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Introduction

Modern telecommunications systems tend to increase application of digital signal processing systems
due to their flexibility and scalability. As a result, digital signal processing (DSP) is an important area of
research. Digital signal processing encompasses a variety of techniques for transmitting, receiving, analyzing,
transforming, and synthesizing signals with digital devices. This work-book aims to become an entry point to
the fundamental terms and concepts of DSP, with a focus on both theoretical foundations and
implementations issues.

Digital signal processing systems have several features that should be carefully taken into account for
correct processing of the signals. One of these features is discrete time. The discrete time changes an
interpretation of signals in time-domain and their properties, particularly, spectrum representation. Besides,
discrete time digital systems have another limitation — finite resolution, which results in inaccurate
representation of signal values and errors in operations with them. Also, digital systems have very limited set
of feasible operations and, consequently, digital processing requires special algorithms.

This work-book covers the following topics: introduction to discrete sequences and systems, feasible
operations, mathematical instruments for processing and analyzing signals. The discrete Fourier transform
(DFT) is discussed in details. The DFT is the essential instrument for digital signal processing, which features
assumptions, leakage, axes conversion, symmetry etc. should be deeply understood before you start to use
it. A fast implementation of DFT — fast Fourier transform —is described. Its different realizations are presented.

In terms of a device implementation, the work-book focuses on the basis of finite and infinite impulse
response filters. Their different structures are discussed in details, particularly in terms of hardware costs,
critical path and errors susceptibility. Approach for analysis of frequency and phase responses is discussed. It
is considered that a FIR phase response demonstrates their properties to have linear phase response and
constant group delay in the pass-band. Stability of IIR filter is discussed and a cascaded design is presented
as its possible solution.

Then, the mentioned filters are considered in the typical processing tasks like averaging and sample
rate conversion. Finally, the work-book briefly reminds the basis of analytic signals and applies considered
material for their processing. Especially, Hilbert transform and its implementation are in focus.



Chapter 1 Basic knowledge
Chapter 1 Basic knowledge

§1.1 Geometric progression and series

A geometric progression — a sequence of numbers where each term after the first is found by
multiplying the previous one by a fixed non-zero number called the common ratio, i.e.

by, = bn_19,
where n — a term number, g — the common ratio. Each term of the geometric progression is given by
b, = boq",

where bg — the first term. For example
by =1,9q=2;b,=1-2"
b, =1,24,..
A geometric series is a sum of numbers in a geometric progression. That is

N-1 N-1
D ba= ) boa
n=0 n=0

where N — a number of terms. To calculate a geometric series sum, let's remember the following equation
1— N
1-¢"=0Q-9Q+q+¢*++qd" DN e1+q+q¢*+-+q"? =ﬁ

Now we can derivate the formula of the sum
N-1

_ 1—q"
bqu”=bo(1+q+q2+-~+q” D) =bo
n=0
For our example, sum of N = 5 items will be
5—-1
Zl-zn=1+2+4+8+16=1-1_25=_—31=31.
! 1-2 -1

§1.2 Complex numbers

Let's remember some points about complex numbers. A complex number is a pair of real numbers. And
complex number z can be expressed as a + bi. In this case, a is a real part of zand b is an imaginary part of
z. A mathematical form for this statement

Rez=a;Imz = b.
All complex numbers, except 0, have a polar form. We can write them like:
z =r(cos @ + jsing),
where r is an absolute value of complex number z, @ is an argument of complex number z. They are calculated
by

r=|z| =J/(Re2)? + (Im 2)2 = /a2 + b2
b
= argz = arctg —
% 8 g 2
If we remember Euler's formula

e/* = cosx + j sinx,

the polar form can be rewritten as:

z=r-el?.
§1.3 Trigonometric expressions
1.3.1 Basic formulas

Let's start with the basic set of formulas:

cos(a + B) = cos(a) cos(B) — sin(a) sin(f); sin(a + f) = sin(a) cos(B) + cos(a) sin(B);
cos(a — B) = cos(a) cos(B) + sin(a) sin(B); sin(a — B) = sin(a) cos(B) — cos(a) sin(B);

Check some of them. Let:
10



Chapter 1 Basic knowledge

Then we can write:
cos(3) = cos (£+2) =cos(2) cos(§) ~sn(3) -sn (B) = 23 -3 L =0
sin () = sin (% +2) = sin (2) - cos (£) # cos (Z) -sin(Z) =2 2+ 2. 213y

Other set of formulas can be derived from the basic ones:
cos(a — B) + cos(a + B) .

cos(2a) = cos?(a) — sin?(a); cos(a) cos(B) = !
sin(2a) = 2 sin(a) cos(a); sin(a) sin(B) = cos(a — ) ; cos(a + ﬁ);
sin?(a) = 1_%5(2“); cos?(a) = 1+ C(;s(Za);

cos(a) + cos(B) = cos(x +y) + cos(x —y) = 2 cos(x) cos(y) = 2 cos (a

)-eos (57)
cos(a) — cos(B) = cos(x +y) — cos(x —y) = —2sin(x) sin(y) = —2sin (a ; 'B) - sin (a ; B)
B a—p
)-os(“5)
sin(a) — sin(B) = sin(x + y) — sin(x — y) = 2 cos(x) sin(y) = 2 cos (a : ﬁ) - sin (a > '8)

(sin(a))' = cos(a) (cos(a))’ = —sin(a)

f cos(a) dt = sin(a) + ¢ f sin(a) dt = —cos(a) + ¢

sin(a) + sin(B) = sin(x + y) + sin(x — y) = 2sin(x) cos(y) = 2sin (a al

1.3.2 Integrals

Calculate some auxiliary integrals (assume that a€Z and T — a period):

T
. fcosl(O) dt,ifa =0 (r ifa =0
27m 0 ; e Tifa=0
— _ ) sin(2ra) — sin(0 _|hta
.[COS _<Sin(2naf )T - ( era (),ifa¢0_{0,ifa¢0
0 T . —
> Jifa =0 T
Ta
T 0
[ T
. fsinO(O)dt,ifa=0 0,ifa =0
2na 0 —
fsin (— t) dt = 4 e A (T _ ) —cos(2ma) + cos(0) ifa£0=0
; T —cos (_T t) 2na
——2| |ifa#0 T
2ma
\ T 0
‘ 2 ‘ 2
Ta T ifa =0 7T6¥ _
fcos(Tt>dt Olfd¢0’f51n t=20
0 0
1.3.3 Orthogonality
Now, let’s have a look at the following integrals
T T T
f ) (an t) ) (an t) it f (27rk t) an J‘ an (an t) it
sin|——t)sin|— ; cos | ——t ) cos sin cos T ;
0 0 0

k,1 € Z\{0}.
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The first one.

T ok 27-,_-1 TCOS 27'[(]{ D) ) cos (27‘[(1;14- D t)
f sin (T t) sin f > dt =
0 0
( T T
1] -1 dt 1f (2”'2lt)dt ifk = I
5 COS ) COS T , 1 =
0 0 T
17 _ _ {25 if ke = 41
1 21 - 21 1 , 2
—fcos(— t)dt——fcos(o-t)dt,lsz—l 0,ifk # =+l
2 T 2
0 0
0 T
\ 0,if k # 1
The second one is similar.
T T 2n(k = 1) 2n(k + 1)
f <2nk t) <2nl t) e f COS( T ) cos <_T t) e o
cos {——t ) cos { = 5 =
0 0
(.7 T
1f o t)dt+1f (Zn'ZIt)dt ifk = |
5 | cos 5 | cos{— Jifk =
0 0 T
o7 r ziﬁ,ifkﬂ_rz
1 2w - 21 1 .
—fcos(— " t)dt+—fcos(0~t)dt,ifk=—l 0,if k # £l
2 T 2
0 0
0 T
0,ifk =1
The third one looks different.
T T 27'[(]( D . (2n(k+ 1)
-[ ) (27Tk t) 27rl fsm ) 1n( T t) dt =0
Sin T COS ) =
0 0

As a result, we have

T .

f . (ant> . <2nlt>dt_ 07,11fk¢il |
PP T g it = w0
0

0,ifk + £l

T

J‘ (ant> <2nlt> I e =
coSs T coSs T = E,ifk=il

0

This all means that functions like:
2rtk 2ml
sin (T t) and cos (T t) ,ifk # land k,l € Z\{0}
are orthogonal.
§1.4 Linear operators

An operator — a transformation of one set into another. A linear operator — an operator that fulfills the
next statement:
forV i,y A u
12
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A(Ax + py) = AA(X) + pA(d)
where A — an operator. Remind some basic information about linear operators.

Operation definitions:
1. (A+B)x = Ax + Bx
2. (AA)x=1-Ax
3. (AB)x = A(Bx)

Properties with constants:
1. (aB)A = a(BA);
2. A(AB) = (A4A)B = A(AB) (associative multiplication).
3. (a+ B)A = aA+ BA (distributive property);
4. a(A+ B) = aA + aB (distributive property);

Properties with operators:
1. A+ B =B + A (commutative addition);
2. (AB)C = A(BC) (associative multiplication);
3. (A+ B)C = AC + BC (distributive property);
4. A(B + C) = AB + AC (distributive property);

In general case, commutativity of multiplication is not performed, i.e. AB # BA. However, for symmetric
linear operators (i.e. that have symmetric matrices) is that — AB = BA. We can show it. Symmetric operator is
a bilinear operator that satisfy definition that for any vectors x and y

Al y) = A %) © (A% y) = (§; A%)
Then
(AB%;y) = (A(B%); ¥) = (Bx; Ay) = (%; B(Ay)) = (X; BAy) & AB = BA

In our course, discussed systems will have this symmetry property and, as consequence, the

commutativity of multiplication (AB = BA).

§1.5 Convolution
1.5.1 Linear convolution

A convolution is defined by means of formula
+o00

y(®) = (h* 0)(0) = j h@x(t - D

That is, a convolution is a mathematical operation over two functions x(t) and h(t) producing the third function
y(t). The convolution is designated by asterisk ("*"). It is seen from the definition that the convolution is a
linear operator because the linearity is performed
(h* (ax + By))(©) = a(h* X)) + B * y)(©)
due to the linearity of integral. Also it can be noticed that the convolution is symmetric, that is
(h*x)(t) = (x x h)(t)
Let's look at this

+o00 — 00 +o00

(h*x)(0) = f h(@)x(t - D)de = |t —7 > piT > t —p| = f x(ph(t — p)d(t — p) = f ()t — p)dp

= (x*h)(¢)

The classic example is a convolution of two rectangular functions

13
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_ _(lfor|t|<a
h(t) = x() = 0 for |t| > a

Function h(t) and its convolution illustration are depicted in Figure 1.1 and 1.2 respectively.

x(®) ]

-a a
Figure 1.1 — A function x(t)

x(t) x(t)

a) Q

x(® x(t)

t t
a -a a
b) d)
Figure 1.2 — The convolution illustration (a) t<-a (b) —a<t<0 (c) O<t<a (d) t>a
Ofort < —2a
t+a
+oo a t+a fdrfor—2a5t<0
() = (h*x)(t) = f h(r)x(t — T)dr = fx(t—r)dr - f x(Ddr =1 -
e @ t-a j dr for0 <t < 2a
t—a
\ 0fort > 2a

{ 0 for |t] > 2a

— < = - < =
t+a+afor —2a<t<0 2a+tfor —2a<t<0 2a — |t| for |t| < 2a

a—t+afor0<t<2a 2a—tfor0 <t <2a
The result of the calculation can be presented as in Figure 1.3.

z 0 for |t| > 2a { 0 for |t] > 2a

14
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N
y()
2d
> t
-2a 2a
Figure 1.3 — Convolution result
1.5.2 Cyclic convolution
If xr(t) and hr(t) are periodic functions with period T, i.e.
+00 +oo
xXp(6) = Z x(t —kT) = Z x(t + kT); hy(t) = Z h(t — kT) = Z h(t + kT),
k=—o0 k=—c0 k=—o0
where x(t) and h(t) are aperiodic functions, then
Circular convolution
+00
(h#xp)(0) = f h(@)xr(t — D
Periodic convolution
to+T
(hr * x7)(t) = f hy(©)xr(t — T)dz
to
Equivalence
(h*x7)(t) = (hy * x7)(t)
Prove their equivalence.
to+T to+T 4o too Lo+T
(hy * %) () = J hy (Dxp(t — )dT = f Z h(t + kT) xp(t — )dt = Z f h(t + kT)xp(t — T)d7
to k=—c0 to
T+ kT > p +oo t0+kT+T +00
=|t>p—kT|= h(p) xp(t —p + kT)dp = f h(p)xr(t — p)dp = (h* x7)(¢t)
dt — dp k=—00 t,+kT xr(t-p)

In other words, a linear convolution of periodic functions is equal to a periodic convolution for their common
period.
§1.6 Fourier series

If a function is periodic, we can expand it into a series of harmonic functions (sine and cosine). Such a
series is called a Fourier Series (FS). For periodic function x7(t) with a period T the Fourier series is described
with following formulas

Fourier Series
+ 00 T
ot 2mk 1 it
xp(t) = z cre!kt; wy = T k=T xp(t) e 7@kt dt
k=—o0 0

15
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Fourier Series coefficients represent magnitude and phase of corresponding frequencies. Let's have a look at

an example. Let

) 2mm
t) = sin(w,t) ; Wy = ——

©) = si (2nm
xr(t) = sin|—

Calculate coefficients of the Fourier Series (remember results from §1.3.3).

T T T 1T
_l i —Jjoxt —l ' _-l ; : _)Hj=- =z ifk=1m _
Cx = T sin(w,,t) e 7@kt dt = T sin(wy, t) cos(wyt) dt — j T sin(wy,t) sin(w,t) dt = T 2 =
0 0 0 0,ifk # +tm
0 ig
.1
_ {+]§,1fk =+m
0,ifk # tm
For the cosine function, it will be
T T T 1T
_1 ot gy — X 1 . _ =S ifk=4m
Cx = T cos(wpyt) e 19kt dt = T cos(wpt) cos(wyt) dt _]T cos(wpt) sin(wgt)dt =3T 2
0 0 0 0,ifk # +m
T 0
2
! ifk =+
fpite =
0,ifk # +tm

§1.7 Integral Fourier Transform
1.7.1 Definition

The Integral Fourier Transform (IFT) helps us to know a magnitude and a phase of frequencies in our
signal. It performs a transformation from a time domain into a frequency domain and back.

Direct Integral Fourier Transform (Direct IFT)

Hm=fvan=ffvwﬂww

Inverse Integral Fourier Transform (Inverse IFT)

ﬂo=fﬂwwn=%;jF@ywww

The Direct IFT provides us a complex function of a frequency. The Inverse IFT provides a complex (in
general case) function of time.

1.7.2 Spectrum of signal

A spectrum is a signal representation in the frequency domain. To get this representation, Fourier
Transform is needed. To put it simply, F(w) is a spectrum density function or just a spectrum. As F(w) is a
complex function, the spectrum is described by means of two characteristics: magnitude and phase.

The simplest example for a signal spectrum is a spectrum of a harmonic function x(t). The harmonic is
shown in figure 1.4 and has amplitude 1 and frequency fo. Its spectrum X(f) (magnitude and phase) is
presented in figure 1.5; there is a tone at frequency fo with magnitude value 0.5 and phase value -m/2.
Calculation is the following
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+00 +o0 too . ;
e]wot — e—Jﬂ)ot

j f(t)e_jwtdt= J sin(a)ot)e‘f“’tdt: f z—je_jwtdt

= =
_ L[ wewreg - L f pmi(@or@)t gy — §(wg — w) — 6(wp + w)
2j 2j 2j

= —%(6((»0 —w)—6(wy + a)))

(We discuss Dirac delta function more detailed in §1.10.)

TR

Figure 1.4 — A sine function x(t)

N

x(t)

1 4

WV
~

XOIT
a1
LT
~fo fo > 1
arg X(f)’
I /2 +
fo
f l > 1
-2+

Figure 1.5 — A magnitude and a phase of x(t)

Best practice for the FT calculation is to evaluate a constant level (by averaging all samples) and subtract
it from the signal. In most applications, the constant level doesn't carry information, so there is no need to
represent it in the spectrum. Also note that a real signal spectrum is symmetric: the magnitude is symmetric,
the phase is anti-symmetric.

