly structure. 

Decimation-in-time Decimation-in-frequency 

𝑥′ = 𝑥 +𝑊𝑁
𝑘 · 𝑦; 𝑦′ = 𝑥 −𝑊𝑁

𝑘 · 𝑦 𝑥′′ = 𝑥 + 𝑦; 𝑦′′ = 𝑊𝑁
𝑘 · (𝑥 − 𝑦) 

x

y -WN
k

WN
k

x 

y 
 

x

y -WN
k

WN
k

x  

y  
 

x

y

x 

y WN
k

-1

1

 

x

y

x  

y  WN
k

-1

1

 

x

y

x 

y WN
k

+

-

 

x

y

x  

y  WN
k

+

-

 
In the last figure, circle with plus and minus signs means branch with plus is a sum of branches on the left, 

branch with minus – a subtraction of branches on the left. 

 



Chapter 6 Finite impulse response filters 

65 

Chapter 6 Finite impulse response filters 

§6.1 Introduction 

At first, let’s have a look at the example: some device that averages 5 samples of the input sequence. 

The data for the input x and output y is presented below (n – time index). 

n x y 

1 2 0.4 

2 3 1 

3 3 1.6 

4 4 2.4 

5 6 3.6 

6 2 3.6 

7 0 3 

8 0 2.4 

9 0 1.6 

10 0 0.4 

11 0 0 

 

5 6 7 8 9 10 11 n

x(n)

0 1 2 3 4

1

2

3

4

5

6

 

Figure 6.1 – Illustration for input (blue circle) and output (yellow square) signals 

The equation for the output is 

𝑦(𝑛) =
𝑥(𝑛) + 𝑥(𝑛 − 1) + 𝑥(𝑛 − 2) + 𝑥(𝑛 − 3) + 𝑥(𝑛 − 4)

5
 

Structure of such a device can be presented as in Figure 6.2. 

x(n-4)
z

-1
z

-1
z

-1
z

-1
x(n)

x(n-1) x(n-2) x(n-3)

y(n)

1
5

 



Chapter 6 Finite impulse response filters 

66 

Figure 6.2 – Structure of the averaging device 

Such a device can be generalized with the following expression for the output 

𝑦(𝑛) = ∑ 𝑎𝑘𝑥(𝑛 − 𝑘)

𝐾−1

𝑘=0

. 

and structure depicted in Figure 6.3. This structure is a Finite Impulse Response (FIR) filter. 

z
-1

z
-1

z
-1

x(n)

a0 a1 aK

y(n)

aK-1

 

Figure 6.3 – Structure of a Finite Impulse Response (FIR) filter 

From the presented expression the following conclusion can be drawn 

1. The output of the filter is a convolution of the input x(n) and the filter impulse response h(k); 

2. If the input samples represent delta function, then the output will be the filter coefficients sequence 

ak; 

3. The filter coefficients sequence ak of the FIR filter is impulse response h(k); 

Strictly speaking, convolution of the filter input and its impulse response is 

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

+∞

𝑘=−∞

. 

However, h(k) equals to 0 for k that are not between 0 and K-1. So 

𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

+∞

𝑘=−∞

= ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

𝐾−1

𝑘=0

. 

The name Finite Impulse Response comes from the fact that the impulse response becomes 0 at a finite 

period of time, i.e. 

lim
𝑘→𝐾

ℎ(𝑘) = 0 

where K – number of coefficients, i.e. some finite number. As a result, the output of a FIR Filter will equal 0 in 

K samples after input signal termination. 

§6.2 Filter analysis 

For analog systems, we know that magnitude and impulse responses of a filter can be obtained from 

its transfer function T(p) (reminder: |T(p)| – magnitude response, arg T(p) – phase response). And there is a 

connection between a transfer function and an impulse response: 

𝑇(𝑝) = ℒ{ℎ(𝑡)}. 

As a FIR filter is a discrete system, to get its “transfer function” we should use Z-transform. In §1.9 Z-

transform was introduced as 

𝐻(𝑧) = 𝒵{ℎ(𝑛)} = ∑ ℎ(𝑛)𝑧−𝑛
+∞

𝑛=−∞

, 

where H(z) – a transfer function of a digital filter, h(n) – an impulse response of the digital filter. The FIR filter 

impulse response is not equaled to zero only for n = 0...K-1. So 

𝐻(𝑧) = ∑ ℎ(𝑛)𝑧−𝑛
+∞

𝑛=−∞

= ∑ ℎ(𝑛)𝑧−𝑛
𝐾−1

𝑛=0

 

Since h(n) is just filter coefficients, we can rewrite it as 



Chapter 6 Finite impulse response filters 

67 

𝐻(𝑧) = ∑ ℎ(𝑛)𝑧−𝑛
𝐾−1

𝑛=0

= ∑ 𝑎𝑛𝑧
−𝑛

𝐾−1

𝑛=0

 

The next step is to substitute z with 

𝑧 → 𝑒𝑗𝜔𝑡𝑠 . 

So we obtain 

𝐻(𝑒𝑗𝜔𝑡𝑠) = ∑ ℎ(𝑛)𝑧−𝑛
𝐾−1

𝑛=0

= ∑ 𝑎𝑛𝑒
−𝑗𝑛𝜔𝑡𝑠

𝐾−1

𝑛=0

 

And the last step is to get magnitude or phase of transfer function H(z) to plot corresponding responses 

|𝐻(𝑒𝑗𝜔𝑡𝑠)| = |∑ 𝑎𝑛𝑒
−𝑗𝑛𝜔𝑡𝑠

𝐾−1

𝑛=0

| –magnitude response 

arg𝐻(𝑒𝑗𝜔𝑡𝑠) = arg∑ 𝑎𝑛𝑒
−𝑗𝑛𝜔𝑡𝑠

𝐾−1

𝑛=0

 – phase response 

Example of magnitude and phase response for the filter from §6.1 are presented in Figure 6.4. The order 

of a FIR filter is the maximum power of z-1 in the transfer function. It can be easily determined from the 

structure because the order is equal to the number of delays. 

|H(jω )|,

dB

0 1
ω 

0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4

0

-10

-20

-40

-50

1

2

-2

-1

arg H(jω ),

rad
1

ω 
0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4

 

Figure 6.4 – Magnitude and phase responses for averaging filter. 

§6.3 Phase response 

6.3.1 Introduction 

A phase response of a FIR filter will be linear in the pass-band if and only if coefficients (or impulse 

response) are symmetric or antisymmetric. That is a symmetric or antisymmetric impulse response is a 

necessary and sufficient condition for the FIR filter linear phase response in the pass-band. 

6.3.2 Sufficiency condition 



Chapter 6 Finite impulse response filters 

68 

Now look at sufficiency of this condition. Transfer function of a FIR filter is: 

𝐻(𝑧) = ∑ 𝑎𝑛𝑧
−𝑛

𝑁−1

𝑛=0

 

and we have 4 cases for combination of parity and symmetry. We illustrate this condition with case when 

impulse responses is symmetric and N is odd. In this case 

𝑎𝑛 = 𝑎𝑁−1−𝑛 

And transfer function can be presented as: 

𝐻(𝑧) = ∑ 𝑎𝑛𝑧
−𝑛

𝑁−1

𝑛=0

= ∑ 𝑎𝑛𝑧
−𝑛

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2
𝑧−
𝑁−1
2 + ∑ 𝑎𝑛𝑧

−𝑛

𝑁−1

𝑛=
𝑁+1
2

 

Change for the last sum index: 

𝑛 → 𝑁 − 1 − 𝑛 

𝐻(𝑧) = ∑ 𝑎𝑛𝑧
−𝑛

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2
𝑧−
𝑁−1
2 + ∑ 𝑎𝑁−1−𝑛𝑧

−(𝑁−1−𝑛)

0

𝑛=
𝑁−3
2

= ∑ 𝑎𝑛𝑧
−𝑛

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2
𝑧−
𝑁−1
2 +∑ 𝑎𝑛𝑧

−(𝑁−1−𝑛)

𝑁−3
2

𝑛=0

= 

= ∑ 𝑎𝑛(𝑧
−𝑛 + 𝑧−(𝑁−1−𝑛))

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2
𝑧−
𝑁−1
2 = 𝑧−

𝑁−1
2 ∑𝑎𝑛 (𝑧

−𝑛+
𝑁−1
2 + 𝑧−

(𝑁−1−𝑛)+
𝑁−1
2 )

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2
𝑧−
𝑁−1
2 = 

= 𝑧−
𝑁−1
2

(

 ∑ 𝑎𝑛 (𝑧
−(𝑛−

𝑁−1
2
)
+ 𝑧𝑛−

𝑁−1
2 )

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2

)

  

Transfer function is obtained by substitution: 

𝐻(𝑧)
𝑧=𝑒𝑗𝜔𝑡𝑠

→     𝑇(𝜔) 

And finally we get: 

𝑇(𝜔) = 𝑒−𝑗𝜔𝑡𝑠
𝑁−1
2

(

 ∑ 𝑎𝑛 (𝑒
−𝑗𝜔𝑡𝑠(𝑛−

𝑁−1
2
)
+ 𝑒

𝑗𝜔𝑡𝑠(𝑛−
𝑁−1
2
)
)

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2

)

 

= 𝑒−𝑗𝜔𝑡𝑠
𝑁−1
2

(

 ∑ 𝑎𝑛 · 2 cos𝜔𝑡𝑠 (𝑛 −
𝑁 − 1

2
)

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2

)

  

Thus, we can determine frequency response and phase response: 

|𝑇(𝜔)| = ||2∑ 𝑎𝑛 · cos𝜔𝑡𝑠 (𝑛 −
𝑁 − 1

2
)

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2
|| 

arg𝑇(𝜔) = −𝜔𝑡𝑠
𝑁 − 1

2
 

As we can see, phase response is a linear function of frequency ω. 

▲ Home exercise: proof the rest 3 cases. 

