МЕХАНИКА

DOI: 10.5862/JPM.242.13

УДК 532.5.013.4.536.25+519.6

А.Н. Шарифулин 1 , А.Н. Полу ∂ ницин 2

 7 Пермский национальный исследовательский политехнический университет 2 Пермский государственный национальный исследовательский университет

ЧИСЛЕННОЕ ОПРЕДЕЛЕНИЕ ГРАНИЦ СУЩЕСТВОВАНИЯ АНОМАЛЬНОГО КОНВЕКТИВНОГО ТЕЧЕНИЯ В НАКЛОНЯЕМОМ ПРЯМОУГОЛЬНОМ ЦИЛИНДРЕ

Статья посвящена изучению бифуркаций стационарных режимов конвекции в замкнутом, подогреваемом снизу и наклоняемом цилиндре квадратного сечения, заполненном воздухом для случаев теплоизолированных и идеально теплопроводящих боковых стенок. Методом сеток получены поля температуры и скорости для отклонения от горизонтального положения до тридцати градусов в интервале чисел Рэлея до 20-кратного превышения его критического значения. Установлено, что предельный угол существования аномального течения в полости с теплоизолированными стенками примерно в три раза превышает таковой для случая теплопроводящих стенок. В случае теплопроводящих стенок максимальный угол существования аномального течения достигает 7,7° при превышении критического значения числа Рэлея в 3,3 раза.

ТЕПЛОВАЯ КОНВЕКЦИЯ, НАКЛОН ПОЛОСТИ, АНОМАЛЬНОЕ ТЕЧЕНИЕ, ЧИСЛЕН-НОЕ МОДЕЛИРОВАНИЕ.

Введение

Тепловая конвекция воздуха в замкнутых наклоняемых прямоугольных полостях представляют интерес в связи с тем, что подобные емкости являются элементами большого количества технических устройств. Их ориентация может плавно или ступенчато меняться, при этом в газе, заполняющем объем, конвективные течения могут претерпевать скачкообразные изменения [1].

Для моделирования влияния наклона на режимы конвекции в замкнутой прямоугольной полости часто используется куб. Конвективные течения воздуха в кубе при малых и умеренных числах Рэлея (Ra) имеют форму одноваловых течений, т. е. вихрей с горизонтальной осью. Частицы жидкости в них движутся по круговым траекториям, в плоскостях, перпендикулярных оси вихря. Такое течение вблизи

центрального вертикального сечения куба можно считать квазидвумерным [2]. Это обстоятельство позволяет надеяться, что численное исследование плоских течений воздуха, т. е. бесконечно вытянутых горизонтальных вихрей, в абстрактных бесконечных цилиндрах поможет в понимании наблюдаемых закономерностей бифуркаций стационарных режимов конвекции в лабораторных экспериментах с кубической полостью. Первое численное исследование влияния наклона (поворота вокруг оси бесконечного цилиндра квадратного сечения) на перенос тепла между противоположными изотермическими гранями (две других грани полагались теплоизолированными), проведено В.И. Полежаевым [3]. Показано, что максимум теплового потока достигается в промежуточной области угла наклона между подогревом снизу и сбоку.

Первые сведения о бифуркации конвективного течения воздуха в кубической полости, подогреваемой снизу, вызванной наклоном, были опубликованы в экспериментальной работе [4], где рассматривались лишь малые углы наклона, от положения, соответствующего подогреву только строго снизу.

Поясним, что наклон при малых значениях числа Ra приводит к формированию вихря, с направлением циркуляции, совпадающим с направлением угла наклона полости (если рассматривать угол наклона как поворот полости от нулевого значения угла). Это вихрь с нормальной циркуляцией, и если полость привести в горизонтальное положение, он прекратит свое вращение. Однако при числах Рэлея, превышающих их критическое значение (Ra), возможно, наряду с таким нормальным вихрем, и существование вихря с обратным направлением циркуляции. Такие течения было предложено называть аномальными [5]. В таком аномальном вихре направления циркуляции воздуха и угла наклона полости противоположны, следовательно, теплый воздух движется вдоль наклонной поверхности вниз. Аномальные вихри существуют в некотором диапазоне углов наклона, величина которого зависит от интенсивности конвективного течения. Экспериментально границы существования аномального конвективного течения в кубе были определены в работе [6].