1.7.3 Properties
1. Linearity

It can be seen from Fourier Transform definition that the next statement is true:

Flax(®) + py(©)} = aF{x(©)} + BF{y(®)}
for all x(t), y(t), o, B. It means that Fourier Transform is a linear operator and has all its properties.
2. Invertibility

17
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Declaration
The Fourier Transform is also an invertible operator. That is:
FHF{x(®©}} = x(©) and F{F X (w)}} = X (w).
Proof

" . 1 .
F@) =FU©) = [ f@e e f©) = FHF@) = 5= [ F@edo

400 [es) + o0 +0oo
1 . 1 . . 1 .
f(x)=% f F(w)ef“’xdwzﬁ f f(e tdt ela’xdw=% f f(@®) f eloC=qe dt

(o]

26 (x—t)
- [ r®-s6-va =1

1.7.4 Sine and cosine transforms

Fourier Transform has sine and cosine forms. Let’s look at them

F(w) = f F(t)e—Totde = f F(£)(cos wt — j sinwt)dt =

= j f(t)coswtdt —j j f(®)sinwtdt = F.(w) — jF(w)

where F.(w) — the Fourier cosine transform, Fs(w) — the Fourier sine transform, and their formulas:

F.(w) = f f(t)coswtdt; F;(w) = f f(t) sinwt dt

For an even function f(t) the Fourier cosine transform can be simplified:

+00 0 +0o
F.(w) = -[ f(t) coswtdt = ff(t) coswt dt + f f(t) coswtdt =
0 - _-Eooo 0+oo
= _[f(—t) cosw(—t)d(-t) + f f(t) coswt dt = f f(t) coswt dt +
+o0 0 0

+00 +oo
+f f(t) coswtdt = Zf f(t) coswtdt
0 0
That is:
+00
F.(w) = Zf f(t) coswtdt
0

The same story with an odd function f(t) and the sine transform. The Fourier sine transform can also be

simplified:
+00 0 +coo
F(w) = J f(t)sinwt dt = ff(t)sina)tdt+f f(t)sinwtdt =
0 - _-:ooo O+oo
= jf(—t) Sinw(—t)d(—t)+f Ji6) sina)tdt=f f(t)sinwt dt +
+o00 0 0
+ | f(®)sinwtdt =2 | f(t)sinwtdt
| |
That is:

18
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+00
F(w) = Zf f(t) sinwt dt
0

1.7.5 Shifting theorem

Declaration
Now we discuss what happens with a spectrum of a time shifted signal. Shifting theorem states that

y(t) =x(t—1) o Y(w) = e /7. X(w)
Y(w) =X(w—1) & y(t) = /T - x(2).
Proof
Assume that our original signal x(t) is shifted in time by T. It can be written as:
y(@) = x(t —7);

And we know that:
Fly®)} =Y (w); Fix(®)} = X(w)

Do FT from both sides:
Fly@®)} = F{x(t — 1)}
+00

+0o

+00
Y(w) = f x(t—1e®dt=|t—t>p;top+1|= f x(p)e 1e@Id(p + 1) = e JT f x(p)e™/“Pdp
=e 9T . F{x(t)} = e /T - X(w)
That is:
Y(w) = e 79T X(w)
For inverse FT it will be similar:
Y(w)=X(w-10)
FHY ()} = F{X(w — 2)}
+00 +oo
() = f X(w — D)e/otdw = e/t f X(p)ePtdp = % . F-1{X(w)} = 2 . x(¢)

y(®) = e - x(t)

Here we see that real signal transforms into complex signal (spectrum now is not symmetric). We discuss such
signals in Chapter 10 Analytic signal.

1.7.6 Theorem of convolution

Assume that:

Fly(©)} =Y (w); Fix(O} = X(w); F{h(8)} = H(w)
Then next equivalences are performed:
y@®) = (x+h)@) < Y(w) = X(w) - Hw)
Y = X0 h1) © V(@) = 5= (X + H)@)
Let's prove it. Start with the first equivalence:
+00

() = (c* B)(D) = j *(t — Dh(r)dr

—00
400 +00

Y(@) = FO©) = Fl(x * ()} = j f x(t — Dh(D)dr et dt =

—00 —00
+ 00

= J h(r)( J x(t—1) e‘j“’tdt> dt = f h(1) - e 7°7 . X (w)dt = X(w) f h(v)e 7*%dr = X (w) - H(w)

— 0o — 0o — 0o

The second equivalence:
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+ oo

Y(w)=Xx*H)(w) = f X(w—N)H(2)dn

— 0o

+00 +00
y(©) = FYY ()} = F {— (X*H)(a))} — f f X(w — DH(2)dQ eI dew =
1 1 wt it 1 v jQt
=5 f H(2) o f X(w—0)e/*dw dQ—— f H(2) - el - x(t)d2 = x(t) - — f H(2)e/**tdn
= x(t) - h(t)
1.7.7 General formulas
Declaration
If f(t) & F(w), then the following equivalences are correct:
1. df(t)<—>] F(w)
2. f f(t)dtHF(“’)
Proof
Initially we know that:
+00
1 )
R jowt .
FO) =5 f F(w)el® de
1. Differentiation
+00
df (t d( 1
%):E > f F(w)e/®tdw =—f (F(a))ef‘"t)dw—— f joF(w)e!®tdw = FY{jwF(w)}
2. Integration
1 +co 1 +ooF( ) F( )
ff(t)dtzf -[ F(w)e/®tdw |dt = — f fF(w)efwtdt>d .w e/vtdw = F~1 {_a)}
21 27‘[ jw jw
3. Scaling
+00
_[ flat)e T@tdt = |at—>p,t—>§ dt—>—| f flp )e_]“’_ j f(e'a pdp—— (%)

§1.8 Laplace Transform
1.8.1 Definition and properties
Definition
Fourier Transform gives us information only about homogeneous in time processes. To analyze
transition processes in a linear system, it needs to perform the Laplace transform.

Direct Laplace Transform

F(p) = L{F(D)} = f F(OePtdt
0

Inverse Laplace Transform
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Op+joo

1
FO = L7 0) = 7 f F(p)ePtdp

gp—Jj

where 0o — an arbitrary real number, p — a complex variable that is written usually as

p=0+jw
The Laplace transform simplifies solving of differential linear equations by means of conversion them into
regular linear equations.

Properties
3. Linearity

As we can see from the definition, the Laplace transform is a linear operator, because

L{ax(t) + py(®)} = aL{x(t)} + BL{y(t)}
4. Invertibility

This transform like the Fourier Transform is also invertible
L7HLF O = f@©); L{LHF®)}} =F(®)
5. Theorem of convolution
The same theorem of convolution is fulfilled for the Laplace Transform:

y(@®) =@ +h)@) o Y(p) =Xp) H(p)
1
y() =x@)-h(t) « Y(p) = 2_7TJ'(X *H)(p)

1.8.2 Impulse response and transfer function
For linear systems, we can define a transfer function T(p):

Y(p)
T(p) = XY
where X(p) — the Laplace transform of the input function, Y(p) — the Laplace transform of the output function.
In other words, the output of our system can be calculated by:
Y(p) =T(p) - X(p)
By theorem of convolution, it is equivalent to:
y(&) = (x*h)(®)

where h(t) — the inverse Laplace Transform of T(p) or an impulse response h(t).
+00

T(p) = _[ h(t)e Pldt
0
If the input is a delta function, then

y(t) = f 6(t — )h(t)dt = h(t)

In other words, the output will be equaled to the impulse response, if the input is a delta function. Let's
designated the following integral as A

To h(t)dt =A

A corresponds to the output of the system, if the input is a unity valued constant level. So that A™ corresponds

to a transfer coefficient for the constant level:
1 1

—=————=T(0).
A
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1.8.3 Poles and stability
Typically, the transfer function is a fraction of polynomials
IO
Bp) ¥ ap

Let p« are roots (also called as poles) of the polynomial B(p). Then

T(p)

A(p)
G R e —
k=o(® — P1)
The Inverse Laplace transform from this expression will be
K
h(t) = Z crePrt;
k=0

where ¢« — coefficients obtained by the Inverse Laplace transform. Now, analyze different cases for pi. These

cases are shown in figure 1.3.
jw h(t) jw h(t)

\ - {\(\/\

o t 4 UU\/V t

x T jwo

0<0,jo=0 0<0,jo=*jw,

jw h(t) jw h(t)

Ik
a S PR 11

o0=0,jo=0 0=0,jo=Zxjw,

jw h(t) jw h(t)

[ /\/\M

T jwo X

0>0,jo=0 0>0,jo=*1jw,
Figure 1.3 — Different cases of poles and their impulse responses

e If 0<0(a real part of pi), then an impulse response h(t) approaches zero and system is stable;

e If 0=0, then h(t) is constant and system is conditionally stable;

e If 0<0, then h(t) approaches the infinity and system is unstable.
Thus, if all poles of a transfer function are located in the left half of p-plane, then the system will be stable. If
there is a pole in the right half of p-plane, then system will be unstable. Also note that transfer function with
real coefficients always has conjugated pole pairs.

§1.9 Z-transform
1.9.1 Definition

The Laplace transform helps to analyze continuous time system. What about discrete time system? For
this purpose, there is a Z-transform.
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Direct Z-transform

H@) =2} = ) hz™,

n=-—oo

Inverse Z-transform

h(n) =2 Y{H(2)} = %% H(2)z" 'dz
C

where H(z) — a transfer function of a discrete system, z — a complex variable, C — a counterclockwise closed
path encircling the origin and entirely in the region of convergence (ROC). The complex variable z™, like ™,
is a general form of discrete equation solution. As we can see from the definition, the linearity property for
Z-transform is performed, so Z-transform is also a linear operator.

A special case of the contour integral in the Inverse Transform occurs when C is the unit circle. This
contour can be used when the ROC includes the unit circle, which is always guaranteed when H(z) is stable,
that is, when all the poles are inside the unit circle. With this contour, the Inverse Z-transform simplifies to
the Inverse Discrete-Time Fourier Transform, or Fourier series, of the periodic values of the Z-transform

around the unit circle:
+00 oo

1 , . . 1 . , ,
h(n) = Z—T[J f H(e]wts)e]wts(n_l)d(e]wts) = 2_7.[] f H(e]wts)e]wts(n_l)e]wtsjtsdw

+ 00

1 . ;
=5 H(e/®%)e/m@ts d(wty).

1.9.2 Connection with other transforms

Variable z may be represented as

z=ePls; t, = 1
S
where f; — sampling frequency of a discrete system. We remember that:
p=0+jw
Then

z=ePls; t, =—
S
and
T

(o+jw)ts — Loty . pjot jwt
z = e\9HWls = gdts . o)Os = yel®ls; |z| = r;argz = wt,

H(rej“)ts) = Z h(n) -z ™" = Z h(n) - (rejwts)_” — z (h(n)r~") - e~inwts

If r =1 (o =0), then

+00
H(es) = H'(jw) = ) h(w)e™nes
n=-—oo

It is a Discrete-Time Fourier Transform (DTFT). Y-axis (where o = 0) from p-plane transforms to a unit circle
on z-plane (figure 1.6). The left half of p-plane (where ¢ < 0 and r < 1) transforms into interior part of the unit
circle, the right half of p-plane (where ¢ > 0 and r > 1) — into outer part of the unit circle.
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Almz

Figure 1.6 — A unit circle on the z-plane

Thus, if poles are inside the unit circle on the z-plane, then your system is stable; if there is at least one pole
outside the unit circle — your system is unstable.

As wt; — an angle on z-plane, z is periodic by frequency. Let's find this period:

2 1
wrts =2 © 2nfr=—© fr=—=f;
tS tS
Thus, sampling frequency is a period of z and, as consequence, of H(z). Magnitude and phase responses of
such a system (discrete-time system) is periodic by frequency with period equaled to sampling frequency.

If we choose interest interval as (-, ], then:
T T fs fs
ts€E(—m ] o2 E(——;—]@ E(——;—
We may choose any another interval with length f;, but this interval is more convenient for us.
§1.10 Dirac delta function
Definition

Delta function is a function that satisfy the following statements:

+o00, x =0
« s={"" 0

. fjoc: S(x)dx = 1.

Properties
1. Filter property

+00

f)é(x)dx = £(0)

In general case for any shift T:
+00

f)8(x —T)dx = f(T)

— 0o

2. Discrete case

For the discrete case, the definition of the delta function transforms into
1, n=0
5(”)‘{0, nz0 €L
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3. Unit and scaled delta function

Let's take unit step function (figure 1.7). Take a derivation in point 0.
_(1fort=0
10 = {0 fort <0

N f(t)

AN

1
N
7
0 t
Figure 1.7 — A unit step function f{(t)
A unit step function derivation gives a delta function and: for t > O:
t +co
f d(x)dx = f(x)dx =1
There is an issue with scaled unit step function, it is shown in figure 1.8.
A f(t)
a
N
7
0 t

Figure 1.8 — A scaled unit step function f(t)

Formally, its derivation is the same: just a delta function. But if we take integral, we won't get a, we will also
get 1. To solve this confusion, it is accepted to write down the such derivation as:

d
—];Et) =ad(t)

Then (fort > 0)

+ oo

t
f ad(x)dx = a 6(x)dx =a

—00

Take into consideration this example, we will assume that in point O a delta function is equaled to 1.

4. Spectrum

Spectrum S(w) of delta function is:
+00

S(w) = S(t)e Jotdt = e J®0 =1

— 00

So that it is independent of frequency. Delta function can be present by inverse Fourier Transform as:

25



Chapter 1 Basic knowledge
+00
5(¢t) =i f S(w)el®tdw =i f el®tdw
2 2

5. Fourtier series
Let's assume f(t) that is repeating delta functions with period T:

f©= ) 8@—kT)

k=—o0
As f(t) is a periodic function, we can expand it in a Fourier series:
+00
2T
f(t) = Z cp el T
k=—o0
where ¢y is:
T
1 H i 1 1 1
2T 2T
=— | §()e T dt = f Se /Tt ==.e /T =_.1=2
=7 fT (t)e (t)e e Sl=r
Then
<« 1 21
t) = - ]Tkt _ Tkt
fo=) = =) e
k=—00 k=—c0
Finally, we got that:
+o00
1 21
Z§(t—kT)=? e/ T
k=—o0 k=—o
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Chapter 2 Discrete sequences and systems

§2.1 Introduction

Let's start with understanding what digital signal processing is. A digital code — a code presented by
means of digits. Signal processing — a transformation of a signal. Thus, digital signal processing - a
transformation of a signal presented with numbers by arithmetic operations.

How can we get a signal presented with numbers? This process is illustrated in Figure 2.1. At first, we
have some analog signal s(t), which is continuous by time and by value. It goes through N-bit analog-to-
digital converter (ADC) with sampling frequency f;. The output of the ADC is a discrete sequence of numbers
x(n). The discrete sequence x(n) is discretized signal s(t) by time and by value.

s — ADC p—xn)

s(t)

0t; 1t; 2t nt
t t

Figure 2.1 — Analog-to-digital conversion of signal s(t) into discrete sequence x(n)

Interval between x(n) samples equals sampling period t. Relation between sampling period and
sampling frequency fs is obvious

Sampling frequency determines time resolution, bits number of the ADC determines value resolution.
Hereinafter, we will neglect quantization error and consider that samples exactly equal signal values, i.e
x(n) = s(nt,).
Sometimes, you can find such an expression

+00
Xeone(8) = 5(8) D 8t~ kt)
k=—o0
but it is not a sequence of samples (xcont is @ continuous-time function) and it is not the output of the ADC.
The output of the ADC is a sequence of index n. Such an expression is used to get continuous-time (analog)
representation of the sequence x. Taking into account that delta function equals zero almost everywhere, we

can rewrite the expression above as

Xcont(t) = s(t) 6(t — kts) = s(ktg) - 6(t — kty).
©=x0, 2 2= ),

We got discrete convolution of s and 6. As we know, from the theorem of convolution
y() = (xxh)(t) © Y(w) = X(w) - H(w)
Spectrum of the delta function is unit-valued frequency independent function.
s+ 8)(®) = S(@) - Aw) = S(@)
1

Thus, such a representation xcont Of a discrete sequence does not change the spectrum. In terms of spectrum,
Xcont(t) @and x(n) are equivalent. In particular, this representation is assumed in Discrete-Time Fourier Transform
(83.2).

27



Chapter 2 Discrete sequences and systems
§2.2 Operations on discrete sequences

In digital signal processing, there are only several operations available. By combination of these
operations, all transformations are done. These three main operations are illustrated in figure 2.2. They are
= Sequence summation;
= Sequence multiplication;
= Delay unit (memory cell).

a m C
N

c=a+b

b

a(n) ——{ Delay —— b(n)

b(n) = a(n-1)
Figure 2.2 — Operations in digital signal processing

In analog processing, we know the next processing blocks: amplifiers, adders, mixers, generators,
detectors and filters. In digital signal processing, their functions can also be done, namely:
= Amplifier —a multiplication of sequence by a constant;
» Adder - sequences summation;
* Mixer — sequences multiplication;
» Generator — a source of a determinate sequence;
» Filter — a digital filter;
» Detector — a Hilbert converter (digital filter) with an envelope selection.
All these devices, except digital filter and detector, have obvious realization.
Virtually, any transformation in DSP is done by means of a digital filter. Any combination of summations,
multiplications and delays is a structure of some digital filter. That is, a digital filter is not only a frequency
selection device, but a transformation device in general.

