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Abstract. The modified strain criterion-based method for fatigue assessment of structures is 
discussed. The damage is estimated based on the specified parameters of the criterion and the damage 
summation procedure by employing the finite-element method. With a reasonably fine mesh of the finite-
element model of the ‘critical location’ structure, the condition of the identity of damage in the material of 
the test specimen and the structure is provided and, respectively, the effect of uncertainty on the fatigue 
life assessment of the structure is reduced. The implementation of this version of the method is using the 
example of the fatigue life evaluation of a ship hull and superstructure detail at expansion joint.  
For comparison, the fatigue life of the detail is estimated using the standard S-N approach. The results 
are in approximate agreement; however, reducing the computational uncertainties with the help of  
the deformation criterion shows more physically reasonable fatigue properties of the detail. 

Аннотация. Приводится развитие метода оценки ресурса конструкций, основанного на 
использовании деформационного критерия. Оценка повреждения в узле конструкции выполняется 
на основе уточнения параметров критерия и процедуры суммирования повреждений с 
использованием метода конечных элементов. При целесообразно мелкой сетке конечных 
элементов расчетной модели «критической области» узла конструкции обеспечивается условие 
идентичности повреждения материала образца и конструкции и соответственно снижается эффект 
неопределенности в оценке долговечности конструкции. Применение метода в таком 
представлении показано на примере оценки усталости узла конструкции корпуса и надстройки 
судна в районе выреза для расширительного соединения. Для сравнения выполнен расчет 
ресурса узла с помощью расчетной S-N кривой, характеризующей свойства сварных соединений. 
Получено примерное согласование результатов, однако снижение роли неопределенностей в 
расчете с помощью деформационного критерия дает более благоприятные показатели 
надежности узла. 

Introduction 
Fatigue assessment of welded structures according to the current rules is based on applying  

the S-N criteria of fatigue failure at cyclic loading [1-6], etc. The test results implemented for determining 
the S-N curves include a crack initiation phase and crack growth until almost complete failure of 
specimens in two parts. Consequently, the methodology of the analysis and the particulars of the S-N 
curves do not allowdetermining the indications of damage of structural details and fatigue crack size; the 
occurrence of the latter is uncertain. Respectively, if the residual operational life of a structure should be 
estimated considering the safe period of the initiated crack propagation, and the crack extensions should 
be evaluated by applying the recommended approaches of the linear fracture mechanics, the necessary 
information on the initial crack size cannot be found. Apart from that, the designed S-N curves in Refs. 
[1–6], etc., are composed as a unified characterization of fatigue in a range of structural steels, 
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irrespective of the mechanical properties of steels. This also brings uncertainty into the results of fatigue 
evaluations of structures. Development of the approaches for numerically evaluating local stresses at 
critical locations for fatigue analysis (Hot-spot, Notch stress approaches [3–6]) introduces additional 
uncertainties since the analyses recommended have to be carried out based on the elastic behavior of 
the material, which contradicts the mechanics of fatigue. The mentioned factors cannot provide identity of 
damage between the test specimen and the structural detail; this fundamental principle is realized fairly 
approximately. 

Understanding the problem of damage fitness in test pieces and structures aroused researchers’ 
interest decades ago. V.P. Kogaev [7] suggested a statistical theory of fatigue similitudein which the 
leading role was given to the stress gradient at the critical location in a structure. Lately, attempts were 
made to establish the criteria of damage identity based on evaluating the «informative» crack extensions 
within the stress concentration areas [8, 9]. However, considering the mechanisms of damage 
development in the polycrystalline structure of structural materials [10, 11], the significance of the 
durability assessment of structures should be based on the damage identity between test specimen and 
structure material. 

The influence of the above uncertainty factors in fatigue analyses may be substantially reduced by 
applying the strain-life technique in which the criterion for fatigue gives the dependence of fatigue life of 
the cyclic strain range. Cyclic strain characterizes cyclic elastic-plastic properties of a particular structural 
material; it is physically and mechanically more realistic than stress in determining the material damage 
at the stress concentration areas where the fatigue process develops. In a sense, in fatigue testing of 
specimens (under strain range control), the failure of material is determined by the manifestation of the 
early phase of macroscopic crack initiation, by the distortion of the ascending part of the elastic-plastic 
hysteresis loop. Applying the criterion together with finite-element modeling of the structure and the 
technique of fatigue damage accumulation in critical locations allows following the principle of identity of 
fatigue damage of test piece and structural detail the most closely. 

In fatigue analyses, when the strain-life approach is applied, the cyclic elastic-plastic strain has to 
be assessed at the location where damage is expected to develop in the structure. Although the local 
strain range may be found by using the finite-element method (FEM), the current rules, e.g., Ref. [2], 
recommend the approach based on Neuber’s heuristic formula [12]. The approach, as well as the FEM, 
do not provide an analytical description of the cyclic elastic-plastic strain; therefore, fatigue assessment at 
irregular service loading requires transforming the continuous probability distribution of the stress history 
into a block diagram, or a histogram, e.g., Ref. [1]. 