Цель настоящей работы — построить бифуркационную кривую, отражающую зависимость величины критического угла наклона для существования аномального вихря от интенсивности конвективного течения.

В качестве основы построения необходимо использовать численное решение полных уравнений тепловой конвекции воздуха (в приближении Буссинеска) для различных углов наклона квадратной полости и различных значений надкритичности.

Постановка залачи

Пусть жидкость заполняет полость, имеющую форму бесконечного горизонтально-

го цилиндра квадратного сечения (рис. 1). Введем декартову систему координат (x, y,z), ось у которой совпадает с ребром цилиндра и направлена от нас. Единичный вектор **n** расположен в плоскости xz, указывает направление вверх и связан с ускорением свободного падения соотношением $\mathbf{g} = -g\mathbf{n}$. Угол наклона квадратного цилиндра α, отсчитывается по часовой стрелке от оси д до **n**. Диапазон изменения угла α в расчетах составляет $-30^{\circ} \le \alpha \le 30^{\circ}$, причем при $\alpha = 0^{\circ}$ сторона цилиндра, совпадающая с осью x, горизонтальна и реализуется условие подогрева строго снизу. На рис. 1 в сечении квадрата, среднем по высоте, отмечены точки Aи B, между которыми рассчитывается перепад температуры для сопоставления расчетов с измерениями термопарой в лабораторном эксперименте [6].

Стенки полости предполагаются твердыми. Верхняя и нижняя плоскости $z=0,\ d-$ изотермические и поддерживаются при постоянном перепаде температуры Θ , причем плоскость z=0 более нагрета. В расчетах используются две модели полости, в которых боковые стенки $x=0,\ d$ предполагаются либо теплопроводящими (и на них задается линейное распределение температуры $T=\Theta(1-z/d)$), либо теплоизолированными (тогда равенство $\partial T/\partial x=0$

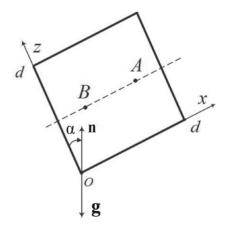


Рис. 1. Геометрия задачи о свободной тепловой конвекции в горизонтальном цилиндре квадратного сечения.

В среднем сечении, отмеченном пунктиром, расположены точки A и B, между которыми рассчитывается перепад температуры dT. Эти точки находятся на расстоянии d/4 от стенок (см. пояснения в тексте)

4

отмечает отсутствие потока тепла через поверхность). Коэффициент линейного расширения жидкости β , кинематическая вязкость ν и температуропроводность χ постоянны.

Предполагается, что жидкость несжимаемая и справедливо приближение Буссинеска. Скорость \mathbf{v} , давление p и температура T определяются уравнениями непрерывности, Навье — Стокса и баланса тепла. Обозначим величины расстояния, температуры, функции тока и времени соответственно d, Θ , ψ , t, коэффициент кинематической вязкости \mathbf{v} и d^2/\mathbf{v} . Будем искать плоские решения задачи. В этом случае векторные поля завихренности и функции тока будут иметь отличными от нуля только y-компоненты:

$$\varphi = (0, \varphi, 0), \psi = (0, \psi, 0).$$
 (1)

Тогда уравнения тепловой конвекции в безразмерной форме запишутся в следующем виде [7, 8]:

$$\frac{\partial \varphi}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial \varphi}{\partial z} - \frac{\partial \psi}{\partial z} \frac{\partial \varphi}{\partial x} = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial z^2} + Gr\left(\frac{\partial T}{\partial z} \sin \alpha - \frac{\partial T}{\partial x} \cos \alpha\right);$$
(2)

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial z^2} + \varphi = 0; \tag{3}$$

$$\frac{\partial T}{\partial t} + \frac{\partial \Psi}{\partial x} \frac{\partial T}{\partial z} - \frac{\partial \Psi}{\partial z} \frac{\partial T}{\partial x} = \frac{1}{\Pr} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} \right). \tag{4}$$