§2.3 Unit delay element

Look at a unit delay element (Figure 2.3). We know a relationship between the input and the output for
this element:

y(n) =x(n—1).
Do z-transform from the output:
+o0 +o0 +o0 +o0
Y(z) = Z y(n)z ™" = Z x(n—1)z" = Z x(m)z=Mm+1) = z-1 Z x(m)z™™ = z71X(2)
n=—oco n=—oo m=—oo m=—oco

It means that a unit delay element has a transfer function equals to z'. Therefore, both representations
depicted in Figure 2.3 are equivalent.

zZ' > bn)

a(n) Delay —— b(n) a(n)

b(n) = a(n-1) Bz)=z" A®@
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Figure 2.3 — Two ways of representation for a unit delay element

§2.4 Systems in digital signal processing
2.4.1 Discrete linear systems
Definition
Discrete linear system (DLS) — a discrete system that is a linear operator for an input-output transform.

For example, The Fourier Transform is a linear operator. So that, a device performing Fourier Transform
with discrete sequences is a discrete linear system. But systems that perform such functions:
y(m) = lx(m)|; y(n) = x*(n); y(n) = sinx(n)
are nonlinear, and linearity property is not executed. The output signal of such systems will have a distortion,
that is spurious spectral components.

2.4.2 Time-invariant systems

Except linear systems, we are also interested in another independent class of systems — time-invariant
systems. Time-invariance means that a time shift of the input signal cause the similar shift of the output signal.
If input sequence x causes output sequence y, i. e.

x(n) = y(n),
then we can write the time-invariance property as
x(n+k) - yn+k).
And for time-invariance systems, it is true for every k. In other words, a time-invariance system is invariant for
a time reference point. As an example, look at the system, where
y(n) = ax(n).

The input and the output test signals are presented in Figure 2.4. Shifting the input signal x(n) by a
quarter period similarly changes shifting in time of the output sequence y(n).

x(n) y(n)

N

RN ”

Figure 2.4 — A system response before (top) and after (bottom) time shift

It should be noticed that for time-variant systems an impulse response cannot be unambiguously
defined. This is due to dependence of the output response from the initial time shift. From this point, time-
variant systems are similar with nonlinear systems, where the output response depends on an absolute value
of the input.

2.4.3 Discrete Linear Time-Invariant (LTI) systems
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Chapter 2 Discrete sequences and systems
Combination of two mentioned independent properties (linearity and time-invariance) gives us a very
convenient class of systems — discrete Linear Time-Invariant (LTI) systems.

Properties of discrete time-invariant linear systems

1. Linearity (superposition)

Assume that every input sequence has corresponding output sequence:

xx(n) = ye(n)
Then a linear combination of the input sequences corresponds to the same linear combination of the output
sequences:
x() = ) @) - y() = ) @y

2. Convolution with impulse response

For LTI systems, impulse response is extremely important. If we know the impulse response, we can say
that we know everything about our system behavior. In other words, it is possible to know the output signal

for every input signal, because the output signal can be calculated as a convolution of the impulse response

and the input signal. For LTI, it will be:
K-1

y) = ) k() - x(n k),
k=0

where y(n) — the output sequence, x(n) — the input sequence, h(k) — the impulse response, K — the length of
the impulse response. This relation is possible due to the properties of LTI system. In nonlinear systems
response depends on an absolute value of the input, in time-variant systems it depends on time when
sequence starts. In LTI systems both dependencies are absent, impulse response is unambiguity and can be
applied with any input signal.

Let's proof that combination of linearity and time-invariance allow us to use convolution for getting
output response. Let our system be an operator A that transforms space of u to space of t, i.e.

y(@) = Afx(w); ul.

Due to linearity the following statement is true

+0oo +00
A, fc,-x(u)dr;u = f ¢ - Afx(u); ulde

Due to time-invariance the following statement is true
y(t —1) = A {x(W) u}t = Af{x(u — 1) u}
Impulse response in this notation will be
h(t) = A{6(w); u}
Thus, the convolution is

x* h(t) = f x(1) - h(t —1)dt = f x(1) - Ap—{6(w); uldr = f x(1) - Ae{d(u — 1); ulde

= A; f x(t) - S(u—T1)dt;up = Af{x(w); u} = y(t)

3. Commutativity
For LTI systemes, it is possible to change their order without affecting the output sequence (Figure 2.5).
This is a consequence of the previous property. Let's prove it. Consider
x*hy(6) =y;;0 % ha(0) = y'1;01 * ha(B) = 2
then
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Ya(t) = y1 % By (t) = j ha(2) - y1(t — T)dT = f ha(2) - fhl(m-x(t—r—p)dp dr
- f fhz(r)-hl(p)-x(t—r—p)dp dr = f () - fh2<r)-x<t—p—r)dr dp

- f h(®) - ¥'1(t = p)dp = 'y * hy (D).

x(n) —— LTI #1 LTI#2 +—— y(n)

>

x(n) —— LTI#2 LTI#1 —— yn)

Figure 2.5 — Commutativity property
§2.5 Real-time systems

Real-time system — a system that guarantees a response for each input sample at a fixed time interval.
A real-time system may have a delay for an input action, but this delay is guaranteed and fixed. A typical real-
time system has equal rate of input and output data streams, and each new input sample changes an output
sample. An exception is systems for sample rate conversion. Systems that imply block processing (like
microprocessors or CPU) are not inherently real-time systems. However, they can function as real-time
systems if they are capable of processing a data block at least N times faster than input rate (N — a block size).
For example, CPUs can process audio signals in real-time due to high performance in comparison with audio
stream rate.

§2.6 Complexity metrics

In comparison with digital systems, typically, we are interested in performance, power consumption and
hardware costs (or area). From all the mentioned operations (summation, multiplication and delay),
multiplication block is the most complex one. It requires plenty of logic gates, which results in more area,
power consumption and time for processing signal. Thus, we will evaluate the complexity and performance
of digital systems by multipliers number.
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§3.1 Ambiguity of signal presentation

Let's take a discrete sequence x(n) that is illustrated in Figure 3.1 and try to restore a harmonic signal
x(t). One person may see here harmonic signal with one period, another — with 3 periods. These situations are
shown in Figure 3.2. And both variants are absolutely right without any additional information about the
signal x(t).

x(n)

Figure 3.1 — A discrete sequence x(n)

x(n)

Figure 3.2 — Two different signals correspond to the sequence x(n)

It means that a discrete sequence without an additional information may represent an infinite number
of frequencies. Let's determine this frequency family. At first, take a discrete sequence as

x(n) = sin(2rfynt,)
Add up 2ntm (m<Z) to the phase. It doesn't change the sequence, so
x(n) = sin(2rfynt,) = sin(2nfynts + 2mm) = sin(Zn(fontS + m)) = sin(Zn(fOnts + mfsts))
m
= sin (27r (fo + ;fs) nts).
From here, we see that each sample of x(n) corresponds to the family with frequencies
m
fo+ ;fs-
To determine the family for the whole sequence, we need to exclude a family dependence of the sequence

index n. For this, we choose m = kn. Then
x(n) = sin(2r(fy + kfs)nts)
Thus, the discrete sequence x(n) corresponds to signals with frequencies
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fo + kfs.

Such a family is demonstrated in Figure 3.3. This correspondence between the discrete sequence and the
frequency family means that a spectrum of a discrete sequence is periodic. A spectrum repetition period is f..
The images corresponded to k # 0 are called aliases.

X

| | | N
T T

-fs f+fo O fo fs fo+fo 2f f

Figure 3.3 — A frequencies family represented by the sequence x(n)

§3.2 Discrete-Time Fourier transform

We already know several instruments for getting a spectrum, namely: The Fourier Series and Integral
Fourier Transform (IFT). But they have a requirement — function must be continuous in time. As a result, we
cannot use them for discrete sequences. Therefore, we need other instrument that is capable to operate with
discrete sequences. Such an instrument is called the Discrete-Time Fourier Transform (DTFT).

Direct Discrete-Time Fourier Transform Inverse Discrete-Time Fourier Transform

Ws
+o0 1 2

X(w) = Z x(n) - e J@NLs x(n) = o f X(w) - e/Msdw
n=-—oo S ws

2

This transform can be obtained from the Integral Fourier Transform. The IFT requires a continuous-time
function, so we use the continuous-time representation of a discrete sequence from §2.1.

+ o0 + o0 + oo
Xeone(®) = 5(8) ). 8t —kt) = D slkts) -8t —kt) = D x(k)- (¢~ ke)
k=—o0 k=—c0 k=—c
If we apply the IFT to Xcont, we will get
+00 +0 t+oo + 00 +o
X(w) = j Xeont(£) - e~ I¥tdt = f Z x(k) - 8(t — kty) - e~iotdt = Z x(k) j 5(t — kt,) - e~J@tdt
—0 —o0 k=— k=—o —o0
+oo +00
= z x(k).e_jwkt5= z x(k).e_jwkts.
k=—o0 k=—oc0

Thus, we get the Direct DTFT expression. Note, a spectrum of DTFT is periodic with period ws, i.e.
X(w+ kwg) = X(w), keZ.
A Home exercise: check that spectrum is periodic.
The spectrum of the DTFT will be discussed in detail in the next section.

§3.3 Discrete sequence spectrum
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From the previous sections, we have learned a relation between a continuous signal s(t) and its discrete
sequence x(n) and known that X(w) is periodic, i.e.
s(nts) » x(n); X(w + kw) = X(w), keZ.
But still there is a question. What is relation between spectrums S(w) and X(w)?
S(w) 4 X(w)

To know it, let’s calculate X(w) using DTFT.
+oo +00

X(w) = Z x(n) - e~Jonts = Z s(nty) - eJ@nts

n=-—oo n=-—oo

Present s(t) using its Inverse Integral Fourier Transform (see §1.7.1)
1 ) 1 .
S(t) = — f S(Q) . e]ﬂ-tdﬂ SN S(nts) - f S(Q) . e]ﬂntsdﬂ
21 2

where 5(Q) — the original signal spectrum. Then
+00 +00 +oo

. 1
Z S(nts).e—ﬂunts: z 27-[ f S(.Q) e}QntsdQ .e—ants__ f S(Q) Z e](ﬂ w)ntsdﬂ

n=—oo n=—oo —0 n=-—co

From §1.10 we know that

+00 1 +00 .
2 8(t —kT) = = Z I THE
T
k=—o00 k=—o0
So summation of exponents can be replaced by
+0o0 +00
Z e/ (Q-w)kts — ¢ Z 5 —w—kw,)
k=—0o0 k=—o0

where

2n
t<—>Q—w;k<—>k;?<—>ts;
2m

T & —=2nf; = wy
ts

Using this, we get

— f S(Q) - Z e/ @ w)”fsdn—— f S(Q) - ws Z 5(Q — w — nwy) dQ

n=-co Nn=—oo

_—JS(Q) 26(9 a)—na)s)dﬂ—z Z fS(Q) 5(Q— w —nws)dQ

n=-oco n=—o —o
+oo
2 5 st n
= w nw
2 s
k=—o0

Finally, the result is

+00
)
X(w) =ﬁ Z S(w+nws),neZ

n=-—oo

It means that spectrum of a discrete sequence is a summation of periodically repeating original signal
spectrum. This effect is illustrated in Figure 3.4.
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Figure 3.4 — The result of a spectrum summation after sampling

§3.4 Signal reconstruction

We have discussed aspects concerning transition from continuous-time signals to discrete sequences.
What about inverse transitions? That is, we want to reconstruct a continuous-time signal r(t) from a discrete
sequence x(n). How can we do this? Will r(t) be equal s(t)?

To make a reconstruction, we need some reconstruction function h(t). Virtually, we have already done
a reconstruction by means of the Dirac delta function for xcont(t) in §3.2. In general case, a reconstructed signal

r(t) will be a function defined as
+00

r@® = Y x(0)-h(t - kt)) = (x+ H)(O.
k=—c0
Thus, h(t) can be interpreted as an impulse response of a reconstruction device. What about spectrum? By
the convolution theorem, we get that
R(w) = X(w) - H(w).
Take as an example a digital-to-analog converter. Typically, it has a rectangular reconstruction function.
Example of corresponding convolution is illustrated in Figure 3.5.

N
x(n)
) ) II ) ) ) I T ) : >
h(t) * n
1
s(t)| _ t
ts /t

Figure 3.5 — Reconstruction function an ideal DAC
A Home exercise: get spectrum of the ideal DAC.
§3.5 Sampling low-pass signals

In this paragraph we talk about low-pass signals, i.e. signals having the most their energy around 0
frequency. Consider frequency range of interest from -f;/2 to f;/2, which is known as "baseband”. In general
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case, we can consider any frequency range having width f.. Look at a spectrum of a low-pass signal with
bandwidth B (Figure 3.6). This spectrum is symmetric because of the properties of a real signal.

X

-B 0 B f

Figure 3.6 — A spectrum of a low-pass real signal

If we sample this signal with a sampling frequency f;, we will get a spectrum illustrated in Figure 3.7.
The spectrum is periodic with period f;. From here, we can understand requirements for the sampling
frequency. In shown example, a repetition of the spectrum doesn't distort our signal. But if we take the
sampling frequency smaller as demonstrated in Figure 3.8, we will get a distortion for our signal because the
spectrum copies (or “aliases”) overlap one another. Such an effect is called aliasing.

X

-fs i -B 0 B 1

I xf f
2 2
Figure 3.7 — A spectrum after sampling with f; frequency
X

0 fBf f
2

Figure 3.8 — Aliasing of spectrums

From here we see that for distortion absence, we need that:
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%> B o f, > 2B
This condition is called Nyquist criteria. The fulfilment of this condition provides us a non-distorted signal. To
choose sampling frequency more than doubled signal bandwidth is not enough to exclude aliasing. If our
signal has noise like in Figure 3.9, then after sampling we still will have a distortion that is illustrated in figure
3.10.

T X

NN |

Figure 3.9 — Spectrum of the input signal with noise

Xl

f. f. -B 0 B f fs f

Figure 3.10 — Spectrum of the input signal with noise after sampling

The resulting spectrum will be a sum of repeating spectrums (see §3.3). To avoid this, it is necessary to put a
low-pass filter before an ADC. Such a diagram is presented in Figure 3.11. The low-pass filter has to cut-off
all out of a signal bandwidth (Figure 3.12). The low-pass filter before the ADC is called antialiasing filter.

s — LPF ADC —— xn

Figure 3.11 — Using a low-pass filter for antialiasing
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X

AN

B 0 B f
Figure 3.12 — Required magnitude response of the low-pass filter.
§3.6 Sampling band-pass signals
3.6.1 Limits for a band-pass sampling

Now we discuss the sampling of a band-pass signal. Consider a band-pass signal with carrier fo and
band B. A spectrum of such a signal is depicted in Figure 3.13. Using the Nyquist criteria, the sampling
frequency for such signal should be

B
fo> 2max = 2(fo+3) = 2fo+ B
But such sampling frequency may be very high. Moreover, we have an empty band from -fo+B/2 to fo-B/2.

Let's employ aliasing of spectrum to our advantage.

Nol

e

B

-fo 0 fo f
Figure 3.13 — A spectrum of a pass-band signal

Choose sampling as the lowest frequency in spectrum, i.e.
B

fs=/fo— P
Then the spectrum after the sampling will be as illustrated in Figure 3.14. Blue spectrum — a spectrum of the
original signal; green spectrum — a spectrum of the alias in the main band; grey spectrums — spectrums of
other aliases.

Let's calculate possible sampling frequencies for such case. We know that the empty band has the width
B B
fo 57 (‘fo +E> = 2fo — B.
In this band, we may have only integer number m of spectrum copies. A width of each copy is f.. So
2f, — B

This is an upper limit for the sampling frequency. And the situation, depicted in Figure 3.14, corresponds to

m=2ie.

_2=B_

B
2 2

fs fo—
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Nbl

-fo -fs -8B 0 B fs fo f
Figure 3.14 — A spectrum of the signal for f; = fo-B/2 (m = 2)
Can we increase f;? No, we will have distortions. Can we decrease f;? Yes. An example of such a situation
is illustrated in Fig. 3.15. Here we see that there is no possibility to decrease f; further. That is, it is a lower
limit for the sampling frequency.

NGl

-fo s 0 fs fo f
Figure 3.15 — A spectrum of the signal for lower limit of f; (m = 2)

Let's estimate the lower limit. We still have the same number of copies, but they present in the narrower

band. The band is decreased by value 2x, i. e.
Value x is shown in Figure 3.16 and can be calculated, for example, using a copy of the spectrum in the band

from O to f; as

2x = f; — 2B.
Thus,
2fo+B
mf5=2f0—B—(fs—ZB)<:>(m+1)fs=2f0+B<:>fs=m—+1
And
m+1 m
IS
| |
| |
X X B B X * X
-fo -fs 0 fe fo f

Figure 3.16 — Calculation of x value

It is recommended not to choose the sampling frequency exactly at the upper/lower limit because
frequency at edges will be distorted by the aliasing. In other words, requirements for the band-pass sampling

is
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2fo+B 2fo— B
m+1 <fs<

Moreover, it can be noticed that for m = 0, we obtain our first estimation for the sampling frequency, namely

2fo+B 2fo—B
<[ <
0+1 Is 0

That is, low-pass sampling is included into conditions for the band-pass sampling.