Finally, you will get the following result 

 Odd Even 

Symmetric |𝑇(𝜔)| = ||2∑ 𝑎𝑛 · cos𝜔𝑡𝑠 (𝑛 −
𝑁 − 1

2
)

𝑁−3
2

𝑛=0

+ 𝑎𝑁−1
2
|| |𝑇(𝜔)| = ||2∑ 𝑎𝑛 · cos𝜔𝑡𝑠 (𝑛 −

𝑁 − 1

2
)

𝑁
2
−1

𝑛=0

|| 



Chapter 6 Finite impulse response filters 

69 

arg 𝑇(𝜔) = −𝜔𝑡𝑠
𝑁 − 1

2
 

 

arg 𝑇(𝜔) = −𝜔𝑡𝑠
𝑁 − 1

2
 

 

Antisymmetric 

|𝑇(𝜔)| = ||2∑ 𝑎𝑛 · sin 𝜔𝑡𝑠 (𝑛 −
𝑁 − 1

2
)

𝑁−3
2

𝑛=0

|| 

arg 𝑇(𝜔) = −
𝜋

2
− 𝜔𝑡𝑠

𝑁 − 1

2
 

 

|𝑇(𝜔)| = ||2∑ 𝑎𝑛 · sin𝜔𝑡𝑠 (𝑛 −
𝑁 − 1

2
)

𝑁
2
−1

𝑛=0

|| 

arg 𝑇(𝜔) = −
𝜋

2
− 𝜔𝑡𝑠

𝑁 − 1

2
 

 

6.3.3 Conclusion 

We have discussed all cases for a symmetric impulse response. A linear phase response means that 

group delay is a constant of frequency. Group delay G is evaluated by: 

𝐺 = −
𝑑𝜑

𝑑𝜔
 

And, for all discussed cases, a group delay is: 

𝐺 = −
𝑑𝜑

𝑑𝜔
= 𝑡𝑠

𝑁 − 1

2
 

It is a constant of frequency, so that the phase response of a FIR filter is linear. 

Also let’s note that at points 

𝜔 = ±
𝜔𝑠
2

 

the argument of trigonometric function in the magnitude response becomes 

𝜃 = 𝜔𝑡𝑠 (𝑛 −
𝑁 − 1

2
) = ±2𝜋

𝑓𝑠
2
𝑡𝑠 (𝑛 −

𝑁 − 1

2
) = ±𝜋 (𝑛 −

𝑁 − 1

2
) 

For odd and even N, we can rewrite phase φ, correspondingly, as 

𝜃𝑜𝑑𝑑 = 𝜋
2𝑘

2
= 𝜋𝑘; 𝜃𝑒𝑣𝑒𝑛 = 𝜋 (

2𝑘 + 1

2
) = 𝜋𝑘 +

𝜋

2
 

Then we get that 

cos 𝜃𝑒𝑣𝑒𝑛 = cos (𝜋𝑘 +
𝜋

2
) = 0; sin𝜃𝑜𝑑𝑑 = sin𝜋𝑘 = 0 

Thus, for symmetric-even and antisymmetric-odd cases: 

|𝑇 (±
𝜔𝑠
2
)| = 0 

 

 Odd Even 

Symmetric |𝑇 (±
𝜔𝑠
2
)| ≠ 0 |𝑇 (±

𝜔𝑠
2
)| = 0 

Antisymmetric |𝑇 (±
𝜔𝑠
2
)| = 0 |𝑇 (±

𝜔𝑠
2
)| ≠ 0 

Examples of magnitude responses illustrating such a property are presented in Figure 6.5. 



Chapter 6 Finite impulse response filters 

70 

|H(jω )|

1
ω 

0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4

1.0

0.8

0.6

0.4

0.2

1.2

 

|H(jω )|

1
ω 

0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4

1.0

0.8

0.6

0.4

0.2

1.2

 
Figure 6.5 – Examples of magnitude response for antisymmetric impulse response with even (left) and odd 

(right) number of samples 

§6.4 Structures 

6.4.1 Direct Forms 

In Figure 6.5, you can see already known Direct Form of a FIR filter. It has a critical path that is shown 

with red color. The critical path – the longest path for signal passing between two registers (delay elements). 

The critical path in Direct form has 1 multiplication and K adders (K – a filter order); 

z
-1

z
-1

z
-1

x(n)

h(0) h(1) h(K)

y(n)

h(K-1)

 

Figure 6.6 – Direct Form of a FIR filter 

6.4.2 Transposed forms 

Transposed Form can be obtained from the Direct Form by the following operations: 

 Nodes are replaced by adders; 

 Adders are replaced by nodes; 

 Arrows changes its direction on opposite. 

The results of the transposition is shown in Figure 6.6. The critical path of the transposed form has only 1 

multiplication and 1 adder regardless of the filter order. 

z
-1

z
-1

z
-1

x(n)

h(0) h(1) h(K)

y(n)

h(K-1)

 

Figure 6.7 – Transposed Form of a FIR filter 

6.4.3 Folded Form 

A FIR filter structure can be optimized in case of symmetric or anti-symmetric coefficients. As there are 

identical coefficients multiplication it can be done only once. Let’s have a look at expression for the filter 

output 



Chapter 6 Finite impulse response filters 

71 

𝑦(𝑛) = ∑ ℎ(𝑘) · 𝑥(𝑛 − 𝑘)

𝑁−1

𝑘=0

= ∑ ℎ(𝑘) · 𝑥(𝑛 − 𝑘)

𝑁−3
2

𝑘=0

+ ℎ (
𝑁 − 1

2
) + ∑ ℎ(𝑘) · 𝑥(𝑛 − 𝑘)

𝑁−1

𝑘=
𝑁+1
2

= |
𝑘 = 𝑁 − 1 − 𝑝
𝑝 = 𝑁 − 1 − 𝑘

|

= ∑ ℎ(𝑘) · 𝑥(𝑛 − 𝑘)

𝑁−3
2

𝑘=0

+ ℎ (
𝑁 − 1

2
) + ∑ ℎ(𝑁 − 1 − 𝑝)⏟        

ℎ(𝑝)

· 𝑥(𝑛 − (𝑁 − 1 − 𝑘))

𝑁−3
2

𝑝=0

= ∑ ℎ(𝑘) · (𝑥(𝑛 − 𝑘) + 𝑥(𝑛 − (𝑁 − 1 − 𝑘)))

𝑁−3
2

𝑘=0

+ ℎ (
𝑁 − 1

2
) = |𝐾 =

𝑁 − 1

2
|

= ∑ ℎ(𝑘) · (𝑥(𝑛 − 𝑘) + 𝑥(𝑛 − (2𝐾 − 𝑘)))

𝐾−1

𝑘=0

+ ℎ(𝐾). 

There we see that corresponding samples can be summed up before multiplication instead of individual 

multiplication. Such a simplification reduces required number of multipliers and, consequently, hardware 

costs. Corresponding filter structure is called “folded” and is illustrated in Figure 6.7. 

z
-1

z
-1

z
-1

x(n)

h(0) h(1) h(K)

y(n)

h(K-1)

z
-1

z
-1

z
-1

 

Figure 6.8 – Folded Form of a FIR filter with symmetric coefficients 

§6.5 Half-band filters 

Half-band filter is a specialized FIR filter, whose magnitude response is symmetric relative to point 

(0.5; 0.25×ωs). An advantage of such a filter is that impulse response has every second filter coefficient being 

zero, except the center one. This allows us to reduce number of multiplications approximately by 2 times. 

Such filters are popular in sample rate conversion applications like decimation or interpolation. An example 

of an impulse response for the 10-th order half-band filter is presented in Figure 6.8. Its magnitude response 

is shown in Figure 6.9. 

|H(jω )|

0.5

0.3

0.1

-0.1
10 n5 6 7 8 91 2 3 4

0.2

0.4

0

 

Figure 6.9 – An impulse response of a half-band filter 



Chapter 6 Finite impulse response filters 

72 

|H(jω )|

1

0.8

0.6

0.4

0.2

(0.5; 0.25)

1
ω 

0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4

δ 

δ 

 

Figure 6.10 – Magnitude response of 10 order Half-band filter 

The number of multipliers M in the folded form of a half-band filter can be found as 

𝑀 =
𝑠 + 1

2
+ 1, 

where s – the number of branches. If we derive the number of branches from the filter order N, it will be 

𝑠 = 𝑁 + 1. 

So M can be calculated through filter order as 

𝑀 =
𝑁

2
+ 2. 

Additionally, structure can be folded like in Figure 6.10 for further multiplier reduction. 

z
-1

z
-1

x(n)

h(0) h(5)

y(n)

z
-1

z
-1

z
-1

h(2)

z
-1

z
-1

z
-1

z
-1

h(4)

z
-1

 

Figure 6.11 – Folded form of the 10-th order half-band filter 

 

 



Chapter 7 Infinite impulse response filters 

73 

Chapter 7 Infinite impulse response filters 

§7.1 Introduction 

In the previous chapter, we discussed filters that have a finite length of an impulse response. Now, we 

go forward and take into consideration a case when the impulse has an unlimited length, i.e. infinite impulse 

response. To achieve this feature, it is required to introduce feedback into a filter. Let’s do this with ordinary 

FIR structure. The transformations of FIR filter structure are presented in Figure 7.1. The last structure is an 

infinite impulse response filter (IIR filter). 

z
-1

z
-1

z
-1

x(n)

a0 a1 aK

y(n)

a2

z
-1

z
-1

z
-1

x(n) y(n)

a0

a1

a3

a2

x(n) y(n)

z
-1

z
-1

z
-1

a0

a1

a3

a2 z
-1

z
-1

z
-1

b1

b3

b2

 

Figure 7.1 – An introduction of a feedback into filter structure 

Now, we try to write an expression for such a filter output 

𝑦(𝑛) = 𝑎0𝑥(𝑛) + 𝑎1𝑥(𝑛 − 1) + 𝑎2𝑥(𝑛 − 2) + 𝑎3𝑥(𝑛 − 3) + 𝑏1𝑦(𝑛 − 1) + 𝑏2𝑦(𝑛 − 2) + 𝑏3𝑦(𝑛 − 3)

= ∑𝑎𝑘𝑥(𝑛 − 𝑘)

3

𝑘=0

+∑𝑏𝑘𝑦(𝑛 − 𝑘)

3

𝑘=1

 

And in a general case, we have for IIR filter 

𝑦(𝑛) = ∑𝑎𝑘𝑥(𝑛 − 𝑘)

𝑁

𝑘=0

+∑𝑏𝑘𝑦(𝑛 − 𝑘)

𝑀

𝑘=1

 

From this expression, we can conclude that IIR filter is also a linear-time-invariant system. So the output 

of IIR filter can be expressed with its impulse response and convolution operation. 