A brief description, the necessary improvement of the criterion and the illustration of applying the 
method using the example of fatigue analysis of a ship structure detail at the expansion joint cut in the 
superstructure are given below.  

Strain-life approach and the necessary improvements 
The strain-life criterion for fatigue failure of materials at cyclic loading (strain range control testing) 

is obtained in the following form [13]: 

∆ε α β= +− −CN BN  , (1) 

where ε∆  is the cyclic elastic-plastic strain range, C, B, α and β are the empirical (material) parameters 
of the criterion ; N is the number of loading cycles prior to fatigue failure of material (early crack initiation).  

It was observed long ago, e.g., in Ref. [10], that fatigue damages and microcracks develop well 
below the conventional fatigue limit stress. Even occasional stress cycles over this stress level provide 
the conditions for microcracks to extend into macroscopic and resulting in fatigue failure. Respectively, 
this effect of irregular loading must be accounted for by lowering the «minimum damaging» stress to 
0.55 eσ  [2], where eσ  is the conventional fatigue limit stress (obtained at cyclic loading resting).  

The corresponding strain range, accordingly (1), is: 

1.1 /e E CN BNα βε σ − −∆ = = +  (2) 

at 710N =  cycles [2]. Since fatigue damage in structural components is caused mostly by the moderate 
service stresses, the «high-cycle» parameter, B, should be corrected accordingly (2): 

* 1.1 /eB N E CNβ β ασ −= − , (3) 
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where the number of cycles is 
710N = .                            

Further correction of the criterion (1) is needed since it is applied for fatigue evaluation at stress 
concentration; the effects of stress concentration are most pronounced in high-cycle fatigue. For this 

reason, the high-cycle component, BN β− , should be improved taking into account correction (3):     

* / ,t fCN B N K Kα βε − −∆ = +  (4) 

where tK  is the stress concentration factor which depends on the loading type and the detail geometry,  

fK  is the respective notch factor.  

The elastic-plastic strain ε∆  at critical location, stress concentration area, is estimated by using 
Neuber’s formula [12]: 

2 2( ) / /t nK E S Eσ ε σ∆ ∆ = ∆ = , (5) 

where E  is the elasticity modulus, nσ∆  is the nominal stress range, t nS K σ= ∆ , is the maximum stress 

range in the affected location of the structural detail. To solve Eq. (5) and find the strain ε∆ , the 
generalized cyclic stress-strain curve obtained from the cyclic testing of specimens is applied. 

Using Eq. (5) does not provide analytical solution: local strain is obtained at a discrete value of 
nominal stress. Consequently, the continuous probability distribution of stress at the detail location should 
be substituted, as mentioned above, by the equivalent (in the sense of fatigue damage) step-wise 
diagram, i.e., histogram. The rules, e.g., [1], do not indicate unambiguous recommendations for 
evaluating the characteristic stress ranges, iS , and the respective number of load cycles, in , for each 

histogram class. These histogram parameters, equivalent by fatigue damage to the probability distribution 
of stress at the detail location, can be found by applying the technique developed in [14]. 

Furthermore, the fatigue analysis of the examined detail is carried out by using the linear damage 
summation procedure: 

( ) / ( )i i i i
i

n S N S D=∑ , (6) 

where D  is the damage index of the accumulated damage; 1D =  is the condition for fatigue failure of 
material at the stress concentration, namely, for macroscopic crack initiation according to criterion (1), 

( )i in S  is the number of load cycles in the i-th fragment of cyclic loading of the histogram at the stress iS ; 

( )i iN S  is the number of load cycles determined by the material failure criterion (4). 

Example of applying the approach 
In a ship structure with a long superstructure, whose longitudinal walls are extending the side 

structure of the ship hull, the superstructure walls are transversally cut and fitted with expansion joints. 
Local stress increase at the cut endings is regarded as menacing the main hull integrity; fatigue analysis 
is necessary when designing the superstructure.  

Dividing long superstructures and deck houses into separate blocks in order to retainthe stress 
flow within the main hull and at the weight savings of superstructures has been long known and applied in 
shipbuilding. However, a sensible solution for the problem of reliability of the superstructure details at the 
expansion joints has not been found yet ([15], [16], etc.). Dividing superstructures and deck houses 
makes it necessary, apart from paying attention to designing the cut endings, to assess fatigue properties 
of the details. 

The outline of a detail of a superstructure is shown in Fig. 1. Stress analysis of the ship structure in 
the examined area was carried out by the FEM and the respective software. Fig. 1 also shows the finite-
element mesh at the cut ending and the localization of fatigue damage. Element sizes were selected so 
that the necessary precision of the local stress would be maintained and the stress gradient through the 
elements was insignificant enough to assume that damage accumulation in the elements was uniform.   
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The fatigue life of the detail is assessed for two shape versions of the cut ending characterized by 
the values of the stress concentration factor 1.85 and 2.28tK = , and of the maximum total stress 

max 466.9 and 581.6S =  MPa, respectively. 