Безразмерные критерии подобия, а именно число Грасгофа **Gr**, число Прандтля Pr число Релея Ra имеют вид:

$$Gr = \frac{g\beta\Theta d^3}{v^2}, Pr = \frac{v}{\chi}, Ra = Gr \cdot Pr.$$
 (5)

Скорость течения связана с полем функции тока $\psi(x,z)$:

$$\mathbf{v} = \left(-\frac{\partial \mathbf{\psi}}{\partial z}, 0, \frac{\partial \mathbf{\psi}}{\partial x}\right). \tag{6}$$

Граничные условия для температуры на нижней и верхней изотермических стенках запишутся в следующем виде:

при
$$z = 0,1$$
 $T = 1,0$. (7)

Граничные условия для температуры в случае проводящих боковых стенок с ли-

нейным распределением температуры имели вид:

при
$$x = 0.1$$
 $T = 1 - z$. (8)

В случае теплоизолированных боковых стенок задавалось условие отсутствия теплового потока:

при
$$x = 0,1$$
 $\frac{\partial T}{\partial x} = 0.$ (9)

Граничные условия для функции тока были одинаковыми в обоих случаях. Стенки полости полагались непроницаемыми и твердыми. Из условия непротекания через них и прилипания получаем граничные условия для функций тока:

при
$$z = 0,1$$
 $\psi = \frac{\partial \psi}{\partial z} = 0;$ (10)

при
$$x = 0, 1$$
 $\psi = \frac{\partial \psi}{\partial x} = 0.$ (11)

Методика решения задачи и расчетов

Решение задачи, заданной уравнениями и условиями (2) — (11), мы находили конечно-разностным методом. Число Прандтля полагалось равным Pr = 0,7. Расчеты проводились на равномерной квадратной сетке:

$$x_i = i \cdot h, \ z_k = k \cdot h,$$

 $i = 0, 1, ..., N; \ k = 0, 1, ..., N;$

где h = 1/N — шаг сетки. Все вычисления проведены для N = 40.

Использовалась явная схема с центральными разностями для пространственных производных [7]. Для аппроксимации завихренности на границах использовалась формула Тома. Величина шага по времени Δt контролировалась и выбиралась достаточно малой, для того чтобы выполнялось условие Куранта.

Опишем процедуру получения решения для заданных значений числа Грасгофа Gr и угла наклона α .

Шаг 1. Задаем начальные условия для температуры, функции тока и завихренности во всех узлах сетки на первом временном слое, т. е. для момента времени t=0:

$$T_{i,k}^0 = 1 - z_k$$

$$\psi_{i,k}^0 = 0,$$

$$\varphi_{i,k}^0 = 0.$$

Задаем значение номера временного слоя n = 0.

Шаг 2. Считая T^n и φ^n известными, из конечно-разностных аналогов уравнений (2) и (4) находим значения этих функций на временном слое n+1 во внутренних узлах сетки. Для случая теплоизолированных стенок граничное значение температуры заменяем значением температуры в прилегающем внутреннем узле.

Шаг 3. Решая уравнение Пуассона (3) по вычисленным значениям ϕ^{n+1} , получаем итерационным методом ψ^{n+1} во внутренних узлах сетки.

Шаг 4. Используя новые значения функции тока в приграничных узлах, определяем по формулам Тома граничные значения завихренности на новом шаге по времени.

Шаги 2-4 повторяются до получения установившихся значений T и ψ . Значения указанных сеточных функций вместе с физическими и численными параметрами для заданного значения числа Грасгофа Gr и угла наклона α сохраняются во внешней памяти. При переходе к следующему значению угла наклона α шаг 1 опускался, и в качестве начального состояния использовалось ранее полученное состояние.

Целью расчетов было получение бифуркационных кривых $dT(\alpha)$ и $\psi_c(\alpha)$. Здесь ψ_c — максимальное значение функции тока, dT — перепад температуры между точками A и B (см. рис. 1). В расчетах угол наклона последовательно с переменным шагом $\Delta\alpha=1-10^\circ$ изменялся от начального значения $\alpha=-30^\circ$ до конечного $\alpha=+30^\circ$ и обратно.