𝑦(𝑛) = ∑ℎ(𝑘)𝑥(𝑛 − 𝑘)

+∞

𝑘=0

 

However, impulse response is not just a sequence of coefficients like in FIR filter and reaches zero value at 

infinity, i.e. 

lim
𝑛→+∞

ℎ(𝑛) = 0 



Chapter 7 Infinite impulse response filters 

74 

So unlike FIR filter the upper limit of convolution sum cannot be replaced with a finite number. 

Why are IIR filters of interest? Such filters have significantly higher slope and attenuation for the same 

filter order. Figure 7.2 shows magnitude response of FIR and IIR filter having the 5th order. As a result IIR filters 

demand less hardware costs than FIR filter for the certain response requirements. 

0.5
ω 

0.3 0.40.1 0.2

|H(jω )|

1.0

0.8

0.6

0.4

0.2

 

Figure 7.2 – Magnitude response of the 5th order FIR (blue) and IIR (red) filters 

§7.2 Filter analysis 

As impulse response of IIR is not directly expressed with filter coefficients, to get the transfer function 

of IIR we need to make Z-transform for the output expression. In general case, the output expression is  

𝑦(𝑛) = ∑𝑎𝑘𝑥(𝑛 − 𝑘)

𝑁

𝑘=0

+∑𝑏𝑘𝑦(𝑛 − 𝑘)

𝑀

𝑘=1

 

So its Z-transform is 

𝑌(𝑧) = 𝒵{𝑦(𝑛)} = ∑𝑎𝑘𝑋(𝑧)𝑧
−𝑘

𝑁

𝑘=0

+∑𝑏𝑘𝑌(𝑧)𝑧
−𝑘

𝑀

𝑘=1

. 

We know that transfer function is defined as 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
 

So we can rewrite the expression for the output as 

𝑌(𝑧) (1 −∑𝑏𝑘𝑧
−𝑘

𝑀

𝑘=1

) = 𝑋(𝑧)∑𝑎𝑘𝑧
−𝑘

𝑁

𝑘=0

 

and derive the transfer function as 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

∑ 𝑎𝑘𝑧
−𝑘𝑁

𝑘=0

1 − ∑ 𝑏𝑘𝑧
−𝑘𝑀

𝑘=1

. 

The order for an IIR filter is defined also as in §6.2, i.e. the maximum value of M and N. 

From the transfer function, magnitude and phase responses are obtained in the same way as for FIR 

filters. In terms of phase response linearity, IIR filter cannot provide strict linear dependence in the pass-band 

under no circumstances. It results from the filter and transfer function structures: denominator always has 

leading coefficient that equals 1, which prevents conversion of the fraction to a single trigonometric function. 

§7.3 Stability 

Unlike FIR, IIR filters has denominator that can turn to 0. In other words, transfer function has poles and 

system may become unstable. As we have discussed in 1.9.2, the left half-plane of p-plane is transformed into 

a unit circle in z-plane. Stable IIR filter has all poles inside this unit circle. A presence of at least one pole 



Chapter 7 Infinite impulse response filters 

75 

outside the unit circle means that IIR filter is unstable and can become a generator. An illustration of poles 

location and systems stability is presented in Figure 7.3. Stability of IIR filter should be guaranteed by a filter 

designer with an appropriate choice of transfer function and its conversion during hardware implementation. 

Re z

Im z

1

stable

cond. stable

unstable

 

Figure 7.3 – Magnitude response of the 5th order FIR (blue) and IIR (red) filters 

§7.4 Structures 

7.4.1 General considerations 

A structure obtained in §7.1 is a Direct Form I of a IIR filter. Beside this form, a complementary one 

exists. Knowing that IIR filter is a LTI system, we can employ commutativity property and swap its parts. The 

final structure will be equivalent to the original structure and is called Direct Form II. Both forms are depicted 

in Figure 7.4. 

x(n) y(n)

z
-1

z
-1

a0

a1

a2

z
-1

z
-1

b1

b2  

x(n) y(n)

z
-1

z
-1

a0

a1

a2

z
-1

z
-1

b1

b2  
Direct Form I Direct Form II 

Figure 7.4 – Direct Forms of a IIR filter 

Both forms can be simplified by combining the similar blocks into one. Simplified structures are shown 

in Figure 7.5. In Direct Form I, adders can be combined together. However, this simplification affect only the 

structure presentation as real adders have only two inputs and the total number of real adders will be the 

same. In terms of Direct Form II, simplification matters as it reduces number of delay units almost by 2 times. 

The Direct Form II is called the canonical form because it uses the minimal number of delay units, adders and 

multipliers. 



Chapter 7 Infinite impulse response filters 

76 

x(n) y(n)

z
-1

z
-1

a0

a1

a2

z
-1

z
-1

b1

b2  

x(n) y(n)

a0

a1

a2

z
-1

z
-1

b1

b2  
Simplified Direct Form I Simplified Direct Form II 

Figure 7.5 – Simplified Direct Forms of a IIR filter 

In addition to the Direct Forms, there are Transposed Forms. Transposition can be done by the following 

algorithm: 

1. Replace nodes with adders; 

2. Replace adder with nodes; 

3. Revert arrows direction. 

Transposed forms are illustrated in Figure 7.6. 

x(n) y(n)

z
-1

z
-1

a0

a1

a2

z
-1

z
-1

b1

b2  

x(n) y(n)

a0

a1

a2

z
-1

z
-1

b1

b2  
Transposed Direct Form I Transposed Direct Form II 

Figure 7.6 – Transposed Direct Forms of a IIR filter 

7.4.2 Implementation issues 

Consider all mentioned forms from an implementation point of view. Take into account length of critical 

path and necessity of a quantization (rounding) block Q(z). Both issues are highlighted in Figure 7.7. Red line 

represents possible critical path. A quantization block is obligatory required at the output and in the 

beginning of the feedback path. The output quantization block provides the required resolution of the output 

samples since intermediate resolution is larger due to precision loss prevention measures. The quantization 

block in the beginning of the feedback path limits growth of the resolution in the feedback loop. 

If some operations are done between the mentioned quantization blocks and delay unit, an additional 

quantization block can be inserted at delay unit input (dashed blocks). Such a quantization is optional as it 

can be interchanged with a resolution increase of the following delay unit. Profit of this interchange should 

be assessed in accordance with a system application. 



Chapter 7 Infinite impulse response filters 

77 

x(n) y(n)

z
-1

z
-1

a0

a1

a2

z
-1

z
-1

b1

b2

Q(z)

 

x(n) y(n)

a0

a1

a2

z
-1

z
-1

b1

b2

Q(z)Q(z)

 
Direct Form I Direct Form II 

x(n) y(n)

z
-1

z
-1

a0

a1

a2

z
-1

z
-1

b1

b2

Q(z) Q(z)

Q(z)Q(z)

Q(z)Q(z)

 

x(n) y(n)

a0

a1

a2

z
-1

z
-1

b1

b2

Q(z)

Q(z)

Q(z)

 
Transposed Form I Transposed Form II 

Figure 7.7 – Critical path and quantization blocks in different structures 

Let’s summarize pros and cons of each form in terms of implementation 

 Form I Form II 

Direct 

 Large number of delay units; 

 Critical path grows with order; 

 The minimal number of roundings; 

 Delay units with the minimal resolution; 

 Small number of delay units; 

 Critical path grows with order; 

 2 roundings; 

 Delay units with a moderate resolution; 

Transposed 

 Large number of delay units; 

 Critical path does not depend on order; 

 2 roundings; 

 Delay units with a growing resolution (may 

be interchanged with rounding); 

 Small number of delay units; 

 Critical path does not depend on order; 

 The minimal number of roundings; 

 Delay units with a growing resolution (may 

be interchanged with rounding); 

Fixed point DSP usually prefers the non-transposed forms. The main limitation in such processing is a 

precision loss, so number of rounding should be minimized. Direct Forms has no more than 2 rounding, and 

they do not provoke an increase in resolution in delay units. These factors allow to obtain very resource 

efficient implementations. However, in high-speed applications systems incline to use transposed forms due 

to their minimal critical path. Floating point DSP usually prefers the transposed forms (especially, canonical 

form). In floating point calculations, precision loss is not a critical issue. So benefits of transposed forms, like 

shorter critical path, can be adopted without noticeable losses. 

§7.5 Pitfalls in IIR filter realization 



Chapter 7 Infinite impulse response filters 

78 

Let’s imagine that you design some filter. It perfectly fits the requirements. However, due to incorrect 

implementation it may have other parameters or even become a generator. Why may it happen? You have 

not taken into account finite resolution of operation blocks. Which type of error should be taken into account? 

1. Coefficient quantization; 

2. Overflow and underflow; 

3. Rounding. 

Each filter coefficient can be stored with finite resolution. Lack of resolution leads to an error in a 

coefficient presentation and changes in transfer function. So filter parameters deviate from the nominal 

values. Such deviation may translate into a shift of poles outside unit circle making filter unstable. 

Overflow and underflow typically relates to adder and multipliers, which cannot present operation result 

with sufficient precision. Overflow means that resulting number is larger than possible for given resolution. 

Underflow means that resulting number is smaller than possible for presentation. 