The material of the structure is a higher-strength steel (D40S) whose yield stress is 390yσ =  

MPa, and the conventional fatigue limit stress amplitude is 112eσ = MPa (loading along the 

superstructure side shell and flange joint, the weld thoroughly machined, 100% NDT). The parameters of 
criterion (4) of the steel are [20]: 0.400, 0.653, 0.015, 0.140C Bα β= = = = ; corrected (3) 

parameter * 0.0058B = . 

Notch factor values of both detail versions are estimated by applying Peterson’s [21] formula: 
1 ( 1) /(1 / ),f tK K g r= + − +  where r is the notch root radius (cut ending), g is the «structural 

parameter», for hull structural steels 1.160.38(350 / ) ,ug σ=  uσ  is the ultimate strength of the steel. In 

the examined detail, the root radius is substantially larger than the structural parameter; approximately, 
1 ( 1) /1.02.f tK K≈ + −   

The necessary cyclic stress-strain curve for evaluating the strain range values at the stress 
concentration is found in Ref. [20]. The appropriate technique of using Neuber’s formula (5) and the cyclic 
curve for evaluating the local strain range values is also shown in Ref. [20], etc.  

In order to estimate the fatigue life of the detail, the parameters of the histogram equivalent by 
fatigue damage to the distribution (7) have to be determined. For the version of the cut ending shape 
which is specified by max ,max2.28, 254.6 2.28 581.0t n tK S S K= = ⋅ = ⋅ =  MPa, the total stress range is 

arbitrarily subdivided into 7 sub-ranges, or classes (based on the recommendations in Ref. [1]), Table 2. 
Furthermore, the relative number of equivalent loading cycles (probability of the class in the ensemble) 

ip , the partial damage id  and the equivalent stress range eq
iS are estimated for each stress class by 

applying the procedure described in Refs. [14, 18]. The results are given in Table 2.  

Table 2. Parameters of the equivalent stress histogram  

S, class, 
MPa 

28 – 107 107 – 186 186 – 265 265 – 344 344 – 423 423 – 502 502 – 581 

p i 0.455 0.053 5.270·10-3 4.802·10-4 4.120·10-5 3.370·10-6 2.650·10-7 

d i 0.231 0.680 0.398 0.125 0.028 0.0049 0.000735 

Seq, MPa 68.52 137.5 214.1 291.8 371.0 448.9 532.1 

The values of the strain range for each class of the histogram are obtained through the equivalent 

stresses eq
iS  and the cyclic curve of the steel following (5); the strain ranges iε∆  are applied to calculate 

fatigue lives ( )i iN ε∆ , and the damage is assessed accordingly (6):  

*( ) / ( ) ( ) / ( )eq eq eq
i i i i i i i i

i i

n S N S N p S N Dε= ∆ =∑ ∑ . (8) 

The results of the damage evaluation are presented in Table 3 for the two versions of the cut 

ending shape, the semi-elliptical (1) and the semi-circular (2). For comparison, the results of the damage 

calculation following the standard scheme with the S-N criteria parameters recommended in Refs. [4, 5] 

are also given in Table 3.  

Table 3. Fatigue life (accumulated damage) of the detail 

Shape version max
eqS , MPa 

( )eq
tK  Damage, D, approach 

Strain-life Stress-life 

1 466.9 1.85 0.325 0.581 

2 581.6 2.28 1.280 1.467 
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As can be seen from the table data, the necessary fatigue life of the detail is not provided when the 
semi-circular shape of the cut ending (2) might be applied. If the cut ending is given a semi-elliptical 
shape, (1) fatigue life is provided with a notable factor of safety.  

Evidently, the strain-life approach results in better reliability characteristics of the structure than the 
standard method based on applying the S-N criteria. It may be explained by using particular steel 
characteristics in the analysis (the designed S-N curve [1] presents generalized data on a range of steels, 
from low-carbon to higher-strength steels); strain is physically and mechanically more correct than stress 
in characterizing fatigue damage, the strain-life criterion defines damage at an early stage of macroscopic 
crack origination.  

It should be noted that the damage estimated by the strain-life approach predicts the initiation of a 
macroscopic fatigue crack in the side shell of the superstructure at the cut ending within the limits of the 
finite-element size in Fig.1,b. This suggestion is based on the principle of terminating fatigue testing and 
defining the parameters of criterion (4) – as mentioned above – by transition of the microscopic crack into 
a macroscopic one in the gage part of the specimen.  

Respectively, allowing for insignificant conservatism (the local cyclic strain is almost constant 
within the limits of the volume included into the finite-element size of the fine mesh) it may be concluded 
that the displayed approach provides the identity of fatigue damage between the test specimen and the 
critical location of the structural detail. This statement certainly does not extend to the effects of 
uncertainties in fatigue analyses of structures, where the most substantial source may be the variability of 
service loads in practice compared to those recommended by the rules.  

Conclusion 
A modified strain-life approach for structural fatigue assessment is briefly discussed. In 

combination with the finite-element modeling of the structure, in particular, when the critical location area 
is modeled with the necessarily fine mesh, the most substantial principle of fatigue modeling is provided 
by the approach, i.e., the principle of damage identity between the test specimen and the fatigue-affected 
area of the structure. 
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