Результаты расчетов и их обсуждение

До выполнения основных расчетов, в соответствии с приведенной выше методикой, проводилась проверка используемой модели и разностного метода. Для этого рассчитывали критические числа Грасгофа при подогреве строго снизу ($\alpha=0^{\circ}$) и затем сравнивали их с общепринятыми значениями, полученными методами линейной теории устойчивости. Основу способа полу-

чения критического числа Грасгофа составляла экстраполяция линейной зависимости квадрата функции тока от чисел Грасгофа в сторону меньших значений. Так были получены критические числа Грасгофа для теплопроводящих стенок ($Gr_c = 7156$) и теплоизолированных ($Gr_c = 3643$).

Известно, что для случая теплопроводящих боковых стенок критическое число Релея составляет $Ra_c = 5012$ [9], а соответствующее ему критическое число Грасгофа при Pr = 0.7 равно 7160. Для полости с теплоизолированными стенками критическое число Грасгофа равно 3693 [10, 11]. Таким образом, в результате проверочных вычислений выяснилось, что полученные в расчетах критические числа Грасгофа отличаются от определенных методами линейной теории устойчивости менее чем на 1.5~%, что свидетельствует об удовлетворительной точности использованного численного метода.

Поскольку разным граничным условиям соответствуют различные критические числа Грасгофа, использовали понятие надкритичности; оно выражалось отношением $r = \operatorname{Gr} / \operatorname{Gr}_{\cdot}$.

Представляло несомненный интерес изучить поведение валового конвективного течения в нормальном и аномальном режимах, которые определяются углом наклона полости. Течение, сохраняющее свою циркуляцию при переходе угла наклона полости через нулевое значение, принято называть аномальным [5]. Интенсивность и направление циркуляции плоского валового течения в стационарном режиме однозначно описывается экстремальным значением функции тока $\psi_c(Gr, \alpha)$ в центре полости, т. е. фазовое пространство системы одномерно. Возникновение тепловой конвекции при нулевом угле α = 0 происходит мягким образом в результате вилочной бифуркации на плоскости $\psi_{\epsilon}(Gr)$ при критическом числе Грасгофа Gr. Однако даже незначительный наклон (порядка 0,01 градуса [12]) приводит к появлению конвекции при любых, сколь угодно малых значениях числа Грасгофа.

Расчеты показали, что валовое конвективное течение, возникшее при угле на-

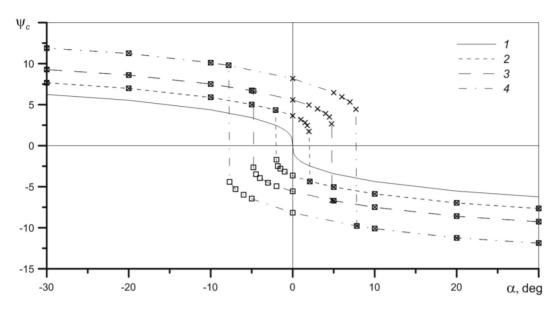


Рис. 2. Зависимости функции тока ψ_c в центре полости от угла ее наклона α для случая теплопроводящих стенок при различных значениях надкритичности r: 1,0 (кривая I), 1,3 (2), 1,7 (3), 2,5 (4). Крестиками (квадратиками) отмечены диаграммы, полученные при изменении угла α от -30 до $+30^\circ$ (от +30 до -30°) (см. пояснения в тексте)

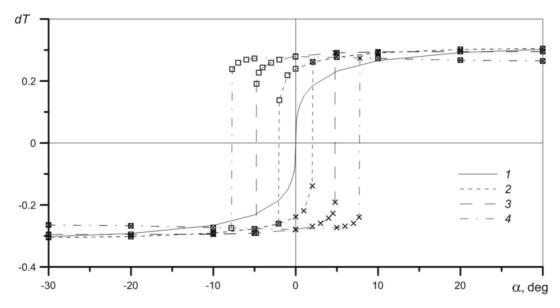


Рис. 3. Зависимости перепада температуры dT между точками A и B от угла наклона полости α для случая теплопроводящих стенок при различных значениях надкритичности r (символы и номера кривых те же, что на рис. 2)