Rounding may be a part of adder or multiplier or be a standalone block. Rounding limits sample 

resolution and explicitly introduces a calculation error. In correctly designed systems, the introduced error 

does not affect the system stability and the output accuracy. Does FIR filter have the same problems? Yes. 

However, due to an absence of the feedback, they are not so critical. 

§7.6 Cascaded design 

One of possible solution to mitigate the above issues of finite resolution is a cascaded design. At first, 

let’s remember how systems can be combined. Figure 7.8 illustrates two possible connections: parallel and 

serial. These options are expressed as 

𝐻𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑧) = 𝐻1(𝑧) + 𝐻2(𝑧) and 𝐻𝑠𝑒𝑟𝑖𝑎𝑙(𝑧) = 𝐻1(𝑧) × 𝐻2(𝑧). 

In this paragraph, we are interested in the last one – serial connection. 

H1(z)

H2(z)

x(n) y(n)

Hparallel(z)

 

H1(z) H2(z)x(n) y(n)

Hserial(z)

 

a) b) 

Figure 7.8 – Parallel (a) and serial (b) connection of systems 

The main point of the cascaded design is to split a high-order system into a serial connection of low-

order systems. This motivation origins from the fact that high-order systems impose high requirements on 

the accuracy of coefficients and calculations. So a transition to low-order systems allows to relax requirements 

and simplify design process. The key issue in this transition is a factorization of the target transfer function. 

Such a factorization employs second–order sections (SOS). The second order sections are preferred to the 

first order because the latter one can lead factorization to complex-valued coefficients that are less 

convenient for implementation. The second order always has real-valued coefficients. As a result, the target 

transfer function H(z) is presented as 

𝐻(𝑧) =∏𝐻𝑖(𝑧)

𝑁

𝑖=1

=∏
𝑎𝑖0 + 𝑎𝑖1𝑧

−1 + 𝑎𝑖2𝑧
−2

1 + 𝑏𝑖1𝑧
−1 + 𝑏𝑖2𝑧

−2

𝑁

𝑖=1

 

where Hi(z) – a transfer function of i-th SOS, aij and bij – coefficients of SOS. Structure of cascaded design is 

depicted in Figure 7.9. 



Chapter 7 Infinite impulse response filters 

79 

x(n)

a10

a11

a12

z
-1

z
-1

b11

b12

y(n)

a20

a21

a22

z
-1

z
-1

b21

b22  

Figure 7.9 – Cascaded filter based on SOS 

However, the following issue should be taken into account. As transfer functions are multiplied, ripples 

in the pass-band increase. Let’s illustrate this and take transfer function in the pass-band as 

𝐻(𝑧) = 1 + 𝑅. 

If we serially put blocks with such a transfer function, then 

𝐻(𝑧) × 𝐻(𝑧) = (1 + 𝑅)(1 + 𝑅) = 1 + 2𝑅 + 𝑅2 ≈ 1 + 2𝑅 + 𝑜(𝑅2). 

for R << 1. From there, it can be seen that ripples increase up to 2 times. So each SOS has stricter requirements 

for ripples than the target transfer function. 

§7.7 Matrix form 

In this paragraph, we discuss how to organize calculations of the output samples for IIR filter using 

matrix forms and operations. Have a look at an example. Consider filter structure depicted in Figure 7.10. 

x(n) y(n)

z
-1

z
-1

a0

a1

a2

z
-1

z
-1

b1

b2  

Figure 7.10 –  

It is described by the following expression: 

𝑦𝑛 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + 𝑏1𝑦𝑛−1 + 𝑏2𝑦𝑛−2 

Let b0 = 0, then 

𝑦𝑛 = 𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + 𝑏0𝑦𝑛 + 𝑏1𝑦𝑛−1 + 𝑏2𝑦𝑛−2 

Now, introduce the input and the output vectors 

�̅� = [

𝑥𝑛
𝑥𝑛−1
𝑥𝑛−2

] , �̅� = [

𝑦𝑛
𝑦𝑛−1
𝑦𝑛−2

] 

and coefficient vectors 

𝐴 = [𝑎0 𝑎1 𝑎2], 𝐵 = [𝑏0 𝑏1 𝑏2] = [0 𝑏1 𝑏2] 

Then the filter expression can be rewritten as 

𝑦𝑛 = 𝐴�̅� + 𝐵�̅�. 

We remember that on every clock cycle 

𝑦𝑖 → 𝑦𝑖−1. 

That is, in our example it will be as 



Chapter 7 Infinite impulse response filters 

80 

𝑦𝑛 → 𝑦𝑛−1, 𝑦𝑛−1 → 𝑦𝑛−2 

If we introduce 2 output vectors: 𝑦′̅ (new output vector) and �̅� (current output vector), then we can take it into 

account by the following expanding of A and B. 

𝐴 = [
𝑎0 𝑎1 𝑎2
0 0 0
0 0 0

] , 𝐵 = [
0 𝑏1 𝑏2
1 0 0
0 1 0

] 

The output vector for 𝑦′̅ is correspondingly 

𝑦′̅ = [

𝑦′𝑛
𝑦′𝑛−1
𝑦′𝑛−2

]. 

So the final form for the calculations is 

𝑦′̅ = 𝐵�̅� + 𝐴�̅� 

Let’s check it 

[

𝑦′𝑛
𝑦′𝑛−1
𝑦′𝑛−2

] = [
𝑎0 𝑎1 𝑎2
0 0 0
0 0 0

] [

𝑥𝑛
𝑥𝑛−1
𝑥𝑛−2

] + [
0 𝑏1 𝑏2
1 0 0
0 1 0

] [

𝑦𝑛
𝑦𝑛−1
𝑦𝑛−2

] = [
𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2

0
0

] + [
𝑏1𝑦𝑛−1 + 𝑏2𝑦𝑛−2

𝑦𝑛
𝑦𝑛−1

]

= [
𝑎0𝑥𝑛 + 𝑎1𝑥𝑛−1 + 𝑎2𝑥𝑛−2 + 𝑏1𝑦𝑛−1 + 𝑏2𝑦𝑛−2

𝑦𝑛
𝑦𝑛−1

] 

And after each iteration of calculation 

𝑦′̅ → �̅� 

This approach can be generalized. General form of the output is 

𝑦(𝑛) = ∑𝑎𝑘𝑥(𝑛 − 𝑘)

𝑁

𝑘=0

+∑𝑏𝑘𝑦(𝑛 − 𝑘)

𝑀

𝑘=1

 

If assume that b0 = 0, then 

𝑦(𝑛) = ∑𝑎𝑘𝑥(𝑛 − 𝑘)

𝑁

𝑘=0

+∑𝑏𝑘𝑦(𝑛 − 𝑘)

𝑀

𝑘=0

 

Input and output vectors are 

�̅� = [

𝑥𝑛
𝑥𝑛−1
⋮

𝑥𝑛−𝑁

] , �̅� = [

𝑦𝑛
𝑦𝑛−1
⋮

𝑦𝑛−𝑀

] 

And coefficient matrices 

𝐴 = [

𝑎0 𝑎1 ⋯ 𝑎𝑁
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

] , 𝐵 =

[
 
 
 
 
𝑏0 𝑏1 ⋯ 𝑏𝑀−1 𝑏𝑀
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0 ]

 
 
 
 

. 

§7.8 Comparison of FIR and IIR filters 

Now we compare digital filter realizations. For the comparison we assume that filters have the same 

slope. 

Parameter FIR filter IIR filter 

Computation 

difficulty/hardware costs 
High Low 

Performance/speed 
Lower (but ultra-fast with 

some special techniques) 
Higher 

Irregularity of a magnitude 

response 
Depends on window Depends on prototype 



Chapter 7 Infinite impulse response filters 

81 

Linearity of a phase 

response 

Linear in the passband for 

a symmetric impulse 

response 

Nonlinear 

Stability Guaranteed 
Must be provided by 

design 

 

Computation difficulty and performance are strongly correlated with number of coefficients. A FIR filter 

has larger coefficients number than an IIR. As a consequence, you need more multiply and adder operations 

with more inputs. The first one affects hardware costs, the second one affects speed. Despite these issues, the 

FIR filters have major advantages: linear phase response and guaranteed stability. 

In terms of direct forms, a FIR filter is slower than an IIR filter due to larger number of coefficients and, 

as a consequence, larger critical path. But a combination of the transposed form with pipelining can increase 

speed of FIR up to D flip-flop delay limitation. In contrast, IIR has a feedback loop that cannot be pipelined 

and limits speed. A parallelization (unlike pipelining) is applicable for both types and cannot highlight one 

type of filters. 

 



Chapter 8 Sample rate conversion 

82 

Chapter 8 Sample rate conversion 

§8.1 Decimation 

Decimation means that we drop some samples from the input sequence, supposing them as redundant 

with no additional information. It is possible when sampling frequency fs is significantly higher than signal 

band B (see Figure 8.1). Then we can occupy the empty band by reducing sampling frequency to f s (Figure 

8.2) The output sequence y(n) in the decimation is expressed as 

𝑦(𝑛) = 𝑥(𝑀𝑛 + 𝑛0) 

where M – a decimation factor, n0 – an initial shift. Then sampling frequency will be 

𝑓′𝑠 =
𝑓𝑠
𝑀

 

and spectrum will be as in Figure 8.2. The decimation is not time-invariant transformation. Its output sequence 

has strong dependence from the initial shift n0. 

f

|S(f)|

fs0

B Empty band

 

Figure 8.1 – Sampling frequency fs is significantly higher than signal band B 

f

|S(f)|

fs0

B

f s  

Figure 8.2 – Reduction of the sampling frequency by 2 times 

Similar to the sampling, it is necessary to take into account the presence of unwanted signals and noise 

outside the signal band, as they can occur in the signal band after the decimation (an example is shown in 

Figure 8.3). To prevent it, a low-pass filter (LPF) is required before the decimation, which should attenuate the 

out-of-band signal to an acceptable level (Figure 8.4). The required magnitude response of such a filter is 

depicted as yellow slashed line in Figure 8.3. 

f

|S(f)|

fs0

B

f s

Filter frequency response

 



Chapter 8 Sample rate conversion 

83 

Figure 8.3 – Spectrum after decimation in presence of undesired signals and noise 

MLPF
x(n) y(n)

 

Figure 8.4 – Application of a filter in combination with decimation 

§8.2 Interpolation 

Interpolation is reverse process when we reconstruct absent samples and increase sampling frequency 

fs. Herewith, it is supposed during reconstruction that the signal band is known. To reconstruct samples and 

increase fs by M times, we need to insert M-1 zeroes between the input samples (Figure 8.5). 

n
0

x(n)

 

Figure 8.5 – Insertion of zeroes samples 

After the insertion of M-1 zeroes, spectrum of the signal does not change, but sampling frequency increases 

by M times. Let’s show that zeroes insertion does not change the spectrum. After insertion 

𝑦(𝑀𝑛) = 𝑥(𝑛); 𝑓𝑠
′ = 𝑀𝑓𝑠. 