©2fy+B<fi<oe fi>2fy+B

What is the lowest sampling frequency? Here we need to remind Nyquist criteria and restrict lower limit

by the doubled band of the signal, that is
2fo+B 2fo+B 2fo+B 2fo—B fo
mt1 2p o mrlem<—yp 2B B

So, we obtain an upper limit for m as

1
2

w|sn
|
N| =

3.6.2 Spectrum inversion

Let's have a look at a spectrum for m = 3; it is shown in Figures 3.17 and 3.18 (upper and lower limit
cases respectively). The spectrum for lower limit in the main band is flipped. This effect is called “an inversion
of a spectrum” and illustrated additionally in Figure 3.17. You can detect the inversion by an orientation of
spectrums that are closest to the 0 Hz. The inversion happens only for odd m and is important only for signals
with an asymmetric band.

NUI
| |
| |
| |
-fo -fs 0 fs fo f
Figure 3.17 — A spectrum for m = 3 and the upper limit
Nyl
-fo fs 0 fs fo f

Figure 3.18 — A spectrum for m = 3 and the lower limit
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NYl

Qriginal

Inversion f

Figure 3.19 — lllustration of an inversion of a spectrum

If you've got an undesirable inversion, it is not a critical problem. The inversion can be cured by the
following operation
x'(n) =x(m) - (="
This operation is equivalent to a shift of the spectrum by f;/2. Why? Let's show this. The second term of the
multiplication can be presented as

cos (2n§nts> = cos(mn) = (—1)"

For example, if
x(n) = cos(2mfnty)

Then
x(n) - (=1)™ = cos(2rfnty) - cos (Znént ) _ cos (27Tfnts + Zn%nts) + cos (annts — zﬂ%nts)
S 2 s 2
~ cos <2n (f + %) nts> + cos (271 (f — %) nts)
- 2

After some evaluations
cos <2n (f - %) nts) = cos (27r (f - %) ntg + 27tn) = cos (Zn (f - g) ntg + 27Tfsnts)
= cos (27‘[ (f - % + fs) nts> = cos (27t (f + %) nts)

)+ (1) = cos (271 (f +%) nts) ;— cos (Zn (f —%) nts) _ 2 cos (2n (]2c + %) nts) s (Zn (f N %> nts)

After applying the mentioned operation, the modified spectrum will be as in Figure 3.20. There is no inversion

Thus,

and the spectrum in the main band locates at 0 frequency.
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Nl

|
|
|
o -+ RN f

-fo -fs 0 fs fo 2fs f
Figure 3.20 — The cure of the spectrum inversion
3.6.3 Recommendations

Situations, in which the spectrums are in contact at +f;/2 frequency (as in Figures 3.15 and 3.17), are
undesirable for the following processing (since your signal is still band-pass and, as consequence, your band
for processing is wider than it is necessary). So, to get an asymmetric spectrum at 0 frequency without the
inversion, there are 2 options:

1. Use the upper limit for even m;

2. Use the upper limit for odd m and then multiply the signal by (-1)";

For a symmetric spectrum (the inversion doesn’t matter), there are 2 additional options:

1. Use the lower limit for odd m.

2. Use the lower limit for even m and then multiply the signal by (-1)";

Moreover, some other approaches exist for choosing the sampling frequency.
1. Take the average value of lower and upper limits, then f; is expressed by
1/2f,+B 2fy—B
fs=3 ( m+l  m )
2. Take the sampling frequency as

4fo
f:q =?,m—odd

Then spectrum will be centered at f;/4 frequency.
A Home exercise: prove the statement above.
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Chapter 4 Discrete Fourier Transform

§4.1 Derivation of the formula

In digital signal processing, we deal with finite time discrete sequences. So we can’t use the Discrete
Time Fourier Transform (DTFT) or even more the Integral Fourier Transform (IFT) to get a spectrum of a signal.
But there is the Discrete Fourier Transform (DFT) that can help us. To get it, let's start with the Fourier series.
Present our original continuous signal as the Fourier series:

+00
ot 2k
s(t) = cpel®rkt; w, = ——
T
k=—c0
This equation performs for a periodic continuous signal with a period equals T. Let's sample this signal.
+0o0 + oo 400 + 00
. 2mk ]27Tk 2mkn
s(ntg) =x(n) = x, = Z et/ @knts = Z ce’ T = Z ce Nts™° = 2 cxe’ N
k=—o0 k=—o0 k=—o0 k=—o0
Then rewrite the summation in such a way:
+00 +00 N-1 +00 N-1
2mkn 2n(k+mN)n .2mkn .2mmNn
D D X B W e
k=—o0 m=—o k=0 m=—o k=0
400 N-1 N-1 400 N-1
ann 2mmn _ Jann j21'rkn
DI SRR W SR P
m=—oo k= k=0 m=—oo k=0
Xk
That is
N-1 400
jZn'kn
n:ZXk'e N X = Z Ck+mN
k=0 m=—coo
It is the formula for the inverse Discrete Fourier Transform. Go further
N-1 N-1N-1 N-1 N-1
ann ann _.2mmn 2n(k—m)n
Moo S S o e Sy S e
n=0 n=0 k= k=0 n=0

The last summation is a geometric progression, where

.2m(k—m)
bO = 1’ q= e] N

Thus, according to material from §1.1, the summation, can be transformed to

_ 4N 1— ej27't(k—m)

N-1 1 .

zejzn(klgm)n: 1 q ,lfk#:m: m,lfk#:m:{o,lfkim
l-q 1-e= v N,ifk =m

= N,ifk =m N,ifk = m

Because if k = m

=

-1 N-1
2n(k—-m)n . 2n(k—-m)n
el N =el0=1; e N = E 1=N

0

S
1]

If kK # m, then
ejZn(k—m) — ejan =1;1- ejZn(k—m) =0

Thus, we have

N-1 N-1
2n'mn

X e’

ZIH

n=0 n=0

This is direct DFT.

Typically, we are of interest in ratio between spectrum components (and use dBs for that), and there is
no need to have multiplication by 1/N factor in Direct transform. So, in DSP this factor is set at Inverse
transform and our formulas finally become
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= _.2mmn .
X, = z x, e/ N Direct DFT
n=0
N-1
1 .2mmn
Xn =3 Z Xn-el™N Inverse DFT
m=0

§4.2 Example of a DFT calculation

Take, for example, sequence x(n) as:

x(n) = sin(2nfint;) + 0,5 sin(

3n
anznts + T)

where fi = 1000 Hz, f> = 2000 Hz, t; = 1/8000 s. The main period of this signal is T = 1/1000 s. As a consequence

7

IX(m)| 4
125+
1.00-
075+
0.50
025¥%

0

1
N=T-f,=——-8000 =8

1000

A~

-0.254
-0.50+
-0.75+
-1.00+
-1.25+
-1.50+

/
]

3

Figure 4.1 — Input sequence samples

Calculate input sequence samples:

n/m| x(n) X(m) |X(m)| | arg X(m)
0 | 03536 0 + Oi 0 0
1 0,3536 0-4j 4 -T/2
2 0,6464 | 1,4142 + 1,4142) 2 /4
3 1,0607 0+0j 0 0
4 | 03536 0+0j 0 0
5 |-1,0607 0+0j 0 0
6 |-1,3536| 14142 -1,4142) 2 -1t/4
7 |-0,3536 0+4 4 /2

Plots of spectrum magnitude and phase are presented in Figures 4.2 and 4.3.
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S

0 1 2 3 4 5 6 7
Figure 4.2 — Magnitude of spectrum

arg X(m)
/2 +

‘T[/Z +4

Figure 4.3 — Phase of spectrum
§4.3 Properties of DFT
4.3.1 Axes conversion (magnitude and frequency)
As we have seen from the previous paragraph, a spectrum sample X, depends on a dimensionless index

m. So, there is a question: how to convert an index into a frequency? The answer is at the beginning of our

derivation. We expanded our signal into a Fourier series with frequencies:
2mk kK k  kfs
k=T TIRT T T NG TN

That is, k corresponds to a frequency fi, as well as, n corresponds to a time point t,:

melZ

kefk:?;n—wn=nt5

Moreover, from the example we have seen that an amplitude of our signal in a spectrum isn't 1. There
are 2 reasons for it:
1. After derivation, we have changed a position of the factor 1/N from direct to inverse FT. As usually,
we are interested in a ratio between spectrum components and plot it in dB, there is no need in the
division by N;
2. Asoursignal is real, it has a symmetric spectrum. It means that the energy and the amplitude divide
into 2 parts: with negative frequencies and with positive frequencies.

It results in the next equations for actual spectrum component amplitude An:
Xy 2Xm
Ay = N_/z =~y forreal signal
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A, =— for complex signal

4.3.2 How T, fs and N effect on spectrum?
Let's start from a basic equation for a DFT calculation:
T-f=N
There are only 2 independent variables: analysis time T and sampling frequency f;. A number of samples N
can be obtained from these 2 parameters. Now, let's discuss 2 cases of changing these variables.

1. Constant f;

We know that sampling frequency determines our repetition period of a spectrum. In other words, it
determines our frequency band for observation. If we fix this value and increase samples number, it will result
into an analysis time increase.

fs —const; TN TT
How does it change spectrum? Let's have a look at frequencies at in a spectrum. From the previous point we
know that frequencies are:

~| =

fr =

That is, an interval between spectrum samples is:

_ 1
Af = T
This is a spectrum resolution. So that, if we increase T or N with a constant f;, we will increase the resolution
of our spectrum.

2. Constant T
If analysis time is constant, an increase of a samples number results into an increase of sampling

frequency.
T —const;T N T f
In this case, a spectrum resolution remains the same, but an observation frequency band becomes wider.

4.3.3 Linearity

Remind formulas for DFT:
N-1 N-1
_.2mmn 1 .2mmn
Xm=an-e]N ;xn=ﬁ-ZXk-eJN
n=0 m=0

From here, it is seen that DFT, as other Fourier Transforms, is linear operator:
Flax(m) + By(n)} = aF{x(m)} + fF{y(n)}

A Home exercises: proof linearity.

4.3.4 Shifting theorem

If we shift our signal in time by k samples, it will affect only phase shift of the spectrum.

.2mmk
x(n—k)ee TN -X(m)
Consider shifted sequence x'(n) is:
x'(n) =x(n—k)

Then its DFT:
N-1 N-1 N-1-k
m) z ‘o) e_jancnn z (- k) e_jZnXInn |n —k-l 2 () e_janISHk)
m * n-l+k

n=0 n=0 I=—k

N—-1-k
_.2mmk _.2mml _.2mmk
=e /TN -Zx(l)-e’N =e /N -X(m)

I=—k
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For the last step it has been assumed that:

N-1-k N-1
_.2mml _.2mml
Z x(D)-e N = Zx(l)-e =N = X(m)
I=—k 1=0

And it is true, because our sequence for DFT is assumed to be periodic with period of N samples.
A Home exercise: proof equivalence above.

4.3.5 Theorem of convolution

For DFT, theorem of convolution is the same as for other transforms. That is

x * h(n) & X(m) - H(m).
N-1

yo) = x+h(m) = ) x(k) - h(n = 1)
k=0
A Home exercise: proof theorem of convolution.

4.3.6 Symmetry

For a real signal there is a following property:
X(—m) =X*(m)
It requires an easy proof. We know for real signal:

x*(n) = x(n)
So:
N-1 N—1
_.2n(-m)n 2mmn
X(—m)sz(n)-eJ N =Zx(n)-ej N

n=0 n=0

N-1 ¥ ON-1 N-1
X*(m)=<2x(n)-e TN ) =Zx*(n)-e] N =Zx(n)-ej N = X(—m)

n=0 n=0 n=0

As our spectrum is periodic

X(—m) =X(N —m) = X(kN —m),where k € Z
In other words:

X(N—m) =X"(m)
This property may help in DFT calculation: half of spectrum samples can be obtained by complex conjugating
another half.

§4.4 Symmetric DFT forms

There are symmetric DFT forms.

1 s _j27rmn D DFT
Xm=—-2xn'e N irect
\/N n=0
N-1
! . | DFT
xn=—-ZXk-e N nverse
\/N m=0

They have an identical scale factor, and we see that DFT forms differ only by a sign in the exponent. This
feature can slightly simplify design of systems utilizing DFT in the both directions (you can use exactly the
same block without need of scale adjustment). Magnitude scale of X, and x, is still not the same as in ordinary
DFT, but more close to one another (differs by VN times instead of N times). Truly the same scale of X, and
xn has form that has been obtained from the derivation of DFT.

§4.5 DFT matrix
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A calculation of DFT can be done by means of matrixes. A vector of spectrum samples X(m) is defined

from a vector of input samples x(n) as:

_ iy 0 (V=1
X(0) e e /TN e /TN x(0)
10
xmy=| @ || 7w *@ | = prn)
X(N—-1) [ (N=1)0 L (N-1)-1 . (N.:l)-(N—l)J x(N—1)
e—]ZnT e—ert N 6—1271* _f(ﬁ)_/
D

where D — a DFT matrix.
§4.6 DFT of typical functions
4.6.1 General rectangular function
In this section we calculate DFT for several common functions. At first, let's take general rectangular

function depicted in Figure 4.4.

x(n)

——0—0— 00— —eo—eo——o0o——9——00—

-No -n0+K'1

| =

-7'{'1

Figure 4.4 — General rectangular function

This function can be expressed by

0, n<-—-ng
x(n) =41, —mny<n<-ny+K-1)
0, n>-ng
Calculate DFT for it.
N
7 —ng+(K-1) —ng+(K—1) K
_jZTL'mTl _j27tmn _.2mmn _2mm(-ng) 1—e Jj2mmy
X = Xp € N = Z Xp € N = Z e’ N =e’ N . T
-5
_.2mmK .2mmK _.2mmK i K
2nm(-nyg) e /2N e/ 2N —e /72N 2mm K-1y Sin (nm N)
—e T N . . _ (o) TN
_.2mm 2mm _.2mtm i 1
e 12N el 2N — e I2N sin (nmN)

Finally, we get
: K
+K—1) Sin (nm N)

’ sin (nm %)

This expression has indeterminate form at m = 0. Use L'Hospital's rule

_ .an(_
Xp,=e N 0

I

. K . K K K
sin{mm+ sin{mm+ T+ cos|mm=

X°=%3%.(—11V)=m%(_(—'f))'=mﬁo 1 ( ’Y)=K
sin (nm N) (sm (nm N)) Ty " €OS (nm N)

Magnitude of the spectrum is expressed by

sin

)
sin (m %)
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IX(m)]
o K
9?9T9T9 oTvTv‘I'v
N N m
K K

Figure 4.5 — Spectrum of general rectangular function

for N - oo,
X | = sin (nm%) N sin (mr;%)
sin (nm N) mmy

Find zeroes of the spectrum
K N
nmﬁ=nl <:>m=l~E,l € Z\{0}
4.6.2 Symmetric rectangular function
Now, let's consider symmetric rectangular function, i.e.
x(n) = x(—n).

Calculate shift no for this case. Due to the symmetry, the left and the right boundaries for n should have
opposite values, that is

—TlO + K — 1 = _(_no)

Then
K-1
Ny =_n0+K_1;nO=T
An example of the symmetric rectangular function is depicted in Figure 4.6.
x(n)
K
®
——0—0—0—0— —o—0—0—0—0—>
N4 _K-1 0 K-1 N n
2 2 2 2

Figure 4.6 — Symmetric rectangular function
So the result will be

1 sin (nm %) sin (nm %)
As seen, the spectrum is real. A graph of the spectrum coincides with its magnitude in figure 4.5.

X, =e N (D). sin (nm%) _sin (”m%)
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X(m)

o K

v ! .
[

L J
te by o oonlt 0
K K

Figure 4.7 — Spectrum of symmetric rectangular function
4.6.3 Constant level

Now let’s have a look at constant level (Figure 4.8). Spectrum of a constant level can be obtained from
the previous result. If we assume

K =N,
then the DFT transforms to
. N

P sin (”mﬁ) _ sin(tm) _(NNm=0
m_.( 1\ . 1 _{O,mth

sin nmﬁ) sin (nmN)

x(n)
K
®

+1 0

|2 |
NZ+——e

Figure 4.8 — Constant level

X(m)

o K

e
o
Y 3

Figure 4.9 — Spectrum of the constant level
4.6.4 IDFT of rectangular function

Consider Inverse DFT. Also, take general rectangular function (Figure 4.10). This function can be
expressed by

0, m< —mg
X(m) =11, -my<m<-my+(K-1)
0, m>—-mg
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X(m)
K
®
_— >
—ﬂ+1 -mg 0 -mo+K-1 N m
2 2

Figure 4.10 — Rectangular function in the frequency domain
Calculate DFT for it.

N
2
1 .2nmn
Xn =4 E Xn-el N
N

m=—7+1
Calculation flow is the same as in point 4.6.1. So we can just exchange n and m and change sign in the

exponent. Result will be
1 2mn K-1y Sin (nn%)
Xy = — - e+1T(_m0+T) —t
N sin (nnﬁ)
Such a spectrum is depicted in Figure 4.11 and is similar to another one in Figure 4.5. You can see that

sequence x(n) is complex. It is due-to asymmetric spectrum. If we imply symmetric spectrum (like in point
4.6.2), sequence becomes

that is real sequence.