клона полости, отличном от нуля, и фиксированном числе Грасгофа, меньшем или равном критическому ($r \le 1$), плавно меняет свое направление на обратное при переходе угла наклона полости α через нулевое значение (сплошная линия на рис. 2). Если же число Грасгофа превышает критическое

значение (r > 1), валовое конвективное течение сохраняет направление движения при переходе величины угла наклона полости через нулевое значение, становясь при этом аномальным. Это течение сохраняется до некоторого критического угла α_c , после достижения которого оно резко меняет свое

направление на обратное и превращается в нормальное течение. Описанное поведение иллюстрируют бифуркационные диаграммы $\psi_c(\alpha)$, полученные расчетами для четырех значений r (см. рис. 2).

Кривые 1-4 на рис. 2 соответствует различным значениям надкритичности. Символы в виде крестиков соответствуют последовательному изменению наклона полости от отрицательных углов к положительным, а в виде квадратиков — от положительных к отрицательным. Бифуркационные диаграммы указывают на существование аномального течения, которое,

однако, переходит в нормальное при достижении углом наклона критического значения α_c . С увеличением значения надкритичности область существования аномального течения увеличивается. Как видно из рис. 2, для каждого α из интервала $-\alpha_c < \alpha < \alpha_c$ существует два устойчивых состояния, которые различаются направлением циркуляции, т. е. знаком ψ_c .

Экспериментальные исследования конвекции в полостях с теплопроводящими стенками включают, как правило, измерения с помощью термопар [1, 4, 6]. Данные от дифференциальных термопар,

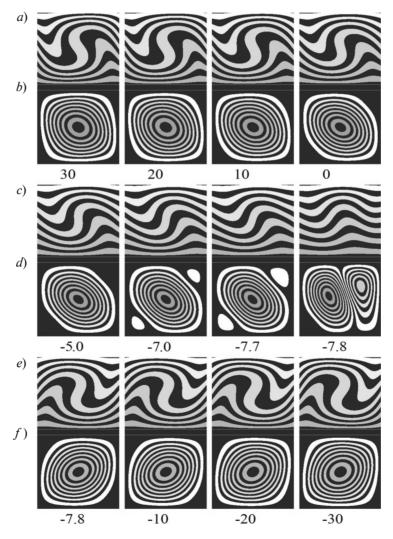


Рис. 4. Эволюция поля температуры (a, c, e) и структуры течения (b, d, f) для случая теплопроводящих стенок при изменении угла наклона α от $+30^\circ$ до -30° ; r=2,5. Цифры означают углы наклона α . Границы полос семи изотерм на рис. (a, c, e) соответствуют четырнадцати значениям температуры: $T_j = (2j-1)/28$, , а границы линий тока (b, d, f) соответствуют $|\psi_j| = \psi_c \cdot (2j-1)/28$, где j=1,2,...,14

установленных в определенных местах полости, позволяют судить о структуре конвективного течения. В упомянутых работах спаи термопар располагались в точках A и B (см. рис. 1). Значения безразмерной разности температур dT с такой виртуальной термопары представлены на рис. 3 в виде зависимостей от угла наклона полости для четырех значений надкритичности r. Видно, что скачкообразные изменения dT и ψ_c для одинаковых значений надкритичности r происходят при одних и тех же углах наклона (см. рис. 2).

Эволюция полей температуры и линий тока при изменении угла наклона полости α от +30° до -30° для r = 2,5 представлена на рис. 4. В диапазоне изменений угла а от $+30^{\circ}$ до 0° , когда течение является нормальным, происходит плавное уменьшение интенсивности течения (см. кривую 4 на рис. 2). После перехода через нулевое значение угла α продолжается уменьшение интенсивности течения с сохранением его структуры. При приближении угла к критическому значению $\alpha_c = -7.8^{\circ}$ ускоряется падение интенсивности центрального вихря ψ_c и увеличиваются угловые вихри с закруткой, противоположной основному вихрю.