Then 

𝑌(𝑚) = ∑ 𝑦(𝑛) · 𝑒−𝑗
2𝜋𝑛𝑚
𝑁𝑀

𝑀𝑁−1

𝑛=0

= ∑ ∑ 𝑦(𝑀𝑛 + 𝑘) · 𝑒−𝑗
2𝜋(𝑀𝑛+𝑘)𝑚

𝑁𝑀

𝑀−1

𝑘=0

𝑁−1

𝑛=0

=

= ∑ 𝑦(𝑀𝑛)⏟  
𝑥(𝑛)

· 𝑒−𝑗
2𝜋𝑀𝑛𝑚
𝑁𝑀

𝑁−1

𝑛=0

+∑ ∑ 𝑦(𝑀𝑛 + 𝑘)⏟      
0

· 𝑒−𝑗
2𝜋(𝑀𝑛+𝑘)𝑚

𝑁𝑀

𝑀−1

𝑘=1

𝑁−1

𝑛=0

= ∑ 𝑥(𝑛) · 𝑒−𝑗
2𝜋𝑛𝑚
𝑁

𝑁−1

𝑛=0

= 𝑋(𝑚) 

These changes of spectrum are illustrated in Figure 8.6. 

The last step of interpolation is attenuation odd aliases of the signal that now are inside the new 

frequency band for fs’. For this purpose, a digital filter with magnitude response shown in Figure 8.7 should 

be employed. Its stop-band should starts at least from the fs/2 frequency. 

 



Chapter 8 Sample rate conversion 

84 

original

alias

some signal in band

f

|S(f)|

fs0

B

2fs

f

|S(f)|

fs0 f s  

Figure 8.6 – Changes in the spectrum after zeroes insertion 

f

|S(f)|

fs0 f s

Filter frequency response

 

Figure 8.7 – Magnitude response of an interpolation filter. 

§8.3 Conversion with fractional coefficient 

We have discussed decimation (lowering sample rate by integer number) and interpolation (increasing 

sample rate by integer number). Can we change sample rate by some fractional number? Yes. To do this, we 

need to combine interpolation and decimation in a way depicted in Figure 8.1. At first, we do an interpolation 

by M times, then a decimation by N times. As a result, we get a new sampling frequency f’ equals 

𝑓′ =
𝑀

𝑁
· 𝑓 

M NLPF
x(n) y(n)

 

Figure 8.8 – A structure of sample rate conversion with a fractional coefficient 

Between this two operations, a low-pass filter (LPF) is needed. The filter plays two roles. The first role is 

restoring the signal after putting zeroes during interpolation. The second role is attenuation of signals out of 

the passband to prevent distortion after decimation. May we change order of interpolation and decimation? 

Yes, but then we require two LFPs. 

Now, let’s have a look at changing of the signal magnitude. It is summarized in the following table 

 



Chapter 8 Sample rate conversion 

85 

Magnitude Decimation Interpolation 

In time domain NO change ↓M 

In frequency domain ↓M NO change 

 

How can we explain it? For decimation, we definitely know that the magnitude in the time domain 

doesn’t change. For the frequency domain, we know that the magnitude is proportional to the number of 

samples N. 

𝐴~𝑁. 

After decimation, we get lower number of samples 

𝑁′ =
𝑁

𝑀
⇒ 𝐴′~𝑁′ =

𝐴

𝑀
 

Thus, magnitude in frequency domain will be lower by M times. 

Regarding interpolation, we have proven that the magnitude in the frequency domain doesn’t change. 

For the time domain, we know that inverse DFT is proportional to inverse number of samples 1/N. 

𝐴~
1

𝑁
 

After interpolation, we get greater number of samples 

𝑁′ = 𝑀𝑁 ⇒ 𝐴′~
1

𝑁′
=
1

𝑁𝑀
=
1

𝑁
·
1

𝑀
~𝐴 ·

1

𝑀
=
𝐴

𝑀
 

Thus, the magnitude in the time domain will be lower by M times. 

 



Chapter 9 Averaging 

86 

Chapter 9 Averaging 

§9.1 Introduction 

Typically, received signal contains noise induced by environment. This noise can be expressed by 

multiplicative term μ(t) and additive term η(t), i.e. 

𝑠′(𝑡) = μ(𝑡) · 𝑠(𝑡) + 𝜂(𝑡) 

where s’(t) – received signal, s(t) – transmitted signal. In this Chapter, we will discuss only influence of the 

additive term. So, the received signal is considered as 

𝑠′(𝑡) = α · 𝑠(𝑡) + 𝜂(𝑡). 

Additive term is commonly considered as white noise, that is we assume that η(t) has the normal 

distribution and the mean value (the mathematic expectation) equals 0. It is expressed by the following 

formulas 

�̅� = ∫ 𝜂 · 𝑃(𝜂)𝑑𝜂

+∞

−∞

= 0;𝑃(𝜂) =
1

𝜎√2𝜋
𝑒
−
(𝜂−�̅�)2

2𝜎2 . 

In signal processing, we consider that processes have ergodicity property. Ergodicity means that 

averaging of system behavior over time axis is equivalent to averaging over all possible values. Thus, previous 

expression for the mean value of the noise can be rewritten as 

�̅� = ∫ 𝜂(𝑡)𝑑𝑡

+∞

−∞

= 0; 

Then it is possible to state that averaging of the received signal over time provide us the transmitted signal 

𝑠𝑎𝑣
′ (𝑡) = α · 𝑠(𝑡) + �̅� = α · 𝑠(𝑡) 

To make averaging of the received signal, we need to acquire several sample sets, where it is known 

that transmitted signal was the same. Averaging over time can be divided into two cases: coherent averaging 

and incoherent averaging (Figure 9.1). Coherent averaging is applied when we know the phase of each sample 

set; incoherent averaging, on the contrary, is applied when the phase of each sample set is unknown. 

Averaging

Coherent averaging Incoherent averaging

we know the phase of

each sample set

we don t know the phase 

of each sample set  

Figure 9.1 – Types of averaging 

§9.2 Coherent averaging 

If we know the phase of each sample set, then we can overlap sample sets with each other (see Figure 

9.2). There k-th sample set with duration T is designated as s’k(t). Each sample set starts with the same phase, 

and at the specific moment in time samples differ only by noise value. Then we can express averaged received 

signal in the following form 

𝑠𝑎𝑣
′ (𝑘) =

1

𝐾
∑𝑠𝑘

′ (𝑘)

𝐾

𝑖=1

 

 



Chapter 9 Averaging 

87 

For the extreme case when infinite number of sets is taken into account 

𝑠𝑎𝑣
′ (𝑘) = lim

𝐾→∞

1

𝐾
∑𝑠𝑘

′ (𝑘)

𝐾

𝑖=1

= α · 𝑠(𝑘) + �̅� = 0 

t

t

t

s(t)

s k(t)

s k(t)

T

T  

Figure 9.2 – Illustration of the coherent averaging 

For ergodicity process, we may rewrite the above formula as 

𝑠𝑎𝑣
′ (𝑘) =

1

𝐾
∑𝑠′(𝑁 × 𝑖 + 𝑘)

𝐾

𝑖=1

 

where N corresponds to the sample set duration T. 

Due to linearity of the DFT, equation for the averaged signal can be transformed into 

𝑆𝑎𝑣
′ (𝑚) =

1

𝐾
∑𝑆𝑘

′ (𝑚)

𝐾

𝑖=1

 

where S’av(m) – DFT of the averaged signal, S’k(m) – DFT of k-th sample set. This means that coherent averaging 

can be done both in time and frequency domains. Moreover, making averaging in frequency domain, we can 

restore averaged signal in time domain through performing inverse DFT for S’av(m). After averaging dispersion 

of noise is reduced by number of sample sets, i.e. 

𝜎𝑎𝑣
2 =

𝜎𝑖𝑛
2

𝐾
 

§9.3 Incoherent averaging 

On the contrary, incoherent averaging is used when we don’t know a phase of each sample set. It is 

illustrated in Figure 9.3. There each sample set starts with different shift in time (phase). So, the approach for 

averaging proposed in the previous section cannot be applied here. 



Chapter 9 Averaging 

88 

t

t

s(t)

s k(t)
T

 

Figure 9.3 – Illustration of the incoherent averaging 

Can we still reduce noise influence through averaging? We can still do averaging in frequency domain. 

But with a little change. We do it only for magnitude response. Due to different phase of sample sets, 

averaging of phase responses is not valid. 

|𝑆𝑎𝑣
′ (𝑚)| =

1

𝐾
∑|𝑆𝑘

′ (𝑚)|

𝐾

𝑖=1

 

And, as a consequence, there we cannot restore averaged signal through inverse DFT due to absence of 

information about phase (phase response). Improvement for this type of averaging is the same as in the 

previous case, that is 

𝜎𝑎𝑣
2 =

𝜎𝑖𝑛
2

𝐾
 

In the incoherent averaging, we cannot reconstruct the original signal (we don’t know its phase 

component). As a result, the incoherent averaging does not actually decrease noise power and, consequently, 

does not improve SNR value. From this point of view, a decrease in the dispersion σav, indeed, only means a 

decrease in fluctuations of noise samples in the spectrum. 