K

N
9?9T9T9 [9T9T9??
N N n
K K

Figure 4.11 — Signal x(n) with the rectangular spectrum
4.6.5 Complex signal

Introduce complex signal x, with frequency wx

X, = el@ktn; ¢y, = 21 - E
T
Rewrite the exponent argument
k kn kn
Wty = ZE'?-ntS = Zn.T'fs = ZHW.
So signal can be expressed as
. _kn
xn — ejan

where k — number of periods, N — number of samples. lllustration of signal x, is presented in Figure 4.12.
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Re x

Im x

t

Figure 4.12 — lllustration of complex signal x,

Now calculate DFT of this signal. We take it with symmetric bounds to eliminate phase shift (as we know
from 4.6.2) and, as consequence, N should be odd.

N-1 N-1 N-1
2 _.2mmn 2 2 kn _ 2mmn 2 _.2n(m-Kk)n
Xm: Z xn'e]N = Z e]ﬂN-e]N = Z ej N
_ N-1 _ N-1 _ N-1
n=-—7- T2 n=-—;
2n(m—k)N
2n(m-k) N-1\ 1—e /7~ N
= e_]T(_T) .
.2n(m—k)
1—e/7 N
2n(m—-k)N .2m(m—k) 2n(m—k)
_.Zn(m—k)'(_u) e /)T 2N elT 2 —elT 2
—e /T N 2 ; .
.2n(m—k) .2m(m—k) 2n(m—k)
e /72N el T 2N —e /T 2N
o . (2r(m—k)
_.-27t(m—k)( N-1 N-1y SID ) sin((m — k))
=e’ N 2 2 ). 2 ) = P
. mwym — . -
Sin (T) Sin (77.' N )

Spectrum of such a signal is depicted in Figure 4.13. For the expressions above, we can see that for k #

0 this function is not even. That is, the spectrum is not symmetrical about the y-axis. It is a feature of a complex
signal.

X(m) 4

+N ®

{ ]
[ ]
@
®
o
o
[ ]
[
A\

k m

Figure 4.13 — Spectrum of the complex signal
4.6.6 Real signal

Take real signal, for instance
Xp = COS Wity ; W = Zn-?.
To simplify DFT calculations, we can present it as
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ej(‘)ktn + e_jwktn
2
Result for the complex signal is already known. As consequence, we can immediately write the spectrum
sin(n(m — k)) N 1 sin(n(m + k))

sin(nm[; k) 2 sin(nml_\ll_ k)

Spectrum in all point, except m = tk, equals 0. Show it for m = k.

Xp = COS Wity =

X 1
L)

1 sin(n(k—k)) 1 sin(n(k+k))_1 1 0_1
Thus, we get
0, m # tk
Xm=il

2 )
We see that signal has real spectrum due to evenness of a cosine function. The spectrum is depicted in
Figure 4.14.

X(m) A

N
2

- 3

-k k m

Figure 4.14 — Spectrum of the real cosine signal

A DFT for the signal of sine can be obtained similarly. Present such a signal as
ejwktn — e_ja’ktn

2j

X = sinwgt, =

Then DFT will be
1 sin(n(m—k)) 1 sin(n(m+k)) 0. m# tk
m= o5 m—ky 2j m+ky |Fz, m=+k
J ) 7 sin(zT)

—~. -

N |

sin (n
The spectrum is illustrated in Figure 4.15.
X(m) N

Figure 4.15 — Spectrum of the real sine signal

§4.7 Leakage
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Now we have a look at very important feature of the DFT. Take two discrete sequences with different
number of periods (Figure 4.16). A calculation of their DFTs give us spectrums shown in Figure 4.17.

N

X\n
() 3 periods

3.4 periods

Figure 4.16 — Discrete sequences with 3 and 3.4 periods

[X(m))| |X(m)

l ]ITTthoo...........

a) b)
Figure 4.17 — DFT module of a discrete sequence a) with 3 periods, b) with 3.4 periods
You see that spectrum in Figure 4.17a looks normal, but another one in Figure 4.17b looks strange. Why is it
that? Because there was an effect called leakage. Let's have a deep look to their DFTs.
As we know from 84.6.6, a DFT of a harmonic discrete sequence with k periods is the following function:
X(m) = lejn(k_m_k—Tm) sin(m(k —m)) N lejn(k"'m_k-l—Tm) sin(r(k +m))
2 sin(rrk_m) 2 sin(nk+m)
N N
There will be only two non-zero values — for m = +k (see Figure 4.14). However, m unlike k can be only integer.
As consequence, we can get different spectrum images in dependence of k, even though X(m) is the same.

These possible situations are depicted in Figure 4.18. If k — an integer number, then non-zero values coincide
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with spectrum samples and we get a typical spectrum for a harmonic function. On the other hand, if k — not
an integer number, then picture will be different and zero samples are absent. In the both cases the spectrum

is a sampled function
sin(mx)

sin (n %)

IX(m)|

1 =k 1+ m

TT[ XTT

-1 [k [+1

/
m

Figure 4.18 — Spectrum of a harmonic signal for integer k (top) and non-integer k (bottom)

You may notice that spectrum in Figure 4.17b is asymmetric unlike function in Figure 4.18. This is
because non-zero samples of X(m) terms are summed up.

§4.8 Windows

We have already understood that the leakage is due to the form of a function enveloping each signal
frequency in the spectrum. Herein, the main cause deteriorates the spectrum is a level of side lobes. Can we
change this enveloping function and reduce side lobes? Yes. For this purpose, there are window functions or
just windows.

The most common windows are a triangular, a Hanning and a Hamming ones depicted in Figure 4.19.
In addition to them a rectangular window is introduced representing window absence. From the figure, you
can see that all windows have lower side lobes in comparison with the rectangular window. And this aspect
very important in terms of leakage. In time domain, these function looks like in Figure 4.20 and can be
expressed as

Window Function w(t)
Rectangular 1forn€{0,..,N -1}

i n n N N
Triangular N and 2 ———— forn € {O, ...,—} andn € {— +1,...,N — 1} respectively

/ N/ 2 2
2 2 -
Hannin _ . —
9 0.5—0.5 - cos (ZnN — 1) forn € {0,..,N — 1}
Hammin _ . n _
9 0.54 — 0.46 - cos (ZnN — 1) forn € {0,..,N — 1}
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Rectangular Triangular
W) W)l

ﬂﬂmmf

Hanning Hamming

W) W)

i AN

f

Figure 4.19 — Spectrums of common window functions

Rectangular Triangle
w(t) w(t)
Hanning t Hamming
w(t) w(t)
t

Figure 4.20 — Common window functions in time domain

How do we apply window? For this purpose, we just multiply our signal x(n) by the window function
w(n), i.e.
Xwin(n) = w(n) - x(n)
In case of the rectangular window, we get
Xwin(M) =w(n) - x(n) = 1-x(n) = x(n),
that is, signal itself. Examples of applying window are illustrated in Figure 4.21.
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Rectangular Triangular
w(t), w(t),

NAAAD T
TRYRVATRVAS VAV

Hanning Hamming
w(t), w(t),
x(t) x(t)

NAVAVAARE EAVAVAVANE

Figure 4.21 — Examples of applying window function

How does it work? We know that a multiplication in time domain means a convolution in frequency
domain, i.e.
Xwin(M) = w(n) - x(n) © Xyi(m) = (W = X)(m).
Here W(m) is a sampled window spectrum (see its envelope in Figure 4.19). If we assume x(n) as a harmonic
signal with frequency fi, then a convolution result Xuin(m) will be a spectrum of window W(m) shifted by signal
frequency fi. In other words, Xuin(m) — a sampled window spectrum, which is centered at fi. We have seen it

for the rectangular window in Figure 4.18. There, a spectrum of the rectangular window has form
sin(mx)

. XY
Sin (T[ N)
and it Is centered at k and sampled (k corresponds to frequency fi = k/T).
Let's illustrate an effect of changing window. Take fi so that signal has

1
k= T;p EN
periods. In such a case, spectrum Xuin(m) will have leakage, since spectrum samples don’t get to zeroes of an
envelope function. You can see it in Figure 4.22 for the rectangular window, which is similar to Figure 4.18.
Herewith, spectrums for the other windows even though have leakage, but allow to distinct our frequency
better due to lower side lobes. However, we didn't get this enhancement for free. Side lobes lowering widens
the main lobe, and now it contains 4 samples instead of 2. Nevertheless, in spite of the main component blur,

windows are still an effective instrument in fight against the leakage.
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/N N .
[Xwin(m)| Rectangular [Xwin(m)| Triangular
T d T ~
7 AN
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Figure 4.22 — Leakage effect for different windows
§4.9 Signal to noise ratio in DFT

The Signal-to-Noise Ratio (SNR) indicates relation between wanted signal and unwanted signals (noise).
Typical, expression for the SNR is

Power of wanted signal
SNR = _ :
Power of noise

On the one hand, an amplitude of a harmonic signal increases in a proportion of N. An amplitude of noise is
described as standard deviation, which increases as VN due to its random nature (see dispersion of random
values sum). So their ratio will increase as N/YN=VN. On the other hand, it is known that noise signal has
random nature (both in terms of amplitude and frequency), so the probability of its frequency coinciding with
a certain sample on the spectrum axis tends to 0. Thus, noise energy is spread across finite number of
spectrum samples and noise level occurs quite high. An increase of analysis time enlarges a number of
spectrum samples and resolution. It results in lower amplitude of noise sample and higher SNR value. The
relation between number of samples and SNR enhancement is the following:

N N
SNRN = SNRN, + 2010g10 \/; = SNRN, + 1010g10v

This effect is illustrated in Figure 4.23. The top spectrum has noise sample at -40 dB. Enlargement of samples
number by 100 times give lowering of noise sample to -60 dB level for the bottom spectrum.
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Figure 4.23 — Example of SNR enhancement for N/N' = 100

§4.10 Conclusion

Here we conclude essential information about discrete sequence spectrum.

1) Relationship between periodicity and discreteness
Spectrum
Discrete < Periodic
Periodic < Discrete

Signal

2) Relation between signal, spectrum and transformation tool

Set up a correspondence between type of the signal and type of the spectrum.

IFT Integral Fourier Transform

FS Fourier Series

DTFT Discrete-Time Fourier Transform
DFT  Discrete Fourier Transform

Signal Periodic Aperiodic
Discrete Periodic, discrete | Periodic, continuous
DFT DTFT
Continuous | Aperiodic, discrete | Aperiodic, continuous
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| | FS IFT | Tool

3) Spectrum enhancement FAQ

- How to increase observable frequency band? | - How to increase spectrum resolution?
- Increase f.. - Increase T.

4) Leakage essence

The cause of leakage is finite time of analysis

How to avoid or reduce the leakage?
1. Choose correct time of analysis;
2. Enhance resolution in frequency;
3. Use windows.
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Chapter 5 Fast Fourier Transform
§5.1 Algorithm
5.1.1 Derivation

The Fast Fourier Transform (FFT) is an algorithm of DFT calculation. This algorithm stands out for its

high efficiency and low hardware costs. To achieve this, FFT introduces the following limitation on the number
of samples N, i.e.

N=2L1€eN
Taking into account this limitation let's derivate the FFT algorithm.
N N
N-1 771 771
_2mmn _.2mm-2k _2nm-(2k+1) _.2n
X(m)=2xn-e’N =Zx2k~el N +Zx2k+1~e] N =‘WN=eJN
n=0 k=0 k=0
N N
2! 27! o
2km m 2km 2 _j2_7t.2 _]W
=zx2k'WN +WN'zx2k+1'WN =|(Wy)*=e'N"=e 2=Wy
k=0 k=0 2
N N
51 51

= Zka . W]&m + Wy - Z Xok41 * W&m = A(m) + Wy - B(m).
2 2

k=0 k=0
Do the same operations for the second half of spectrum samples.
21 71
N k(m+%) m+¥ k(m+%)
X m+5 = ka.WE +WN . x2k+1~Wﬂ
k=0 2 k=0 2
_ .2_71.( N _2mm _.2nN i
(WN)TYH—N:e JN m+ =e ] N -e ] N szAY’l.e—]ZHZle
_ 1
- m+ﬁ _ .Z_H.(m+ﬂ) _.2mN .
W)™ 2 =e’N 2) =Wh-e /N2 = Wi-e /T = —Wwp
-1
N N
51 51

= ) xu WA= WE ) sy - W = AGm) = WY - B(m).
k=0 2 k=0 2
Summarizing it, we will get

X(m) = A(m) + W2 - B(m)

X(m+g> = A(m) — W™ - B(m)

5.1.2 lllustration of calculation flow

Now let's illustrate the obtained result. For N = 8, it can be illustrated as in Figure 5.1.
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Xg — —> S —> X
o AML
Xg — —> i —_—> X3
%
X —— —> e —> X
X3 ——] B( ) —> A —> X
Xs ——] m —> e —> X
X; — ——» e —> X

Figure 5.1 — N-point DFT calculation using two N/2-point DFTs

As number of samples is still even (thanks to the introduced limitation), we can continue splitting each DFT
into even and odd samples. Finally, we stop the evaluation at 2-point DFT structure with coefficients

_j2n Ny _j2m N .
WY =Wl=e ' N'=1;,W}=w,2=e’N2=¢I"=-1
And whole calculation flow shown will be as in Figure 5.2.
Xo —» . —> . — —— X
NE Q@
X; —» - —> . —> — X
W Q@
X, —» : —> > —> —— X,
4 $¢b
Xg —» - —> — —> —— X3
4 $‘b
X, —» - — N y —> X,
Xs —> - —> o X% —> X
X3 —» . — > —> W —> X
X; —» - —> - —> - —> X,

Figure 5.2 — 8-point Fast Fourier Transform calculation flow
5.1.3 Complexity of calculation

We can ask a question: why do we need it? The answer is low number of multiplications and, as a
consequence, higher efficiency of calculation. Expressions for the typical DFT flow and FFT algorithm are
presented in the table below.

Number of complex multiplications M

Conventional DFT Fast Fourier Transform
2 N
N 7 log,N
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You can see in Figure 5.3 graphical representation of these expressions, where advantage of FFT is evident.

M/\

30 +
25 1
20 1
15+
10 1

5+ —

0 . l

\

-~ DFT
e

FFT

2 3 4

Figure 5.3 — Graphical representation of expressions for number of complex multiplications in DFT and FFT.

§5.2 Bit-reversed order

Now we try to answer the question: how to get this magic order of input sequence indices. The way is

the following:

1. Write index in ascending order from 0 to N-1;

2. Convert each index into the binary code;
3. Revert order of bits in each code;
4. Convert each code into decimal format.

In the table below, you can see an example of this way for N = 8, where n — initial order of samples, n’ — bit-

reversed order of samples.

n Binary code Bit-reversed order n
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Bit-reversed order can be used not only for input samples, but also for the output samples. Let's take

into account the fact that

wmk — —jZH’X}—,’,’: — —jZR% = wm
Nk =€ =e = Wn

Assuming for all coefficients N = 8, the FFT with regular order of input samples and bit-reversed order of the

output samples will look like in Figure 5.4.
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Xo —» — > s —> X
Q
X, —» — > y —> X,
Q
X, —P —> ; —> S — X,
Q
X3 —» —> ) —> - —> X
Q
Xs —P X —> —> — X
2
Xs —» X —> —> - —> X5
2
Xg —P y —> —> s —> X3
6
X; —» - — —> - —> X,
6

Figure 5.4 — The FFT flow for decimation-in-time and bit-reversed order of the output samples

During the derivation of the algorithm, we divided samples in time domain into even and odd. This
approach is called “decimation-in-time”. However, the similar derivation can be done with a division of
samples into even and odd in frequency domain — “decimation-in- frequency”.

§5.3 Butterfly structures
There we will introduce different forms of butterfly structure.

Decimation-in-time Decimation-in-frequency

X'=x+Wy yy =x—Wy-y X" =x+y;y" =W (x—y)

X —>» » x| X >>ﬁ » x"
’ _Wk / ’ m 77

N, >y Yy

7

Y y |y

In the last figure, circle with plus and minus signs means branch with plus is a sum of branches on the left,

S
x\
<

< X

branch with minus — a subtraction of branches on the left.
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§6.1 Introduction

At first, let's have a look at the example: some device that averages 5 samples of the input sequence.

The data for the input x and output y is presented below (n — time index).
Yy
0.4

1

1.6
2.4

3.6

3.6

3

2.4

1.6

0.4

0

>
><

O |INoO|jn|dh W=

oOjo|Oo|o|Oo(NMV|ODjWIWIN

— | —
— O

—————— 44—
0123456 7891011 n

Figure 6.1 — Illustration for input (blue circle) and output (yellow square) signals

The equation for the output is

x(n)+xn—1D)+xn—-2)+x(n—-3)+x(n—4)
y(n) = z

Structure of such a device can be presented as in Figure 6.2.