Процесс перехода осуществляется следующим образом. Один из угловых вихрей обгоняет в росте второй угловой вихрь, который затем исчезает. Далее растущий угловой вихрь, который имеет нормальное направление вращения при установленном угле наклона, вытесняет аномальный вихрь. Изображения функции тока и изотерм для критического угла наклона -7,8° представлены для двух моментов времени. Первый соответствует моменту смены структуры течения, а второй - завершению процесса перехода. Следующие изображения относятся к эволюции нормального вихря до угла наклона полости $\alpha_c = -30^\circ$. Изменение угла наклона в обратном направлении приводит к получению критического угла в диапазоне положительных углов со значением, равным $\alpha_c = +7.8^{\circ}$.

Результаты расчетов, проведенных с двумя случаями граничных условий для температуры, представлены в виде бифур-

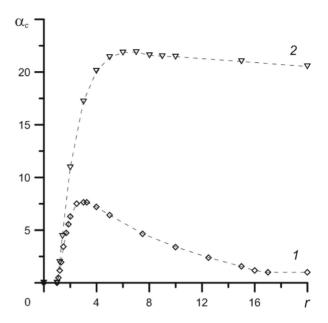


Рис. 5. Зависимости критического угла от значений надкритичности для случая теплопроводящих стенок (кривая 1) и теплоизолированных (кривая 2)

кационных кривых (рис. 5). Данная кривая для случая теплопроводящих стенок (кривая 1) имеет ярко выраженный максимум $\alpha_c = 7,7^{\circ}$ при r = 3,3. Эти значения близки к полученным при расчетах бифуркационной кривой в цилиндре кругового сечения с теплопроводящими стенками [13, 14], но все же отличаются от них. Бифуркационная кривая для теплоизолированных стенок соответствует результатам работ [15, 16]. Расчет в работе [15] проводился методом Петрова – Галёркина, в котором использовалось до семидесяти базисных функций. В качестве таких функций применялись полиномы Чебышева. Отдельные точки бифуркационных кривых для трех чисел Прандтля получены в статье [16] и для случая воздуха согласуются с результатами работы [15]. Наши расчеты на сравнительно грубой сетке позволили получить хорошее согласие с результатами, представленными в работе [15], что позволяет судить о достоверности полученных результатов.

Заключение

В настоящей работе проведено численное исследование аномального течения в

цилиндре квадратного сечения, и в результате получены бифуркационные кривые для случаев теплоизолированных и теплопроводящих стенок.

Установлено, что предельный угол существования аномального течения в случае теплоизолированных стенок примерно в три раза превышает таковой для теплопроводящих стенок. Таким образом, в случае теплопроводящих стенок переход от аномального течения к нормальному происходит при меньшем угле наклона полости и меньшем значении надкритичности.

Бифуркационные диаграммы функции тока и перепада температуры от угла наклона полости показывают одинаковые значения критического угла наклона, при котором происходит смена направления конвективного валового течения для одного и того же значения надкритичности. Это дает основания для использования результатов измерений термопарами в экспериментах по изучению аномального конвективного валового течения при определении критического угла наклона полости (угол, при котором происходит смена направления течения).

Из расчетов следует, что изменение направления вращения происходит в результате интенсивного роста одного из диагональных нормальных вихрей, который подавляет и вытесняет аномальный конвективный вал.

Работа выполнена при финансовой поддержке внутриуниверситетского гранта Пермского национального исследовательского политехнического университета.