§9.4 Realization of averaging 

In Figure 9.4 you can see example of averaging realization. It contains several averaging FIR filters. Each 

filter provides one sample of the averaged signal. The input sequence x(n) is switched between these filters 

over the time. That is, samples with indices 0, N, 2N and so on go to Filter 0; with indices 1, N+1, 2N+1 and 

so on to Filter 1 and etc. Sequence x(n) can be either time domain or frequency domain samples. 



Chapter 9 Averaging 

89 

z
-1

z
-1

z
-1

z
-1

+

1/K 1/K 1/K

yav(0)

Filter 0

Filter 1 yav(1)

Filter N-1 yav(N-1)

x(n)

1/K

 

Figure 9.4 – Averaging filter 

§9.5 Exponential averaging 

The realization presented in the previous section requires a large number of delays, multiplications and 

summations. If you need to reduce only high-frequency noise, there are more efficient ways. One of this 

efficient ways to do an averaging is an exponential averaging, which structure is shown in Figure 9.5. The 

output of this structure is defined by 

𝑦(𝑛) = 𝛼 · 𝑥(𝑛) + (1 − 𝛼) · 𝑦(𝑛 − 1). 

From there, we can obtain its transfer function 

𝑇(𝑧) =
𝛼

1 − (1 − 𝛼) · 𝑧−1
 

And impulse response 

ℎ(𝑛) = 𝛼 · (1 − 𝛼)𝑛. 

Impulse response of such a filter with different α is depicted in Figure 9.6. 

z
-1

+
α 

1-α 

y(n)x(n)

y(n-1)

 

Figure 9.5 – A structure of the exponential averaging 

Exponential averaging is a parametric low-pass IIR filter. Its parameter α defines noise reduction factor 

(i.e. cut-off frequency of the filter). Varying coefficient α, we can change the influence of the input sample to 

the output. With α → 0, the input sample doesn’t affect the output and, therefore, noise is reduced. With α = 

1, the output exactly equals the input, and noise reduction is absent. In Figure 9.7, you can see dependence 

between and α and SNR improvement. This improvement can be expressed by the following equations 



Chapter 9 Averaging 

90 

𝜎𝑎𝑣
2 =

𝛼

2 − 𝛼
𝜎𝑖𝑛
2 ; 𝑆 = −10 log10

𝛼

2 − 𝛼
 

For instance, S = 0 dB with α = 0 and S ≈ 13 dB with α = 0.1. This structure is significantly simpler than the 

filter from the section §9.4. However, it reduces only high-frequency noise components and cannot reduce 

in-band noise, unlike the fair averaging presented in the section §9.4. 

0.40

0.20

0.30

0.10

0
1 2 3 4 5 6 7 8 9

0.05

0.15

0.25

0.35

n

h(n)
α = 0.4 α = 0.2

 

Figure 9.6 – An impulse response of the exponential averaging with different α 

14

4

10

2

1 0.9 0.8 0.7 0.6

0

6

α 

S, dB

0.5 0.4 0.3 0.2 0.1

8

12

 

Figure 9.7 – SNR increase caused by the exponential averaging 

 



Chapter 10 Analytic signal 

91 

Chapter 10 Analytic signal 

§10.1 Introduction 

We already know real signals. For example: 

𝑠(𝑡) = 𝐴 cos(𝜔𝑡). 

But there is an analytic signal (or a complex signal) z(t) corresponding to this real signal. It is expressed by: 

𝑧(𝑡) = 𝑠(𝑡) + 𝑗�̂�(𝑡), 

where ŝ(t) – an orthogonal complement to s(t). The orthogonal complement is the Hilbert transform of s(t). 

That is, it can be calculated by the following expression: 

�̂�(𝑡) = ℋ{𝑠(𝑡)} =
1

𝜋
∫
𝑠(𝜏)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞

. 

where ℋ – the Hilbert Transform. From circuit design point of view Hilbert transform may be interpreted as 

phase shifter for –π/2. 

Now let’s discuss the spectrum of the analytic signal. Let S(ω) – the spectrum of s(t) and Ŝ(ω) – the 

spectrum of ŝ(t). It is known (will be discussed in Section §11.1) that Ŝ(ω) is equal to 

�̂�(𝜔) = 𝑆(𝜔) ⋅ 𝑒−𝑗
𝜋
2
⋅sign 𝜔. 

Then the spectrum Z(ω) of the analytic signal is 

𝑍(𝜔) = 𝑆(𝜔) + 𝑗𝑆(𝜔) = {
𝑆(𝜔) + 𝑗(−𝑗𝑆(𝜔)), 𝜔 > 0 

𝑆(𝜔) + 𝑗(𝑗𝑆(𝜔)),𝜔 < 0
= {
2𝑆(𝜔),𝜔 > 0 
0, 𝜔 < 0

 

Both spectrums are depicted in Figure 10.1. 

f

|S(f)|

f

|Z(f)|

 

Figure 10.1 – Spectrums of a real and an analytic signal 

§10.2 Complex envelope 

Let’s assume that the original input signal has some modulation, then it can be written in the following 

form 

𝑠(𝑡) = 𝐴(𝑡) · cos(𝜔0𝑡 + 𝜑(𝑡)). 

where A(t) – modulation of magnitude, φ(t) – modulation of phase, ω0 – carrier frequency. For signals with a 

relatively narrow band (B << f0) orthogonal complement equals 

�̂�(𝑡) = 𝐴(𝑡) · sin(𝜔0𝑡 + 𝜑(𝑡)). 

As a result analytic signal z(t) becomes 

𝑧(𝑡) = 𝐴(𝑡) · cos(𝜔0𝑡 + 𝜑(𝑡)) + 𝑗 · 𝐴(𝑡) · sin(𝜔0𝑡 + 𝜑(𝑡)) = 𝐴(𝑡) · 𝑒
𝑗(𝜔0𝑡+𝜑(𝑡)) 

Rewrite this expression 

𝑧(𝑡) = 𝐴(𝑡) · 𝑒𝑗𝜔0𝑡+𝜑(𝑡) = 𝐴(𝑡) · 𝑒𝑗𝜑(𝑡)⏟        
𝐹(𝑡)

· 𝑒𝑗𝜔0𝑡 = 𝐹(𝑡) · 𝑒𝑗𝜔0𝑡 

Now all information is concentrated in function F(t) that is called “complex envelope”. We can get complex 

envelope by the next multiplication 

𝐹(𝑡) = 𝑧(𝑡) · 𝑒−𝑗𝜔0𝑡 

This is one of the ways to get the complex envelope. The spectrum of the complex envelope is 



Chapter 10 Analytic signal 

92 

𝐹(𝜔) = ∫ 𝐹(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫ 𝑧(𝑡) · 𝑒−𝑗𝜔0𝑡 · 𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫ 𝑧(𝑡) · 𝑒−𝑗(𝜔+𝜔0)𝑡𝑑𝑡 =

+∞

−∞

{
2𝑆(𝜔 + 𝜔0),𝜔 + 𝜔0 ≥ 0

0,𝜔 + 𝜔0 < 0
 

Spectrums of a real signal, analytic signal and complex envelope are depicted in Figure 10.2. 

ω

|S(ω)|

|Z(ω)|

0 ωω0 ω

|F(ω)|

0
 

Figure 10.2 – Spectrums of the real, complex and envelope signals 

Now, we take a closer look at the complex envelope. Write it down again 

𝐹(𝑡) = 𝐴(𝑡) · 𝑒𝑗𝜑(𝑡) 

Take the absolute value and phase of this complex function 

|𝐹(𝑡)| = |𝐴(𝑡) · 𝑒𝑗𝜑(𝑡)| = |𝐴(𝑡)| = 𝐴(𝑡) 

arg𝐹(𝑡) = arg(𝐴(𝑡) · 𝑒𝑗𝜑(𝑡)) = arg(𝐴(𝑡)) + 𝜑(𝑡) = 𝜑(𝑡) 

Thus, amplitude and phase modulations can be detected by means of operations with complex 

envelope. Moreover, absolute value of the complex envelope can be extracted even without addition or 

multiplication. Indeed, 

|𝑧(𝑡)| = √(𝐴(𝑡) · cos(𝜔0𝑡 + 𝜑(𝑡)))
2
+ (𝐴(𝑡) · sin(𝜔0𝑡 + 𝜑(𝑡)))

2

= 𝐴(𝑡) · √cos2(𝜔0𝑡 + 𝜑(𝑡)) + sin
2(𝜔0𝑡 + 𝜑(𝑡))⏟                          

1

= 𝐴(𝑡) 

§10.3 Quadrature components 

Parts of analytic signal are often called quadrature components and designated as I (in-phase) and Q 

(quadrature). Using this terms, analytic signal is written as 

𝐹(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡); 

𝐼(𝑡) = 𝐴(𝑡) · cos𝜑(𝑡) ; 𝑄(𝑡) = 𝐴(𝑡) · sin𝜑(𝑡). 

How to transmit quadrature components? This process is shown in Figure 10.2 and can be explained 

like that 

𝑠(𝑡) = 𝐴(𝑡) · cos(𝜔0𝑡 + 𝜑(𝑡)) = 𝐴(𝑡)(cos𝜑(𝑡) · cos𝜔0𝑡 − sin𝜑(𝑡) · sin𝜔0𝑡) = 𝐼(𝑡) · cos𝜔0𝑡 − 𝑄(𝑡) · sin𝜔0𝑡 



Chapter 10 Analytic signal 

93 

+

I(t)

cos(ω0t)

Q(t)

-sin(ω0t)
s(t)

Re

Im

F(t)

DAC

DAC

 

Figure 10.3 – A generation of a real signal s(t) from complex envelope F(t) 

There, a structure with Digital-to-RF DAC is presented. However, the DAC can be placed both before mixer – 

Digital-to-IF (Intermediate Frequency) – and after adder – Direct Digital Synthesis (DDS). 