21 | xtn-1) -1 | x(n-2) -1 | x(n-3) -1 | x(n-4)

x(n)




Chapter 6 Finite impulse response filters
Figure 6.2 — Structure of the averaging device

Such a device can be generalized with the following expression for the output

K-1
y) = ) apxin =),
k=0
and structure depicted in Figure 6.3. This structure is a Finite Impulse Response (FIR) filter.
x(n) z! 3 7z ——— z!
do an Ak-1 ax
D)

Figure 6.3 — Structure of a Finite Impulse Response (FIR) filter

From the presented expression the following conclusion can be drawn
1. The output of the filter is a convolution of the input x(n) and the filter impulse response h(k);
2. If the input samples represent delta function, then the output will be the filter coefficients sequence
Qi
3. The filter coefficients sequence ax of the FIR filter is impulse response h(k);
Strictly speaking, convolution of the filter input and its impulse response is

ym = ) h(x(n— k),

k=—c0

However, h(k) equals to O for k that are not between 0 and K-1. So

+00 K-1
y(n) = Z h(k)x(n—k) = Z h(k)x(n — k).
k=0

k=—0o0
The name Finite Impulse Response comes from the fact that the impulse response becomes 0 at a finite
period of time, i.e.
]}{1_r>r11( h(k) =0
where K — number of coefficients, i.e. some finite number. As a result, the output of a FIR Filter will equal 0 in
K samples after input signal termination.

§6.2 Filter analysis

For analog systems, we know that magnitude and impulse responses of a filter can be obtained from
its transfer function T(p) (reminder: |T(p)| — magnitude response, arg T(p) — phase response). And there is a
connection between a transfer function and an impulse response:
T(p) = L{h()}.
As a FIR filter is a discrete system, to get its “transfer function” we should use Z-transform. In §1.9 Z-
transform was introduced as

HE) =2} = ) hez™,

n=-—oo
where H(z) — a transfer function of a digital filter, h(n) — an impulse response of the digital filter. The FIR filter
impulse response is not equaled to zero only for n = 0..K-1. So

H(z) = i h(n)z™™ = Kz_:lh(n)z_n
n=0

n=-—oo

Since h(n) is just filter coefficients, we can rewrite it as
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K-1 K-1
H(z) = Z h(n)z™™ = Z a,z "
n=0 n=0
The next step is to substitute z with
z — el?ts,
So we obtain
K-1 K-1
H(e/®%) = z h(n)z™ = Z a, e In@ts
n=0 n=0
And the last step is to get magnitude or phase of transfer function H(z) to plot corresponding responses
K-1
|H(e/®%)| = Z a,e /"ts| —magnitude response
n=0
K-1
arg H(e/®%) = arg Z a,e /™t _phase response
n=0

Example of magnitude and phase response for the filter from §6.1 are presented in Figure 6.4. The order
of a FIR filter is the maximum power of z'" in the transfer function. It can be easily determined from the
structure because the order is equal to the number of delays.

IHGw ),
dB
0-

-10
-20 -
-40 -

-50 1

o
N
o
[oe]
o
(o)
4
€

arg H(jw ),
rad
2 4

0 01 0}2 3 04 O 06 07 \Q 09 w
1+

oo}
-

Figure 6.4 — Magnitude and phase responses for averaging filter.
§6.3 Phase response
6.3.1 Introduction

A phase response of a FIR filter will be linear in the pass-band if and only if coefficients (or impulse
response) are symmetric or antisymmetric. That is a symmetric or antisymmetric impulse response is a
necessary and sufficient condition for the FIR filter linear phase response in the pass-band.

6.3.2 Sufficiency condition
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Now look at sufficiency of this condition. Transfer function of a FIR filter is:
N-1

H(z) = z a,z "

n=0
and we have 4 cases for combination of parity and symmetry. We illustrate this condition with case when
impulse responses is symmetric and N is odd. In this case
ap = AN-1-n
And transfer function can be presented as:

N—3
N-— 2 N-1
N1
H(z) = Z Z apz " +an-1z 2 + apz™ "
n=0 n=0 2 n=Nt1
2
Change for the last sum index:
n->N-1-n
N-3 N-3
2 N1 0 2
H(z) = Z a,z " +an-1z~ 2 + Z Ay_q_pz N1 = Z apz™ "+ aN 17~ T + Z a,z~N-1-1) =
n=0 2 n:? n=0
N N-3
< N-1 -1 Z N-1 N-1 N-1
= z an(z_” + Z_(N_l_”)) t+an-1z 2 =z 2 an (z_n+T + Z_(N_l_n)+T) +an-1z 2 =
= 2 n=0 2
N-3
2
_N-1 (n—E) aN-1
=z 2 an(z 2 /)+z 2)+aN—1
2
n=0
Transfer function is obtained by substitution:
z=eJ0ts
H(z) — T(w)
And finally we get:
N-3
N-1 N N-1 N-1
T(w) =e 9% 2 a, (e_j“’ts(n_T) + ej“’ts(n_T)) + an-1
n=0 2
N-3
N-1 < N-1
= /¥t Z a, - 2 cos wtg (n - T) +an-1
n=0 2
Thus, we can determine frequency response and phase response:
N-3
2
N-1
IT(w)| = 1|2 Z a, * Cos wtg (n _T) +an-1
n=0 2
N-1
argT(w) = —wtsT
As we can see, phase response is a linear function of frequency w.
A Home exercise: proof the rest 3 cases.
Finally, you will get the following result
‘ Odd ‘ Even
N3 >-1
2
. N-1 N-1
Symmetric IT(w)] =12 Z a,  cos wt, (n — T) +an-1| | [T(w)]| = |2 Z a, - cos wty (n — T)
n=0 2 n=0
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N-1
argT(w) = —wty,——

Antisymmetric

6.3.3 Conclusion

N-3
2
, N-1
IT(w)] = |2 Z a, - sin wt, (n — T)
n=0
T N-1
argT(w) = -3~ Wt 3

N
-1
_ N-1
IT(w)] = ZZ a, - sin wt, (n—T>
n=0
T N-1
argT(w) = -3~ Wt 3

We have discussed all cases for a symmetric impulse response. A linear phase response means that

group delay is a constant of frequency. Group delay G is evaluated by:

And, for all discussed cases, a group delay is:

__dg
T dw
d(p_
do

N-1
tg——

2

It is a constant of frequency, so that the phase response of a FIR filter is linear.

Also let's note that at points

wS
w=+—=

2

the argument of trigonometric function in the magnitude response becomes

For odd and even N, we can rewrite phase ¢, correspondingly, as
(Zk +1

Then we get that

N-1
Bzwts(n—T)ziZn

2k
Bodd = T[? = T[k, 0

fs N-1
_ts(n_—

2

even — U

)-an(o-25)
) =me+3

s
€0S Ogyen = COS (nk + E) = 0;sinf,434 = sinmk =0

Thus, for symmetric-even and antisymmetric-odd cases:

r(+3)] =0
Odd Even
Symmetric T (£22)]# 0 T (+3)] =0
Antisymmetric T (+3)| = T (£3)] %0

Examples of magnitude responses illustrating such a property are presented in Figure 6.5.
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[HGw )l [HGw )l
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Figure 6.5 — Examples of magnitude response for antisymmetric impulse response with even (left) and odd
(right) number of samples
§6.4 Structures
6.4.1 Direct Forms

In Figure 6.5, you can see already known Direct Form of a FIR filter. It has a critical path that is shown
with red color. The critical path — the longest path for signal passing between two registers (delay elements).
The critical path in Direct form has 1 multiplication and K adders (K — a filter order);

x(n) —— z! Y —— 7"

Figure 6.6 — Direct Form of a FIR filter
6.4.2 Transposed forms

Transposed Form can be obtained from the Direct Form by the following operations:
e Nodes are replaced by adders;
e Adders are replaced by nodes;
e Arrows changes its direction on opposite.
The results of the transposition is shown in Figure 6.6. The critical path of the transposed form has only 1
multiplication and 1 adder regardless of the filter order.

Figure 6.7 — Transposed Form of a FIR filter
6.4.3 Folded Form

A FIR filter structure can be optimized in case of symmetric or anti-symmetric coefficients. As there are
identical coefficients multiplication it can be done only once. Let's have a look at expression for the filter
output
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N-3
N1 - N-1
y(n) = kZOh(k)-x(n—k)= kzzoh(k)-x(n—k)+h(¥)+k;jh(k)'x(n—k) = |§;%:1:Z|
:zh(k)-x(n—k)+h($>+zh(N—l—P)'x(“—(N—l_k))
k=0 p=0 h(p)
N-3
:kz:)h(k)-(x(n—k)+x(n—(N—l—k)))"'h(?): |K=¥|
K-1

= Z h(k) - (x(n — k) +x(n— (2K - k))) + h(K).
k=0

There we see that corresponding samples can be summed up before multiplication instead of individual
multiplication. Such a simplification reduces required number of multipliers and, consequently, hardware
costs. Corresponding filter structure is called “folded” and is illustrated in Figure 6.7.

— 2'1 Z-1 K————— — — —¢ Z-‘I

x(n) * 7' e z" —-—— z"

h(0) h(1) h(k-1) h(K)
D— == ———D D y(n)

Figure 6.8 — Folded Form of a FIR filter with symmetric coefficients
§6.5 Half-band filters

Half-band filter is a specialized FIR filter, whose magnitude response is symmetric relative to point
(0.5; 0.25xwys). An advantage of such a filter is that impulse response has every second filter coefficient being
zero, except the center one. This allows us to reduce number of multiplications approximately by 2 times.
Such filters are popular in sample rate conversion applications like decimation or interpolation. An example
of an impulse response for the 10-th order half-band filter is presented in Figure 6.8. Its magnitude response
is shown in Figure 6.9.

IHGw )l
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Figure 6.9 — An impulse response of a half-band filter
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H(w )|
1+ |

0.8 +
0.6

4 (0.5; 0.25)
04+

0.2+

01 02 03 04 05 06 07 08 09 1 w
Figure 6.10 — Magnitude response of 10 order Half-band filter

The number of multipliers M in the folded form of a half-band filter can be found as

M= s+1 +1
=— )
where s — the number of branches. If we derive the number of branches from the filter order N, it will be
s=N+1.
So M can be calculated through filter order as
M = N + 2
= ,
Additionally, structure can be folded like in Figure 6.10 for further multiplier reduction.
— z! z! z! z’ z!
x(n) * z’ z' e v 7' e z!
h(0) h(2) h(4) h(5)
D D D> yn)

Figure 6.11 — Folded form of the 10-th order half-band filter
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§7.1 Introduction

In the previous chapter, we discussed filters that have a finite length of an impulse response. Now, we
go forward and take into consideration a case when the impulse has an unlimited length, i.e. infinite impulse
response. To achieve this feature, it is required to introduce feedback into a filter. Let's do this with ordinary
FIR structure. The transformations of FIR filter structure are presented in Figure 7.1. The last structure is an
infinite impulse response filter (IIR filter).

x(n) Z' e 27 e 2
l
x(n) Wﬁ@eyw) x(n) DD 1 ()
+

I | )

1
do
zZ a — z! a by z!
1
as
as

y(n)

B@%i
e T Lo

as

z az Z

Figure 7.1 — An introduction of a feedback into filter structure

Now, we try to write an expression for such a filter output
y(n) =apx(n) + ayx(n—1) + a,x(n —2) + azx(n —3) + byy(n — 1) + by,y(n — 2) + b3y(n — 3)

3 3
= Z agx(n—k) + Z bry(n —k)
k=0 k=1
And in a general case, we have for IIR filter
N M
y(m) = ) agx(n =1+ Y bey(n—k)
k=0 k=1

From this expression, we can conclude that lIR filter is also a linear-time-invariant system. So the output
of IIR filter can be expressed with its impulse response and convolution operation.

OEDWIGRCET)
k=0

However, impulse response is not just a sequence of coefficients like in FIR filter and reaches zero value at
infinity, i.e.
lim h(n) =0

n—+oo
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So unlike FIR filter the upper limit of convolution sum cannot be replaced with a finite number.
Why are IIR filters of interest? Such filters have significantly higher slope and attenuation for the same
filter order. Figure 7.2 shows magnitude response of FIR and IR filter having the 5" order. As a result IIR filters
demand less hardware costs than FIR filter for the certain response requirements.

IHGw )

1.0

0.8+

0.6

044

0.2+

0.1 02 03 0.4 05 w

Figure 7.2 — Magnitude response of the 5% order FIR (blue) and IIR (red) filters
§7.2 Filter analysis

As impulse response of IIR is not directly expressed with filter coefficients, to get the transfer function
of IR we need to make Z-transform for the output expression. In general case, the output expression is

N M
Y00 = Y agx(n =)+ Y bey(n— k)
k=0 k=1
So its Z-transform is
N M
Y(2) = Z{y(n)} = 2 a, X(2)z7* + Z b,Y(2)z7k.
k=0 k=1
We know that transfer function is defined as
Y(2)
H(z) = X

So we can rewrite the expression for the output as

M N
Y(2) <1 - b z_k> =X(2) ) apz7¢

and derive the transfer function as

Y(2) _ Yh—oaxz™*

X(z2) 1-3M bz ¥

The order for an IIR filter is defined also as in §6.2, i.e. the maximum value of M and N.

H(z) =

From the transfer function, magnitude and phase responses are obtained in the same way as for FIR
filters. In terms of phase response linearity, IIR filter cannot provide strict linear dependence in the pass-band
under no circumstances. It results from the filter and transfer function structures: denominator always has
leading coefficient that equals 1, which prevents conversion of the fraction to a single trigonometric function.

§7.3 Stability

Unlike FIR, IIR filters has denominator that can turn to 0. In other words, transfer function has poles and
system may become unstable. As we have discussed in 1.9.2, the left half-plane of p-plane is transformed into
a unit circle in z-plane. Stable IIR filter has all poles inside this unit circle. A presence of at least one pole

74



Chapter 7 Infinite impulse response filters
outside the unit circle means that IIR filter is unstable and can become a generator. An illustration of poles
location and systems stability is presented in Figure 7.3. Stability of IIR filter should be guaranteed by a filter
designer with an appropriate choice of transfer function and its conversion during hardware implementation.

N Imz
X stable
cond. stable X
X unstable
X

Figure 7.3 — Magnitude response of the 5% order FIR (blue) and IIR (red) filters
§7.4 Structures

7.4.1 General considerations

A structure obtained in §7.1 is a Direct Form | of a IIR filter. Beside this form, a complementary one
exists. Knowing that IIR filter is a LTI system, we can employ commutativity property and swap its parts. The
final structure will be equivalent to the original structure and is called Direct Form Il. Both forms are depicted

in Figure 7.4.
) QDD ) P @D

z! do z! z! z! ao
4H%H—D @H%H. @H%H. 1H%H—D
Z_1 a; b Z_1 b, Z_1 Z-1 a;
L |

a» b, b, ax

Direct Form | Direct Form Il

Figure 7.4 — Direct Forms of a IR filter
Both forms can be simplified by combining the similar blocks into one. Simplified structures are shown
in Figure 7.5. In Direct Form |, adders can be combined together. However, this simplification affect only the
structure presentation as real adders have only two inputs and the total number of real adders will be the
same. In terms of Direct Form Il, simplification matters as it reduces number of delay units almost by 2 times.
The Direct Form Il is called the canonical form because it uses the minimal number of delay units, adders and

multipliers.
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x(n) ﬂ%@—lﬁ Y x(n) =D 1 w y(n)
z" ao z" z" do
R P D
7'« b | Z! b | 2| a
%@Q AM*
a b, b, az
Simplified Direct Form | Simplified Direct Form II

Figure 7.5 — Simplified Direct Forms of a IIR filter

In addition to the Direct Forms, there are Transposed Forms. Transposition can be done by the following
algorithm:

1. Replace nodes with adders;

2. Replace adder with nodes;

3. Revert arrows direction.
Transposed forms are illustrated in Figure 7.6.

x(n) XL X (n)  x(n) — W (n)
@ @y y
z' o |z o |z
Z_1 b a; Z_1 a; Z_1 b
bz a, ap bz
Transposed Direct Form | Transposed Direct Form |l

Figure 7.6 — Transposed Direct Forms of a IR filter
7.4.2 Implementation issues

Consider all mentioned forms from an implementation point of view. Take into account length of critical
path and necessity of a quantization (rounding) block Q(z). Both issues are highlighted in Figure 7.7. Red line
represents possible critical path. A quantization block is obligatory required at the output and in the
beginning of the feedback path. The output quantization block provides the required resolution of the output
samples since intermediate resolution is larger due to precision loss prevention measures. The quantization
block in the beginning of the feedback path limits growth of the resolution in the feedback loop.

