УДК 519.876.2

doi:10.18720/SPBPU/2/id25-301

Бурлуцкая Жанна Владиславовна

Санкт-Петербургский политехнический университет Петра Великого zhanna.burlutskaya@spbpu.com

МОДЕЛИРОВАНИЕ МУЛЬТИАГЕНТНЫХ ВЗАИМОДЕЙСТВИЙ В ПРОЦЕССЕ ВЕДЕНИЯ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ В СЕТЕВЫХ ОБЪЕДИНЕНИЯХ ТЕХНОЛОГИЧЕСКИХ КОМПАНИЙ

Аннотация. Цифровые модели сочетают в себе достоинства концептуальных и математических моделей, представляя собой реалистичные вычисляемые модели, способные прогнозировать состояния динамических систем. Однако, частные инструменты цифрового моделирования ограничены в возможностях описания мультиагентных взаимодействий, что снижает их предсказательную силу при работе со сложными организационными системами. Целью данной работы является разработка инструмента моделирования мультиагентных взаимодействий в сетевых объединениях технологических компаний в процессе инновационной деятельности. В рамках данной работы предлагается гибридный подход к моделированию системы управления инновационной деятельностью в сетевых объединениях технологических компаний, сочетающий инструменты теории игр и мультиагентный подход. В ходе работы выделяются типовые виды мультиагентных взаимодействий в сложной организационной системе сетевых объединений технологических компаний. Результатом работы является алгоритм распределения ресурсов в процессе реализации научно-технических разработок агентами сетевого объединения технологических компаний.

Ключевые слова: инновационная деятельность, моделирование организационных систем, мультиагентные взаимодействия, сетевые объединения технологических компаний.

Zhanna V. Burlutskaya

Peter the Great St. Petersburg Polytechnic University zhanna.burlutskaya@spbpu.com

MODELING OF MULTI-AGENT INTERACTIONS IN THE PROCESS OF INNOVATION ACTIVITIES IN INDUSTRIAL NETWORKS

Abstract. Digital models combine the advantages of conceptual and mathematical models, representing realistic computational models capable of predicting dynamic systems. However, private digital modeling tools are limited in their ability to describe multi-agent interactions, which reduces their predictive power when working with complex organizational systems. The purpose of this work is to develop a tool for modeling multi-agent interactions of industrial networks in the process of innovation. In this paper, we propose a hybrid approach to modeling the innovation management system of industrial networks, combining game theory tools and a multi-agent approach. In the course of the work, typical types of multi-agent interactions in a complex organizational system of industrial

networks are highlighted. The result of the work is an algorithm for allocating resources in the process of implementing scientific and technical developments by agents of industrial networks.

Keywords: innovative activity, modelling of organisational systems, multiagent interactions, industrial networks.

Введение

Одной из причин партнерских соглашений технологических компаний является потребность в дополнительных ресурсах для реализации научно-исследовательской деятельности, которая, в свою очередь, необходима для обеспечения технологического задела и устойчивых позиций на рынке [1,2]. Объединяясь, технологические компании формируют единый пул взаимодополняющих интеллектуальных и финансовых ресурсов, которые обладают большим потенциалом для создания высокотехнологичных продуктов в сравнении с возможностями отдельных компаний. Однако, в подобных объединениях вместе с увеличением ресурсов увеличивается количество центров принятия решений и, соответственно, организационная система становится децентрализованной. Переход к децентрализованной или распределенной системе принятия решений усложняет процессы научно-исследовательских разработок в части согласования разнородных целей, оптимизации процессов и оценки эффективности результатов деятельности [1-3]. В рамках решения поставленной проблемы разрабатывается теоретикоигровая модель стратегических взаимодействий сетевых объединений технологических компаний в процессе инновационной деятельности. В контексте данной работы предлагается разработка алгоритма мультиагентных взаимодействий в процессе разработки инновационных продуктов для последующей интеграции в модель стратегических взаимодействий сетевых объединений технологических компаний в процессе инновационной деятельности. В ходе работы приводится описание стратегий взаимодействия агентов в мультиагентных системах и их алгоримическая адаптация с учетом поставленной задачи.

Результаты

Для решения задачи распределения ресурсов сетевых объединений технологических компаний в процессе ведения инновационной деятельности предлагается использовать мультиагентный подход. Особенностью мультиагентного подхода является описание системы в виде независимых интеллектуальных агентов, обладающих собственными целями [4-6]. В контексте поставленной задачи это позволит рассматривать сложную систему сетевых объединений технологических компаний как в виде единой системы, так и в виде отдельных самодостаточных агентов, связанных между собой.

Рассматривая объект исследования как мультиагентную систему, необходимо выделить релевантные парадигмы взаимодействия агентов, характерные

как для сложных организационных систем, так и для мультиагентных систем в целом [4,7]. На основании анализа источников были выбраны следующие типы взаимодействий: кооперация, конкуренция и коопетиция [4,7]. Определим суть стратегий в контексте решаемой задачи.

Кооперация означает, что агенты работают вместе для достижения общей цели, обмениваясь информацией и ресурсами. В такой парадигме агенты будут обладать равными правами на ресурсы, поэтому успех стратегии будет зависеть от степени кооперации. Так, в контексте решаемой задачи, при кооперации компании будут реализовать разработку инновационных продуктов совместно, а ресурсы будут распределяться последовательно по проектам портфеля в зависимости от расчетных значений эффективности, основанной на оценке потенциального спроса, затрат и сроков реализации.