In terms of receiver, we have already mentioned in previous section one way of quadrature components 

obtaining – Direct Digital Conversion (DDC) with multiplying the complex signal by the carrier (i.e. mixer in 

the digital domain). Another way is a structure presented in Figure 10.4, where the mixer is analog and its 

output signal has Zero-IF or Low-IF. The low-pass filter in Figure 10.4 play two roles: 

 Anti-aliasing filter for the ADC; 

 Filtering high-frequency image after frequency conversion. 

Let’s talk about the last point. After conversion the received signal s(t) will be multiplied by the carrier with 

frequency ω0, i.e. 

In I channel 

𝑠(𝑡) · cos𝜔0𝑡 = 𝐴(𝑡) · cos(𝜔0𝑡 + 𝜑(𝑡)) · cos𝜔0𝑡 = 𝐴(𝑡) ·
cos(𝜔0𝑡 + 𝜑(𝑡) − 𝜔0𝑡) + cos(𝜔0𝑡 + 𝜑(𝑡) + 𝜔0𝑡)

2

= 𝐴(𝑡) ·
cos(𝜑(𝑡)) + cos(2𝜔0𝑡 + 𝜑(𝑡))

2
=
1

2
𝐼(𝑡) +

𝐴(𝑡)

2
· cos(2𝜔0𝑡 + 𝜑(𝑡)). 

In Q channel 

𝑠(𝑡) · (− sin𝜔0𝑡) = 𝐴(𝑡) · cos(𝜔0𝑡 + 𝜑(𝑡)) · sin(−𝜔0𝑡)

= 𝐴(𝑡) ·
sin(𝜔0𝑡 + 𝜑(𝑡) − 𝜔0𝑡) + sin(𝜔0𝑡 + 𝜑(𝑡) + 𝜔0𝑡)

2
= 𝐴(𝑡) ·

sin(𝜑(𝑡)) + sin(2𝜔0𝑡 + 𝜑(𝑡))

2

=
1

2
𝑄(𝑡) +

𝐴(𝑡)

2
· sin(2𝜔0𝑡 + 𝜑(𝑡)). 

The component with frequency 2ω0 is unnecessary and should be filtered out. 

cos(ω0t)

-sin(ω0t)
s(t)

Re

Im

F(t)

LPF

LPF

I(t)

Q(t)

ADC

ADC

 

Figure 10.4 – Zero IF receiver 



Chapter 10 Analytic signal 

94 

§10.4 Why do we need it? 

Why do we need so strange entity as analytic signal? Let’s imagine that we get 3 samples of a harmonic 

signal (Figure 10.5). Can we determine amplitude, frequency and phase of this signal? Yes, for this purpose, 

we need to solve the following system 

{

𝐴 · cos (𝜔 · 0𝑡𝑠 +𝜑) = 𝑥(0);

𝐴 · cos (𝜔 · 1𝑡𝑠 +𝜑) = 𝑥(1);

𝐴 · cos (𝜔 · 2𝑡𝑠 + 𝜑) = 𝑥(2).

 

There are 3 unknown variables: A, ω and φ. It is not so easy to solve this, but it is possible. What if we 

have analytic signal that corresponds to this real signal? It will be easier to determine this parameters, that is 

𝐴 = |𝑧(𝑛)|; 𝜑 = arg 𝑧(𝑛) 

And this is with just one sample. The second sample can give us the frequency 

𝜔 = arg 𝑧(𝑛) − arg 𝑧(𝑛 − 1) 

n

x(n)

0 1 2
 

Figure 10.5 – Three samples of some harmonic signal 

 

 



Chapter 11 Hilbert transform 

95 

Chapter 11 Hilbert transform 

§11.1 Transfer function and impulse response of Hilbert transform 

11.1.1 Continuous time 

In §10.1 we have discussed that orthogonal complement can be obtained with Hilbert transform 

�̂�(𝑡) = ℋ{𝑠(𝑡)} =
1

𝜋
∫
𝑠(𝜏)

𝑡 − 𝜏
𝑑𝜏

+∞

−∞

. 

Here, we discuss Hilbert transform more detailed. From the expression above, it is seen that Hilbert transform 

is a convolution of function s(t) and function h(t) 

ℎ(𝑡) =
1

𝜋𝑡
 

In other words, we can say that Hilbert transform is a LTI system with impulse response h(t). Let’s try to get 

its transfer function. 

𝐻(𝜔) = ∫ ℎ(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫
1

𝜋𝑡
𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

−∞

= ∫
1

𝜋𝑡
𝑒−𝑗𝜔𝑡𝑑𝑡

0

−∞

+∫
1

𝜋𝑡
𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

0

= 

= ∫
1

𝜋(−𝑡)
𝑒−𝑗𝜔(−𝑡)𝑑(−𝑡)

0

+∞

+∫
1

𝜋𝑡
𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

0

= ∫
1

𝜋𝑡
𝑒𝑗𝜔𝑡𝑑𝑡

0

+∞

+∫
1

𝜋𝑡
𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

0

= −∫
1

𝜋𝑡
𝑒𝑗𝜔𝑡𝑑𝑡

+∞

0

+∫
1

𝜋𝑡
𝑒−𝑗𝜔𝑡𝑑𝑡

+∞

0

= 

= ∫
𝑒−𝑗𝜔𝑡 − 𝑒𝑗𝜔𝑡

𝜋𝑡
𝑑𝑡

+∞

0

= ∫
−2𝑗 sin𝜔𝑡

𝜋𝑡
𝑑𝑡

+∞

0

=
−2𝑗

𝜋
·
𝜋

2
· sign 𝜔 = −𝑗 · sign 𝜔 

(Reminder of a table integral) 

∫
sin𝑘𝑥

𝑥
𝑑𝑥

+∞

0

=
𝜋

2
· sign 𝑘 

Finally, we have that 

Impulse response Transfer function 

ℎ(𝑡) =
1

𝜋𝑡
 𝐻(𝜔) = −𝑗 · sign 𝜔 = {

𝑗, 𝜔 < 0
0,𝜔 = 0
−𝑗, 𝜔 > 0

 

Impulse response and transfer function of Hilbert transform are illustrated in Figure 11.1. 

 

ω

|H(jω )|

j

-j

t

h(t)

 

Figure 11.1 – Impulse response and transfer function of Hilbert transform 

11.1.2 Discrete time 

As we see, the transfer function of the Hilbert transform is not limited by frequency. It results in 

impossibility to just discretize the impulse response in time to get its discrete version. This issue is illustrated 



Chapter 11 Hilbert transform 

96 

in Figure 11.1. After discretization transfer function will repeat and overlap each other (Figure 11.1a), and the 

transformation will loss its properties. To prevent distortion caused by spectrum overlapping, we need to limit 

transfer function by frequency. Let transfer function be equal to 0 outside the baseband (ω>ωs/2), then 

spectrum repetition does not change properties of our transformation (Figure 11.1b). 

Ha(ω)

ω 

j

-j

ω 

j

ωs-ωs

-j

Hd(ω)

 

ω 

j

-j

-ωS

2

ωS

2

ω 

j

-j

-ωS

2

ωS

2
ωs-ωs

Ha(ω)

Hd(ω)

 

𝐻𝑎(𝜔) = −𝑗 · sign 𝜔 𝐻𝑎(𝜔) = {
−𝑗 · sign 𝜔, |ω| ≤

𝜔𝑠
2⁄

0, |ω| >
𝜔𝑠
2⁄

 

a) b) 

Figure 11.2 – Transfer function of the Hilbert transform after discretization without limitation of frequency 

range (a) and with limitation of frequency range (b) 

Now we need to get corresponding impulse response with the help of inverse IFT. 

ℎ𝑑(𝑡) =
1

2𝜋
∫ 𝐻𝑑(𝜔)𝑒

𝑗𝜔𝑡𝑑𝜔

𝜔𝑠
2⁄

−𝜔𝑠
2⁄

=
1

2𝜋
∫ 𝑗𝑒𝑗𝜔𝑡𝑑𝜔

0

−𝜔𝑠
2⁄

+
1

2𝜋
∫ −𝑗𝑒𝑗𝜔𝑡𝑑𝜔

𝜔𝑠
2⁄

0

=
𝑗

𝑗2𝜋𝑡
𝑒𝑗𝜔𝑡 |

0
−𝜔𝑠
2
−

𝑗

𝑗2𝜋𝑡
𝑒𝑗𝜔𝑡 |

𝜔𝑠
2
0

=
1

2𝜋𝑡
(1 − 𝑒−𝑗

𝜔𝑠
2
𝑡 + 1 − 𝑒𝑗

𝜔𝑠
2
𝑡) =

1

2𝜋𝑡
(2 − 2 cos

𝜔𝑠𝑡

2
) =

1

𝜋𝑡
(1 − cos

𝜔𝑠𝑡

2
) =

2 sin2
𝜔𝑠𝑡
4

𝜋𝑡

=
2 sin2

𝜋𝑓𝑠𝑡
2

𝜋𝑡
 

That is 

ℎ𝑑(𝑡) =
1

𝜋𝑡
(1 − cos

𝜔𝑠𝑡

2
) =

2 sin2
𝜔𝑠𝑡
4

𝜋𝑡
. 

To get the value of impulse response, we need to calculate a limit 

lim𝑡→0 ℎ𝑑(𝑡) = lim𝑡→0
2 sin2

2𝜋𝑓𝑠𝑡
4

𝜋𝑡
= lim𝑡→0

2 (
𝜋𝑓𝑠𝑡
2 )

2

𝜋𝑡
= lim𝑡→0

𝜋𝑓2
𝑠
𝑡

2
= 0 

Finally, the discrete version of the impulse response can be obtained with safe time variable replacement 

𝑡 → 𝑛𝑡𝑠 

2 sin2
𝜔𝑠𝑡
4

𝜋𝑛𝑡𝑠
=
2 sin2

𝜋𝑓𝑠𝑡
2

𝜋𝑛𝑡𝑠
=
2 sin2

𝜋𝑓𝑠𝑛𝑡𝑠
2

𝜋𝑛𝑡𝑠
=
2 sin2

𝜋𝑛
2

𝜋𝑛𝑡𝑠
 

This impulse response is depicted in Figure 11.3. It represents discretization of oscillation function with 

frequency fs/2. 