If some operations are done between the mentioned quantization blocks and delay unit, an additional
quantization block can be inserted at delay unit input (dashed blocks). Such a quantization is optional as it
can be interchanged with a resolution increase of the following delay unit. Profit of this interchange should
be assessed in accordance with a system application.
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x(n) W Q@) 1 ) x(n) —(1H Q@) ﬂa@% Q@) P y(n)
z! ao z! z! ao
0%(%)%(—%)&(%)%0 G—H%Hq —|?
Z_1 a, b, Z_1 b, Z_1 aq
%@e@e@@
a; bg bz az
Direct Form | Direct Form Il
x(n) s@— Q(2) W Q@) B y(n) x(n) _.W Q(2) y(n)
Z_1 do Z_1 do Z_1
r—=- r—ll\——' r—/l\——'
Q@) Q@) Q@)
L, | L,

4
1
:

Z_1 b, a, z ! a, Z_1 b,
r_ll\__i r_/l\__i r_ll\__i
| | |
1 Q2) 1Q2) 1 1Q2)
L_[J L_FJ L_EJ
b2 a; a bZ

Transposed Form | Transposed Form Il
Figure 7.7 — Critical path and quantization blocks in different structures

Let's summarize pros and cons of each form in terms of implementation

Form | Form |l
e Large number of delay units; e Small number of delay units;
: e Critical path grows with order; e Critical path grows with order;
Direct . . .
e The minimal number of roundings; e 2 roundings;
e Delay units with the minimal resolution; e Delay units with a moderate resolution;
e Large number of delay units; ¢ Small number of delay units;
e Critical path does not depend on order; e Critical path does not depend on order;
Transposed | ¢ 2 roundings; The minimal number of roundings;
e Delay units with a growing resolution (may Delay units with a growing resolution (may
be interchanged with rounding); be interchanged with rounding);

Fixed point DSP usually prefers the non-transposed forms. The main limitation in such processing is a
precision loss, so number of rounding should be minimized. Direct Forms has no more than 2 rounding, and
they do not provoke an increase in resolution in delay units. These factors allow to obtain very resource
efficient implementations. However, in high-speed applications systems incline to use transposed forms due
to their minimal critical path. Floating point DSP usually prefers the transposed forms (especially, canonical
form). In floating point calculations, precision loss is not a critical issue. So benefits of transposed forms, like
shorter critical path, can be adopted without noticeable losses.

§7.5 Pitfalls in IIR filter realization
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Let's imagine that you design some filter. It perfectly fits the requirements. However, due to incorrect
implementation it may have other parameters or even become a generator. Why may it happen? You have
not taken into account finite resolution of operation blocks. Which type of error should be taken into account?

1. Coefficient quantization;

2. Overflow and underflow;

3. Rounding.

Each filter coefficient can be stored with finite resolution. Lack of resolution leads to an error in a
coefficient presentation and changes in transfer function. So filter parameters deviate from the nominal
values. Such deviation may translate into a shift of poles outside unit circle making filter unstable.

Overflow and underflow typically relates to adder and multipliers, which cannot present operation result
with sufficient precision. Overflow means that resulting number is larger than possible for given resolution.
Underflow means that resulting number is smaller than possible for presentation.

Rounding may be a part of adder or multiplier or be a standalone block. Rounding limits sample
resolution and explicitly introduces a calculation error. In correctly designed systems, the introduced error
does not affect the system stability and the output accuracy. Does FIR filter have the same problems? Yes.
However, due to an absence of the feedback, they are not so critical.

§7.6 Cascaded design
One of possible solution to mitigate the above issues of finite resolution is a cascaded design. At first,
let's remember how systems can be combined. Figure 7.8 illustrates two possible connections: parallel and
serial. These options are expressed as
Hyaratie1(z) = H1(z) + Hy(2) and Hgeriqi(2) = H1(2) X H(2).
In this paragraph, we are interested in the last one — serial connection.

|__H_earaiel(2
H1(2) : [— — — — — Hﬁriaiz) -
x(n) —¢ | v xn)H H@ H He Hyn)
Ha(2) | == |
| __ |
a) b)

Figure 7.8 — Parallel (a) and serial (b) connection of systems

The main point of the cascaded design is to split a high-order system into a serial connection of low-
order systems. This motivation origins from the fact that high-order systems impose high requirements on
the accuracy of coefficients and calculations. So a transition to low-order systems allows to relax requirements
and simplify design process. The key issue in this transition is a factorization of the target transfer function.
Such a factorization employs second—order sections (SOS). The second order sections are preferred to the
first order because the latter one can lead factorization to complex-valued coefficients that are less
convenient for implementation. The second order always has real-valued coefficients. As a result, the target
transfer function H(z) is presented as

i i Ao + i1z 1+ apz7?
H(z) = L_l[Hi(Z) - | I T+ bz T+ bz ?

where Hi(z) — a transfer function of i-th SOS, a; and b;j — coefficients of SOS. Structure of cascaded design is

depicted in Figure 7.9.
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4 ! aio VA ! a0
P10 Q@100
by Z_1 ais bas Z_1 a1
b1, ai b, az

Figure 7.9 — Cascaded filter based on SOS

However, the following issue should be taken into account. As transfer functions are multiplied, ripples
in the pass-band increase. Let's illustrate this and take transfer function in the pass-band as
H(z) =1+R.
If we serially put blocks with such a transfer function, then
HZ)xH(EZ)=(1+R)(1+R)=1+2R+R? ~1+ 2R + o(R?).
for R << 1.From there, it can be seen that ripples increase up to 2 times. So each SOS has stricter requirements

for ripples than the target transfer function.

§7.7 Matrix form

In this paragraph, we discuss how to organize calculations of the output samples for IIR filter using
matrix forms and operations. Have a look at an example. Consider filter structure depicted in Figure 7.10.

x(n) T{?ﬁ@—?ﬁ@—)—lﬁ y(n)
1

-1
Z do

Figure 7.10 -

It is described by the following expression:
Yn = QoXn + A1Xp_1 + AXn_2 + b1Yn_1 + b2yn—2
Let by = 0, then
Yn = QoXn + Q1Xp_1 + ApXn_3 + boYn + D1Yn—1 + bayn—;
Now, introduce the input and the output vectors
le yTl
Xn—1 }_/ = |Yn-1

Xn-2 Yn-2

X =

and coefficient vectors
A=[ap a1 az],B=[by by by]=[0 by by
Then the filter expression can be rewritten as
Y, = AX + BY.

We remember that on every clock cycle

Vi 2 Yi-1-
That is, in our example it will be as
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Chapter 7 Infinite impulse response filters
_ Yn 2 Yn-1,Yn-1 = Yn-2
If we introduce 2 output vectors: y' (new output vector) and y (current output vector), then we can take it into
account by the following expanding of A and B.
Qg a; a; 0 by by
A= [0 0 0],8 =11 0 O
0O 0 0 0 1 0
The output vector for y' is correspondingly

[ .
Y =|¥'n-1
y,n—z
So the final form for the calculations is
y' = Bx + Ay
Let's check it
ap al a2 Xn 0 bl bz Yn AoXp + A1 Xn-1 + ArXn—>2 blyn—l + ben—Z
ynl—[ Xn-1|+11 0 O0[|Vn-1|= 0 + Vn
V-2 Xn—2 0 1 Vn-2 0 Vn-1
AoXp + A1 Xp_q + A2Xp_3 + b1Yn_1 + byYn_»
= Yn
Yn-1
And after each iteration of calculation
y' -y
This approach can be generalized. General form of the output is
N
y) = Y agx(n =) + Y bey(n— k)
k=0 k=1
If assume that by = 0, then
N M
y) = ) agx(n =1+ ) bey(n—k)
k=0 k=0
Input and output vectors are
xn yTl
- Xn-1] _ Yn-1
=1 Y=o
Xn—-N Yn-Mm
And coefficient matrices
a, a, aN [bo by by -1 bM]
0 0 | 1 0 0 0 |
A=, | ,B=|0 1 0 OI'
0 0 0 5 5
l0 0 1 0 J

§7.8 Comparison of FIR and IIR filters

Now we compare digital filter realizations. For the comparison we assume that filters have the same

slope.

Parameter FIR filter [IR filter

Computation .
difficulty/hardware costs High Low

Lower (but ultra-fast with

Performance/speed some special techniques) Higher
Iregularity of a magnitude Depends on window Depends on prototype
response

80



Chapter 7 Infinite impulse response filters

. . Linear in the passband for
Linearity of a phase . :
a symmetric impulse Nonlinear
response
response

" M rovi

Stability Guaranteed ust be p ° ded by
design

Computation difficulty and performance are strongly correlated with number of coefficients. A FIR filter
has larger coefficients number than an IIR. As a consequence, you need more multiply and adder operations
with more inputs. The first one affects hardware costs, the second one affects speed. Despite these issues, the
FIR filters have major advantages: linear phase response and guaranteed stability.

In terms of direct forms, a FIR filter is slower than an IIR filter due to larger number of coefficients and,
as a consequence, larger critical path. But a combination of the transposed form with pipelining can increase
speed of FIR up to D flip-flop delay limitation. In contrast, IIR has a feedback loop that cannot be pipelined
and limits speed. A parallelization (unlike pipelining) is applicable for both types and cannot highlight one
type of filters.
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Chapter 8 Sample rate conversion

§8.1 Decimation

Decimation means that we drop some samples from the input sequence, supposing them as redundant
with no additional information. It is possible when sampling frequency f; is significantly higher than signal
band B (see Figure 8.1). Then we can occupy the empty band by reducing sampling frequency to fs (Figure
8.2) The output sequence y(n) in the decimation is expressed as

y(m) = x(Mn + no)
where M — a decimation factor, no — an initial shift. Then sampling frequency will be

[

M
and spectrum will be as in Figure 8.2. The decimation is not time-invariant transformation. Its output sequence
has strong dependence from the initial shift no.

NUI |
|
|
|
B Empty band
0 fi f
Figure 8.1 — Sampling frequency fs is significantly higher than signal band B
Nul |
|
|
/ |
B
0 fs fi f

Figure 8.2 — Reduction of the sampling frequency by 2 times

Similar to the sampling, it is necessary to take into account the presence of unwanted signals and noise
outside the signal band, as they can occur in the signal band after the decimation (an example is shown in
Figure 8.3). To prevent it, a low-pass filter (LPF) is required before the decimation, which should attenuate the
out-of-band signal to an acceptable level (Figure 8.4). The required magnitude response of such a filter is
depicted as yellow slashed line in Figure 8.3.

Nul |

: |

Filter frequency response |

« |

|

B

AL ALA L] |

0 fs fi f
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Chapter 8 Sample rate conversion
Figure 8.3 — Spectrum after decimation in presence of undesired signals and noise

X0) o | PF I oM X2

Figure 8.4 — Application of a filter in combination with decimation
§8.2 Interpolation

Interpolation is reverse process when we reconstruct absent samples and increase sampling frequency
fs. Herewith, it is supposed during reconstruction that the signal band is known. To reconstruct samples and
increase f; by M times, we need to insert M-1 zeroes between the input samples (Figure 8.5).

x(n)

Figure 8.5 — Insertion of zeroes samples

After the insertion of M-1 zeroes, spectrum of the signal does not change, but sampling frequency increases
by M times. Let's show that zeroes insertion does not change the spectrum. After insertion

yMn) = x(n); f§ = Mfs.

Then
MN-1 N-1M-1
_.2nmnm _2n(Mn+k)m
romy= Yy e W =y N y(un+ k) e W =

n=0 n=0 k=0

N-1 N—-1M-1 N—1
_.2nMnm _2n(Mn+k)m _.2nnm
=Zy(Mn)-e’ NM +22y(Mn+k)-e’ NM =Zx(n)~e’ N = X(m)

n=0 x(n) n=0 k=1 0 n=0

These changes of spectrum are illustrated in Figure 8.6.

The last step of interpolation is attenuation odd aliases of the signal that now are inside the new
frequency band for f;'. For this purpose, a digital filter with magnitude response shown in Figure 8.7 should
be employed. Its stop-band should starts at least from the f;/2 frequency.
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N0l

C original
of f C alias

C some signal in band

NOl

0 fs fs f
Figure 8.6 — Changes in the spectrum after zeroes insertion

IS | |
- _/Filter frechuency response |

dhdh

Figure 8.7 — Magnitude response of an interpolation filter.

§8.3 Conversion with fractional coefficient

We have discussed decimation (lowering sample rate by integer number) and interpolation (increasing
sample rate by integer number). Can we change sample rate by some fractional number? Yes. To do this, we
need to combine interpolation and decimation in a way depicted in Figure 8.1. At first, we do an interpolation
by M times, then a decimation by N times. As a result, we get a new sampling frequency f equals

,_M
f—ﬁ'f

=2y M 3 LPF (5 U N 55

Figure 8.8 — A structure of sample rate conversion with a fractional coefficient

Between this two operations, a low-pass filter (LPF) is needed. The filter plays two roles. The first role is
restoring the signal after putting zeroes during interpolation. The second role is attenuation of signals out of
the passband to prevent distortion after decimation. May we change order of interpolation and decimation?
Yes, but then we require two LFPs.

Now, let's have a look at changing of the signal magnitude. It is summarized in the following table

84



Chapter 8 Sample rate conversion

Magnitude Decimation Interpolation
In time domain NO change M
In frequency domain LM NO change

How can we explain it? For decimation, we definitely know that the magnitude in the time domain
doesn’t change. For the frequency domain, we know that the magnitude is proportional to the number of

samples N.
A~N.
After decimation, we get lower number of samples
, N , ., A
N == AN =
Thus, magnitude in frequency domain will be lower by M times.

Regarding interpolation, we have proven that the magnitude in the frequency domain doesn’t change.

For the time domain, we know that inverse DFT is proportional to inverse number of samples 1/N.

4 1
N

After interpolation, we get greater number of samples
N NM N M M
Thus, the magnitude in the time domain will be lower by M times.

A
M
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Chapter 9 Averaging

§9.1 Introduction

Typically, received signal contains noise induced by environment. This noise can be expressed by
multiplicative term p(t) and additive term n(t), i.e.
s'(0) = (@) - s@®) +n@)
where s'(t) — received signal, s(t) — transmitted signal. In this Chapter, we will discuss only influence of the
additive term. So, the received signal is considered as
s'"(t) = a-s(t) +n(t).
Additive term is commonly considered as white noise, that is we assume that n(t) has the normal
distribution and the mean value (the mathematic expectation) equals 0. It is expressed by the following

formulas
Eee]

= f n-P@m)dn=0;P(n) =
o

—00

1 _(m-m?
e 20%

2n

In signal processing, we consider that processes have ergodicity property. Ergodicity means that
averaging of system behavior over time axis is equivalent to averaging over all possible values. Thus, previous

expression for the mean value of the noise can be rewritten as
+ 00

7= | n@de=0

Then it is possible to state that averaging of the received signal over time provide us the transmitted signal
S =a-s(t)+7 =a-s(t)

To make averaging of the received signal, we need to acquire several sample sets, where it is known
that transmitted signal was the same. Averaging over time can be divided into two cases: coherent averaging
and incoherent averaging (Figure 9.1). Coherent averaging is applied when we know the phase of each sample
set; incoherent averaging, on the contrary, is applied when the phase of each sample set is unknown.

Averaging

Coherent averaging Incoherent averaging
we know the phase of we don’t know the phase
each sample set of each sample set

Figure 9.1 — Types of averaging
§9.2 Coherent averaging

If we know the phase of each sample set, then we can overlap sample sets with each other (see Figure
9.2). There k-th sample set with duration T is designated as s'«(t). Each sample set starts with the same phase,
and at the specific moment in time samples differ only by noise value. Then we can express averaged received
signal in the following form

K
1
Sa () = 2 ) 5 (K)
i=1
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Chapter 9 Averaging
For the extreme case when infinite number of sets is taken into account

K
1
(1) = Jim =" 5k (k) = - 5(k) +77 = 0
i=1

s(t)
) ; Jj " e I ’” .jf " t . 7" t
SHY "4“ i M“u ‘ ‘l}"‘“i "W ! Hw l”ﬁ%”‘\m‘#l *v{t ”\
bbby o A ,ul
g Mh&W»W“ LT
Sk(t) L e s S e
e b *“""'7:1' g

Figure 9.2 — lllustration of the coherent averaging

For ergodicity process, we may rewrite the above formula as
K

1
st (k) = EZS’(N x i+ k)
i=1
where N corresponds to the sample set duration T.
Due to linearity of the DFT, equation for the averaged signal can be transformed into

1
Saw(m) =2 > Si(m)
i=1

where §'a,(m) — DFT of the averaged signal, S'«(m) — DFT of k-th sample set. This means that coherent averaging
can be done both in time and frequency domains. Moreover, making averaging in frequency domain, we can
restore averaged signal in time domain through performing inverse DFT for S'a/(m). After averaging dispersion
of noise is reduced by number of sample sets, i.e.

§9.3 Incoherent averaging

On the contrary, incoherent averaging is used when we don’t know a phase of each sample set. It is
illustrated in Figure 9.3. There each sample set starts with different shift in time (phase). So, the approach for
averaging proposed in the previous section cannot be applied here.
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s(t)
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Figure 9.3 — lllustration of the incoherent averaging

Can we still reduce noise influence through averaging? We can still do averaging in frequency domain.
But with a little change. We do it only for magnitude response. Due to different phase of sample sets,
averaging of phase responses is not valid.