Конкуренция означает, что агенты будут конкурировать за ресурсы. Это значит, что при распределении ресурсов один агент будет получать больше ресурсов, что повысит его шансы на успешную реализацию проекта, но может негативно сказаться на других проектах, как минимум в части сроков реализации. С точки зрения разрабатываемого алгоритма логика распределения ресурсов будет схожей — ресурсы будут распределяться в зависимости от расчетных значений эффективности, однако, распределение будет одновременным и адресованным к производственной площадке (компании сети), а не проекту.

Коопетиция означает, что агенты могут как конкурировать, так и кооперироваться друг с другом, при этом они могут легко переходить от конкуренции к кооперации, и наоборот. Эта стратегия наиболее приближена к рыночным взаимоотношениям. Так, в разрабатываемой системе каждая площадка априори будет претендовать на равный пул ресурсов. Однако, после сопоставления полученных ресурсов с потребностью в ресурсах каждая площадка может отправить запрос на обмен ресурсами. Поскольку в рамках прототипа модели предполагается наличие только двух видов ресурсов, интеллектуальных и финансовых, то обмен ресурсами будет осуществляться в виде обмена ресурсов одной группы на другую. Данная стратегия предполагает, запрос на обмен ресурсами может быть отклонен. Тогда на данной производственной площадке будут проведен перерасчет показателей проекта с учетом ресурсов, находящихся в наличии.

В зависимости от выбранной стратегии меняется подход к распределению ресурсов (рисунок 1).

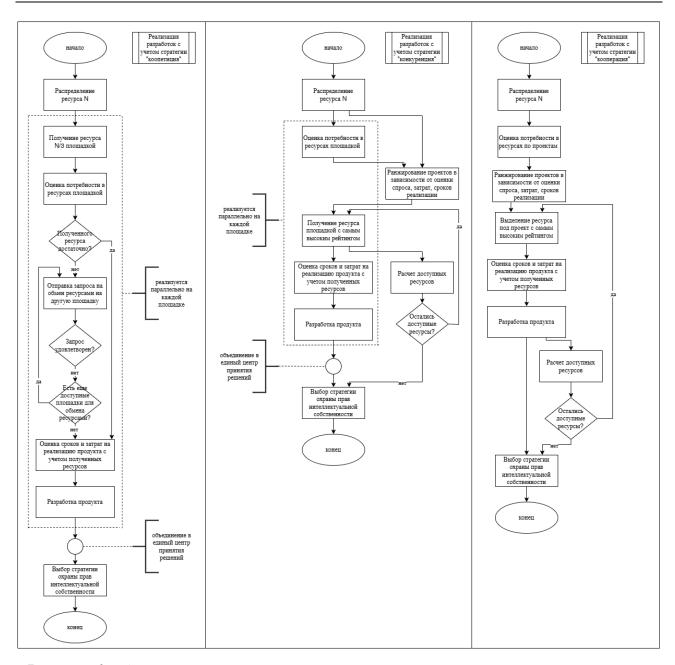


Рисунок 1 — Алгоритм распределения ресурсов в процессе реализации научнотехнических разработок агентами сетевого объединения технологических компаний

На рисунке представлены три ветки алгоритма распределения ресурсов в процессе реализации научно-технических разработок агентами сетевого объединения технологических компаний. Каждая ветка соответствует выбранной стратегии взаимодействия компаний сети в процессе разработки инновационного продукта.

Заключение

В ходе работы выделяются типовые виды мультиагентных взаимодействий в сложной организационной системе сетевых объединений технологических

компаний. Результатом работы является алгоритм распределения ресурсов в процессе реализации научно-технических разработок агентами сетевого объединения технологических компаний. На следующем этапе исследования планируется интеграция разработанного алгоритма в модель стратегических взаимодействий сетевых объединений технологических компаний в процессе инновационной деятельности, программная реализация модели и ее апробация.

Благодарность

Исследование выполнено при поддержке Министерства науки и высшего образования Российской Федерации (государственное задание № 075-03-2025-256 от 16.01.2025).

Библиографический список

- 1. Schilling, M. Technology Shocks, Technological Collaboration, and Innovation Outcomes // Organization Science. 2015. Vol. 26. 10.1287/orsc.2015.0970.
- 2. Bellini, E., Era, C. D., Verganti, R. A Design-Driven Approach for the Innovation Management within Networked Enterprises // Methodologies and Technologies for Networked Enterprises. 2012. P. 31–57.
- 3. Turkina, E., Van Assche, A., Kali, R. Structure and evolution of global cluster networks: evidence from the aerospace industry // Journal of Economic Geography. 2016. Vol. 16 (6). P. 1211–1234.
- 4. Ржевский Г.А. Скобелев П.О. Как управлять сложными системами? Мультиагентные технологии для создания интеллектуальных систем управления предприятиями, перевод с английского / Г.А. Ржевский, П.О. Скобелев. Самара : Офорт, 2015. 290 с.
- 5. Gorodetsky V.I., Kozhevnikov S.S., Novichkov D., Skobelev P.O. The Framework for Designing Autonomous Cyber-Physical Multi-agent Systems for Adaptive Resource Management // Lecture Notes in Computer Science. 2019. Vol. 11710 LNAI. P. 52-64. DOI 10.1007/978-3-030-27878-6 5.
- 6. Wooldridge M.J. An Introduction to Multiagent Systems // John Wiley & Sons Publ., Chichester, UK. -2009.-461 p.
- 7. Abbas H., Shaheen S., Amin M. Organization of Multi-Agent Systems: An Overview // International Journal of Intelligent Information Systems. 2015. DOI: 10.11648/j.ijiis.20150403.11.