Chapter 11 Hilbert transform 

97 

t

h(t)

2tsts 3ts

 

Figure 11.3 – Impulse response of a discrete Hilbert transform 

§11.2 Hilbert converter 

Now, we know how impulse response of Hilbert transform looks like and can discuss how to implement 

such a device. The straightforward approach to realize Hilbert converter is a FIR design. Impulse response 

samples are just filter coefficients in this case. And there we have 2 options: with odd or even number of 

coefficients. Why does it matter? 

Impulse response of Hilbert transform is antisymmetric. From §6.3 we know that different number of 

samples leads us to different types of magnitude responses (Figure 11.4). In case of even number of samples, 

magnitude response equals to 0 only at 0 and fs frequencies. This is acceptable behavior as constant level 

cannot have phase and orthogonal complement. In case of odd number of samples, magnitude response 

additionally equals 0 at fs/2 frequency. This behavior is undesirable as it limits pass-band of the Hilbert 

converter. 

|H(jω )|

1
ω 

0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4

1.0

0.8

0.6

0.4

0.2

1.2

 

|H(jω )|

1
ω 

0.5 0.6 0.7 0.8 0.90.1 0.2 0.3 0.4

1.0

0.8

0.6

0.4

0.2

1.2

 
Figure 11.4 – Magnitude responses of Hilbert converter with even (left) and odd (right) number of samples 

Now, let’s look at this issue from another point of view. Examples of a converter structure for even and 

odd number of coefficients are shown in Figures 11.5 and 11.6. We know that the delay of a device is defined 

by its group delay, which is expressed for a FIR filter as 

𝐺 = −
𝑑𝜑

𝑑𝜔
= 𝑡𝑠

𝑁 − 1

2
. 

In case of an even number of coefficients, the group delay becomes non-integer and makes it difficult to 

synchronize y(n) and ŷ(n) (delay z-1/2 cannot be implement in single rate systems). In case of an odd number 

of coefficients, the group delay is integer and y(n) and ŷ(n) can be easily synchronized by taking y(n) from the 

middle of converter. 



Chapter 11 Hilbert transform 

98 

z
-1

z
-1

z
-1

x(n)

a0 a1 a3a2

ŷ(n)
 

Figure 11.5 – Structure of converter with even number of coefficients 

z
-1

z
-1

z
-1

x(n)

a0 a1 a4

ŷ(n)

a3

z
-1

a2

y(n)

 

Figure 11.6 – Structure of converter with odd number of coefficients 

There is a feature of impulse response for even number of samples. As impulse must be antisymmetric 

it must not contain a zero sample at the center. It results in skipping all even samples in the impulse response 

and impulse response becomes as in Figure 11.7. In frequency domain, it is equivalent to the following. We 

get an impulse response for doubled fs and decimate it with indices 2n+1. The decimation leads to an overlap 

of range [fs, 2fs] to range [0, fs]. However, as they are identical, nothing changes. 

t

h(t)

ts 2ts

 

Figure 11.7 – Impulse response for even number of samples 

§11.3 Hilbert transform in frequency domain 

Another approach to implement Hilbert transform and get analytic signal is a conversion in frequency 

domain. One of possible solutions is to use fast convolution scheme. This implies: 

1. Do DFT from the input sequence; 

2. Multiply by the transfer function of Hilbert transform; 

3. Restore signal with help of inverse DFT; 

4. Add delay to the input sequence to synchronize components of an analytic signal. 

Such a scheme is depicted in Figure 11.6. 



Chapter 11 Hilbert transform 

99 

DFT IDFT

Delay

H(z)

I(n)

Q(n)

x(n)

 

Figure 11.8 – Hilbert transform with fast convolution 

Other possible solution is to transform the spectrum of a real-valued signal to the spectrum of a 

complex-valued signal by the following procedure: 

1. Do DFT from the input sequence; 

2. Drop all samples for negative frequency; 

3. Multiply samples for positive frequencies by 2 times (except 0 and fs/2); 

4. Do inverse DFT and get analytic signal; 

f

|S(f)|

f

|Z(f)|

 

Figure 11.9 – Conversion of a real-value signal to a complex-valued signal 

There are some issues that should be taken into account. Both solutions rely on DFT and susceptible 

for leakage. As a result, any change of frequency components may produce harmonic distortion and 

inaccurate result will be obtained. Other issue is also because of leakage: both solutions cannot be directly 

used in real-time processing. Only processing of the complete samples set makes sense. However, solution 

can be modified to be applicable in real-time processing. 

 



 

100 

References 

1. Сергиенко А. Б. Цифровая обработка сигналов. Санкт-Петербург: БХВ-Петербург, 2013. 

2. Солонина А. И., Улахович Д. А., Арбузов С. М., Соловьева Е. Б. Основы цифровой обработки 

сигналов: СПб.: БХВ-Петербург, 2005. 

3. Оппенгейм А., Шафер Р. Цифровая обработка сигналов. М.: Техносфера, 2009. 

4. Lyons R. G. Understanding Digital Signal Processing, 3rd ed. Pearson Education, Inc., 2011. 

5. Цикин И. А. Сигналы в информационных радиосистемах [Электронный ресурс] : учебное 

пособие / И. А. Цикин ; Санкт-Петербургский политехнический университет Петра Великого. 

Санкт-Петербург : Изд-во Политехн. ун-та, 2017. 10.18720/SPBPU/2/i17-364. 



Енученко  Михаил  Сергеевич
Иванов  Никита  Валерьевич

ОСНОВЫ   
ЦИФРОВОЙ  ОБРАБОТКИ  

СИГНАЛОВ

Конспект лекций

Налоговая льгота – Общероссийский классификатор продукции
ОК 005-93, т. 2; 95 3005 – учебная литература

Подписано в печать 02.10.2024. Формат 60×84/16. Печать цифровая.
Усл. печ. л. 6,5. Тираж 52. Заказ 4619.

Отпечатано с готового оригинал-макета, предоставленного авторами,
в Издательско-полиграфическом центре Политехнического университета.

195251, Санкт-Петербург, Политехническая ул., 29.
Тел.: (812) 552-77-17; 550-40-14.


	Content
	Introduction
	Chapter 1 Basic knowledge
	§1.1 Geometric progression and series
	§1.2 Complex numbers
	§1.3 Trigonometric expressions
	§1.4 Linear operators
	§1.5 Convolution
	§1.6 Fourier series
	§1.7 Integral Fourier Transform
	§1.8 Laplace Transform
	§1.9 Z-transform
	§1.10 Dirac delta function
	Chapter 2 Discrete sequences and systems
	§2.1 Introduction
	§2.2 Operations on discrete sequences
	§2.3 Unit delay element
	§2.4 Systems in digital signal processing
	§2.5 Real-time systems
	§2.6 Complexity metrics
	Chapter 3 Sampling signals
	§3.1 Ambiguity of signal presentation
	§3.2 Discrete-Time Fourier transform
	§3.3 Discrete sequence spectrum
	§3.4 Signal reconstruction
	§3.5 Sampling low-pass signals
	§3.6 Sampling band-pass signals
	Chapter 4 Discrete Fourier Transform
	§4.1 Derivation of the formula
	§4.2 Example of a DFT calculation
	§4.3 Properties of DFT
	§4.4 Symmetric DFT forms
	§4.5 DFT matrix
	§4.6 DFT of typical functions
	§4.7 Leakage
	§4.8 Windows
	§4.9 Signal to noise ratio in DFT
	§4.10 Conclusion
	Chapter 5 Fast Fourier Transform
	§5.1 Algorithm
	§5.2 Bit-reversed order
	§5.3 Butterfly structures
	Chapter 6 Finite impulse response filters
	§6.1 Introduction
	§6.2 Filter analysis
	§6.3 Phase response
	§6.4 Structures
	§6.5 Half-band filters
	Chapter 7 Infinite impulse response filters
	§7.1 Introduction
	§7.2 Filter analysis
	§7.3 Stability
	§7.4 Structures
	§7.5 Pitfalls in IIR filter realization
	§7.6 Cascaded design
	§7.7 Matrix form
	§7.8 Comparison of FIR and IIR filters
	Chapter 8 Sample rate conversion
	§8.1 Decimation
	§8.2 Interpolation
	§8.3 Conversion with fractional coefficient
	Chapter 9 Averaging
	§9.1 Introduction
	§9.2 Coherent averaging
	§9.3 Incoherent averaging
	§9.4 Realization of averaging
	§9.5 Exponential averaging
	Chapter 10 Analytic signal
	§10.1 Introduction
	§10.2 Complex envelope
	§10.3 Quadrature components
	§10.4 Why do we need it?
	Chapter 11 Hilbert transform
	§11.1 Transfer function and impulse response of Hilbert transform
	§11.2 Hilbert converter
	§11.3 Hilbert transform in frequency domain
	References


 
 
    
   HistoryItem_V1
   StepAndRepeat
        
     Trim unused space from sheets: no
     Allow pages to be scaled: yes
     Margins and crop marks: none
     Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Sheet orientation: best fit
     Layout: scale to rows 1 down, columns 1 across
     Align: top left
      

        
     D:20241003100248
      

        
     0.0000
     10.0000
     20.0000
     0
     Corners
     0.3000
     ToFit
     1
     1
     0.7000
     0
     0 
     1
     0.0000
     0
            
       D:20241003100247
       841.8898
       a4
       Blank
       595.2756
          

     Best
     744
     283
    
    
     0.0000
     TL
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     0
     1
     0 
      

        
     QITE_QuiteImposingPlus4
     Quite Imposing Plus 4.0g
     Quite Imposing Plus 4
     1
      

   1
  

 HistoryList_V1
 qi2base