K
[Sau(m)| = 2 Y ISk ()
i=1

And, as a consequence, there we cannot restore averaged signal through inverse DFT due to absence of
information about phase (phase response). Improvement for this type of averaging is the same as in the
previous case, that is
Ogv = 0_1271
K
In the incoherent averaging, we cannot reconstruct the original signal (we don’t know its phase
component). As a result, the incoherent averaging does not actually decrease noise power and, consequently,
does not improve SNR value. From this point of view, a decrease in the dispersion oa.,, indeed, only means a

decrease in fluctuations of noise samples in the spectrum.
§9.4 Realization of averaging

In Figure 9.4 you can see example of averaging realization. It contains several averaging FIR filters. Each
filter provides one sample of the averaged signal. The input sequence x(n) is switched between these filters
over the time. That is, samples with indices 0, N, 2N and so on go to Filter 0; with indices 1, N+1, 2N+1 and
so on to Filter 1 and etc. Sequence x(n) can be either time domain or frequency domain samples.
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x(n)—)— Filter 1 - o)

— Filter N-1 5 Vau(N-1)

Figure 9.4 — Averaging filter
§9.5 Exponential averaging

The realization presented in the previous section requires a large number of delays, multiplications and
summations. If you need to reduce only high-frequency noise, there are more efficient ways. One of this
efficient ways to do an averaging is an exponential averaging, which structure is shown in Figure 9.5. The
output of this structure is defined by

ym)=a-x(n)+A-a) - y(n—-1).
From there, we can obtain its transfer function

T(z) =

a
1-(1—-a)-z1

And impulse response
hn)=a-(1—a)™
Impulse response of such a filter with different a is depicted in Figure 9.6.

X(l’)) ‘l‘y >)/(n)

1-a
Figure 9.5 — A structure of the exponential averaging
Exponential averaging is a parametric low-pass IIR filter. Its parameter a defines noise reduction factor
(i.e. cut-off frequency of the filter). Varying coefficient o, we can change the influence of the input sample to
the output. With a — 0, the input sample doesn't affect the output and, therefore, noise is reduced. With o =

1, the output exactly equals the input, and noise reduction is absent. In Figure 9.7, you can see dependence
between and a and SNR improvement. This improvement can be expressed by the following equations
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a
2—«a
For instance, S = 0 dB with a = 0 and S = 13 dB with o = 0.1. This structure is significantly simpler than the

a
o2, = maizn;s = —101log,

filter from the section §9.4. However, it reduces only high-frequency noise components and cannot reduce
in-band noise, unlike the fair averaging presented in the section §9.4.

h(n
S —4=02

I N I AN
— T T T T T 7

1 2 3 4 5 6 7 8 9 n

Figure 9.6 — An impulse response of the exponential averaging with different o

S, dB
14 -

12 1

10

Figure 9.7 — SNR increase caused by the exponential averaging
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Chapter 10 Analytic signal
§10.1 Introduction

We already know real signals. For example:
s(t) = Acos(wt).
But there is an analytic signal (or a complex signal) z(t) corresponding to this real signal. It is expressed by:
z(t) = s(0) +j8(0),
where 3(t) — an orthogonal complement to s(t). The orthogonal complement is the Hilbert transform of s(t).
That is, it can be calculated by the following expression:

T t—1

— 00

§(0) = H{s(O)} = - f @ 4

where  — the Hilbert Transform. From circuit design point of view Hilbert transform may be interpreted as
phase shifter for —t/2.
Now let's discuss the spectrum of the analytic signal. Let S(w) — the spectrum of s(t) and S(w) - the
spectrum of 3(t). It is known (will be discussed in Section §11.1) that S(w) is equal to
$(w) = S(w) - eIz,
Then the spectrum Z(w) of the analytic signal is

S(@) +j(=iS@)w>0 _ {ZS(a)),a) >0

Both spectrums are depicted in Figure 10.1.

N0l 0]

7 1 f

Figure 10.1 — Spectrums of a real and an analytic signal

§10.2 Complex envelope

Let's assume that the original input signal has some modulation, then it can be written in the following
form
s(t) = A(t) - cos(wot + (p(t)).
where A(t) — modulation of magnitude, ¢(t) — modulation of phase, wo — carrier frequency. For signals with a
relatively narrow band (B << fo) orthogonal complement equals
3(t) = A(t) - sin(wot + @ (D).
As a result analytic signal z(t) becomes
2(t) = A(t) - cos(wot + (1)) +j - A(t) - sin(wot + @(£)) = A(t) - e/ (@ot+e®)
Rewrite this expression
z(t) = A(¢) - elwot+o(t) — A(t) - el . gjwot — F(t) - eJ@ot
F(t)
Now all information is concentrated in function F(t) that is called “complex envelope”. We can get complex
envelope by the next multiplication
F(t) = z(t) - e /@0t
This is one of the ways to get the complex envelope. The spectrum of the complex envelope is
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+00 +o0 +o
_j _j _j _; 25(w + wg),w +wy =0
— jwt — . Jjwot . jwt _ . Jj(w+wy)t _ 0 0
F(w) = J F(t)e dt = j z(t) -e /@l . ¢ dt = f z(t) - e o)tdt —{ 0, <0

Spectrums of a real signal, analytic signal and complex envelope are depicted in Figure 10.2.

[S(w)]

O |

1Z(w)| |F(w)]

0 Wo w 0 w
Figure 10.2 — Spectrums of the real, complex and envelope signals
Now, we take a closer look at the complex envelope. Write it down again
F(t) = A(t) - e/o®
Take the absolute value and phase of this complex function
IF(D)] = |A@D) - e/2®] = |A@®)| = AD)
arg F(t) = arg(A(¢) - ejq’(t)) = arg(A(®)) + ¢(©) = ()

Thus, amplitude and phase modulations can be detected by means of operations with complex
envelope. Moreover, absolute value of the complex envelope can be extracted even without addition or
multiplication. Indeed,

|z(t)| = J(A(t) - cos(wot + qo(t)))z + (A(®) - sin(wot + go(t)))z

= A(t) - Jcosz(wot + @(t)) + sin?(wot + @(t)) = A(t)

1

§10.3 Quadrature components

Parts of analytic signal are often called quadrature components and designated as / (in-phase) and Q
(quadrature). Using this terms, analytic signal is written as
F(t) =1(t) +jQ(®);
1(t) = A(t) - cosp(t); Q(t) = A(t) - sinp(t).
How to transmit quadrature components? This process is shown in Figure 10.2 and can be explained
like that
s(t) = A(t) - cos(a)ot + (p(t)) = A(t)(cos @(t) - cos wot — sin@(t) - sinwyt) = I(t) - coswyt — Q(t) - sinwyt
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DAC
Re | § N
£
Fif) — Cés(wO) A S s(t)
-sin(wot) /
m om % V4

DAC

Figure 10.3 — A generation of a real signal s(t) from complex envelope F(t)

There, a structure with Digital-to-RF DAC is presented. However, the DAC can be placed both before mixer —
Digital-to-IF (Intermediate Frequency) — and after adder — Direct Digital Synthesis (DDS).

In terms of receiver, we have already mentioned in previous section one way of quadrature components
obtaining — Direct Digital Conversion (DDC) with multiplying the complex signal by the carrier (i.e. mixer in
the digital domain). Another way is a structure presented in Figure 10.4, where the mixer is analog and its
output signal has Zero-IF or Low-IF. The low-pass filter in Figure 10.4 play two roles:

e Anti-aliasing filter for the ADC;

¢ Filtering high-frequency image after frequency conversion.

Let's talk about the last point. After conversion the received signal s(t) will be multiplied by the carrier with
frequency wy, i.e.

In I channel

s(t) - coswot = A(t) - cos(wot + @(t)) - cos wot = A(t) - cos(@ot + ¢(8) = wob) ; cos(@ot +¢(t) + wot)

_ A(t) ) COS((P(t)) + COZS(Zth + (p(t)) — %I(t) + ? . COS(Z(I)Ot + (p(t))

In Q channel
s(t) - (—sinwgt) = A(¢) - cos(wot + ¢(t)) - sin(—wyt)

sin(wot + @(t) — wot) + sin(wot + @(t) + wot) _ sin(p(®)) + sin(2wot + ¢(1))

=A(t) - 5 A(t) 2
= %Q(t) + ? - sin(2wot + @(t)).
The component with frequency 2wy is unnecessary and should be filtered out.
I(t)
% LPF ADC Re
cos(wot)
s(t)——¢ : — F(0)
-sin(wot)
% LPF L ADC Im
Q(t)

Figure 10.4 — Zero IF receiver
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§10.4 Why do we need it?

Why do we need so strange entity as analytic signal? Let's imagine that we get 3 samples of a harmonic
signal (Figure 10.5). Can we determine amplitude, frequency and phase of this signal? Yes, for this purpose,
we need to solve the following system

A - cos (w- 0tg + @) = x(0);
A-cos (w-1tg + @) = x(1);
A-cos (w-2ts + @) = x(2).

There are 3 unknown variables: A, w and @. It is not so easy to solve this, but it is possible. What if we
have analytic signal that corresponds to this real signal? It will be easier to determine this parameters, that is
A=|z(n)|; ¢ = argz(n)

And this is with just one sample. The second sample can give us the frequency
w =argz(n)—argz(n—1)

x(n)/\

T

012 n

Figure 10.5 — Three samples of some harmonic signal

WV
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Chapter 11 Hilbert transform

§11.1 Transfer function and impulse response of Hilbert transform
11.1.1  Continuous time
In §10.1 we have discussed that orthogonal complement can be obtained with Hilbert transform

+00
@ dr.
t—71

1
50 = 9s@ = |

Here, we discuss Hilbert transform more detailed. From the expression above, it is seen that Hilbert transform

is a convolution of function s(t) and function h(t)
1
h(t) = E

In other words, we can say that Hilbert transform is a LTI system with impulse response h(t). Let's try to get
its transfer function.

+00 +00 0 +oo
. 1 . 1 . 1 .
H(w) = f h(t)e 7@tdt = f —e lotlgt = f—e‘f‘“tdt+f —e Jolgt =
Tt Tt t
— 00 —00 —00 0

0 +o0 0 +00 +o0 +00
1 . 1 . 1 . 1 , 1 . 1 .
= e JoCEG(—t) + | —eJotdt = | —ef®tdt+ | —eJldt =— | —el@tdt+ | —eJ@tdt
m(—t) mt mwt mwt mt mt
+oo 0 +00 0 0 0

+00 . . +00
_f e‘f“’t—el‘”tdt_f —2jsinwtdt_—2j T L
= — = p— =—— 5 sighw=—j signw
0 0
(Reminder of a table integral)
+00
f sin kxd T k
L dx=7sign
0
Finally, we have that
Impulse response Transfer function
1 j,w <0
h(t) = — H(w)=—j-signw={0,w=0
Tt —j,w>0

Impulse response and transfer function of Hilbert transform are illustrated in Figure 11.1.

h(t) [HGw )l

Figure 11.1 — Impulse response and transfer function of Hilbert transform
11.1.2 Discrete time

As we see, the transfer function of the Hilbert transform is not limited by frequency. It results in
impossibility to just discretize the impulse response in time to get its discrete version. This issue is illustrated
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in Figure 11.1. After discretization transfer function will repeat and overlap each other (Figure 11.1a), and the
transformation will loss its properties. To prevent distortion caused by spectrum overlapping, we need to limit
transfer function by frequency. Let transfer function be equal to 0 outside the baseband (w>ws/2), then
spectrum repetition does not change properties of our transformation (Figure 11.1b).

Ha(w) Ha(w)
J j Ws
2
w %S . w
J J
Ha(w) Ha(w)
J .
J
; 1 % % % %
ws ws w ws Ws Ws w
2 2
y 7
o w
o —j - sigh w, |o] < 5/
Ho(@) = —j - sign @ Ho(w) = 0., C
0,lw| >%/,
a) b)

Figure 11.2 — Transfer function of the Hilbert transform after discretization without limitation of frequency
range (a) and with limitation of frequency range (b)

Now we need to get corresponding impulse response with the help of inverse IFT.

“)s/z ws/z

0 . 0 . w
hq(t) = L f Hy(w)e/“tdw = L f e/“tdw +— f —jel®tdw = Y S Ay 78
d 2m d 2m j2mt 2 j2mt 0
_wS/Z 2
.2 Ws
1 jst Wsy 1 wst 1 wst\  2sin®—=
1- +1-¢’2 (2—2cos—)= (1—cos—)=—
2nt( e ) 2mt 2 mt 2 mt
. o Tfst
_ 2 sin 5
t
That is
1 wst\ 2 sinszst
@ = (1 cos ) =20
a(®) = cos— —
To get the value of impulse response, we need to calculate a limit
2
Tyt
2 sin2 st 2 (it nf?t
lim;, g hy(t) = lim;,g———— = lim;_,g ——— = lim;,———=0
im0 hq(t) = limg,g — M0 Tt M0 )
Finally, the discrete version of the impulse response can be obtained with safe time variable replacement
t - ntg
2 sin? a)Tst 2 sin? % 2 sin? % 2 sin® %
mnt,  nnt,  wnty  wntg

This impulse response is depicted in Figure 11.3. It represents discretization of oscillation function with
frequency fi/2.
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t; 2t 3t t

Figure 11.3 — Impulse response of a discrete Hilbert transform
§11.2 Hilbert converter

Now, we know how impulse response of Hilbert transform looks like and can discuss how to implement
such a device. The straightforward approach to realize Hilbert converter is a FIR design. Impulse response
samples are just filter coefficients in this case. And there we have 2 options: with odd or even number of
coefficients. Why does it matter?

Impulse response of Hilbert transform is antisymmetric. From §6.3 we know that different number of
samples leads us to different types of magnitude responses (Figure 11.4). In case of even number of samples,
magnitude response equals to 0 only at 0 and f; frequencies. This is acceptable behavior as constant level
cannot have phase and orthogonal complement. In case of odd number of samples, magnitude response
additionally equals 0 at f/2 frequency. This behavior is undesirable as it limits pass-band of the Hilbert

converter.
|H(jw )| |H(w )|
12 12
10+ 104
08+ 084+
064+ 06+
044 044
024 024
} } } } } } } } } | } } } } ! } } } } }
01 02 03 04 05 06 07 08 09 1 w 01 02 03 04 05 06 07 08 09 1 w

Figure 11.4 — Magnitude responses of Hilbert converter with even (left) and odd (right) number of samples

Now, let's look at this issue from another point of view. Examples of a converter structure for even and
odd number of coefficients are shown in Figures 11.5 and 11.6. We know that the delay of a device is defined
by its group delay, which is expressed for a FIR filter as

do N-1
Tdo B2
In case of an even number of coefficients, the group delay becomes non-integer and makes it difficult to

synchronize y(n) and y(n) (delay z/? cannot be implement in single rate systems). In case of an odd number
of coefficients, the group delay is integer and y(n) and y(n) can be easily synchronized by taking y(n) from the
middle of converter.
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x(n) z! )z ) Z!
dp a, as as
XD XD D> y(n)

Figure 11.5 — Structure of converter with even number of coefficients
y(n)

x(n) z! 3 7' z! —y '

do [ef] ap ﬁﬁ;lé as dy

XD XD XD D>y

Figure 11.6 — Structure of converter with odd number of coefficients

There is a feature of impulse response for even number of samples. As impulse must be antisymmetric
it must not contain a zero sample at the center. It results in skipping all even samples in the impulse response
and impulse response becomes as in Figure 11.7. In frequency domain, it is equivalent to the following. We
get an impulse response for doubled f; and decimate it with indices 2n+1. The decimation leads to an overlap
of range [fs, 2fs] to range [0, f]. However, as they are identical, nothing changes.

h(t)

ts 2t t

Figure 11.7 — Impulse response for even number of samples

§11.3 Hilbert transform in frequency domain

Another approach to implement Hilbert transform and get analytic signal is a conversion in frequency
domain. One of possible solutions is to use fast convolution scheme. This implies:
Do DFT from the input sequence;
Multiply by the transfer function of Hilbert transform;
Restore signal with help of inverse DFT;
4. Add delay to the input sequence to synchronize components of an analytic signal.
Such a scheme is depicted in Figure 11.6.

wn o=
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Delay > I(n)

DFT ﬁ@)?ﬁ IDFT > Q(n)

H(z2)
Figure 11.8 — Hilbert transform with fast convolution

x(n)

Other possible solution is to transform the spectrum of a real-valued signal to the spectrum of a
complex-valued signal by the following procedure:

1. Do DFT from the input sequence;

2. Drop all samples for negative frequency;

3. Multiply samples for positive frequencies by 2 times (except 0 and fs/2);

4. Do inverse DFT and get analytic signal;

Nl 0]

1 1 f

Figure 11.9 — Conversion of a real-value signal to a complex-valued signal

There are some issues that should be taken into account. Both solutions rely on DFT and susceptible
for leakage. As a result, any change of frequency components may produce harmonic distortion and
inaccurate result will be obtained. Other issue is also because of leakage: both solutions cannot be directly
used in real-time processing. Only processing of the complete samples set makes sense. However, solution
can be modified to be applicable in real-time processing.
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