СПИСОК ЛИТЕРАТУРЫ

- [1] **Шарифулин А.Н., Полудницин А.Н., Кравчук А.С.** Лабораторное моделирование нелокального возникновения тропического циклона // ЖЭТФ. 2008. Т. 134. № 6. С. 1269—1273.
- [2] **Mizushima J., Matsuda O.** Onset of 3D thermal convection in a cubic cavity //Journal of the Physical Society of Japan. 1997. Vol. 66. No. 8. Pp. 2337–2341.
- [3] Полежаев В.И. Течение и теплообмен при естественной конвекции газа в замкнутой области после потери устойчивости гидростатического равновесия // Изв. АН СССР. Механика жидкости и газа. 1968. № 5. С. 124—129.
- [4] **Зимин В.Д., Кетов А.И.** Надкритические конвективные движения в кубической полости // Изв. АН СССР. Механика жидкости и газа. 1974. № 5. С. 110—114.
- [5] **Cliffe K.A., Winters K.H.** A numerical study of the cusp catastrophe for Benard convection in tilted cavities //Journal of Computational Physics. 1984. Vol. 54. No. 3. Pp. 531–534.
- [6] **Шарифулин А.Н., Полудницин А.Н.** Экспериментальное определение пределов существования аномального конвективного течения в наклоняемом кубе // Прикладная механика и техническая физика. 2014. Т. 55. № 3 (325). С. 103—112.
- [7] **Тарунин Е.Л.** Вычислительный эксперимент в задачах свободной конвекции. Иркутск: Изд-во Иркутского ун-та, 1990. 223 с.
- [8] Сагитов Р.В., Шарифулин А.Н. Устойчивость стационарной тепловой конвекции в наклоняемой прямоугольной полости в мало-

- модовом приближении // Теплофизика и аэромеханика. 2008. Т. 15. № 2. С. 247—256.
- [9] **Mizushima J., Hara Y.** Routes to unicellular convection in a titled rectangular cavity // J. Physical Society of Japan. 2000. Vol. 69. No. 8. Pp. 2371–2374.
- [10] **Lappa M.** Thermal convection: patterns, evolution and stability. Chichester: Wiley, 2010. 670 p.
- [11] **Mizushima J.** Onset of the thermal convection in a finite two-dimensional box //J. Physical Society of Japan. 1995. Vol. 64. No. 7. Pp. 2420–2432.
- [12] **Adachi T.** Stability of natural convection in an inclined square duct with perfectly conducting side walls // International Journal of Heat and Mass Transfer. 2006. Vol. 49. No. 13. Pp. 2372–2380.
- [13] Никитин А.И., Шарифулин А.Н. О бифуркациях стационарных режимов тепловой конвекции в замкнутой полости, порождаемых особенностью типа сборки Уитни // Процессы тепло- и массопереноса вязкой жидкости. Свердловск: УНЦ АН СССР, 1986. С. 32—39.
- [14] **Фоминский Д.А., Шарифулин А.Н.** Численное определение границ существования аномального конвективного течения в наклоняемом цилиндре // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2013. № 2 (170). С. 191—196.
- [15] Шарифулин А.Н., Суслов С.А. Конвективные бифуркации несжимаемой жидкости в наклоняемой полости квадратного сечения // Матер. 10-й Междунар. конф. «Высокопро-

4

изводительные параллельные вычисления на кластерных системах» (HPC-2010). Пермь, 1-3 нояб. 2010 г. Пермь: Перм. гос. техн. ун-т, 2010. Т. 2. С. 315-319.

[16] Polezhaev V.I., Myakshina M.N., Nikitin

S.A. Heat transfer due to buoyancy-driven convective interaction in enclosures: Fundamentals and applications // International Journal of Heat and Mass Transfer. 2012. Vol. 55. No. 1. Pp. 156–165.

СВЕДЕНИЯ ОБ АВТОРАХ

ШАРИФУЛИН Альберт Нургалиевич — кандидат физико-математических наук, доцент кафедры прикладной физики Пермского национального исследовательского политехнического университета. 614990, Российская Федерация, г. Пермь, Комсомольский пр., 29 sharifulin@bk.ru

ПОЛУДНИЦИН Анатолий Николаевич — старший преподаватель кафедры общей физики Пермского государственного национального исследовательского университета.

614990, Российская Федерация, г. Пермь, ул. Букирева, 15 panam.48@mail.ru

Sharifulin A.N., Poludnitsin A.N. THE BORDERS OF EXISTENCE OF ANOMALOUS CONVECTION FLOW IN THE INCLINED SQUARE CYLINDER: NUMERICAL DETERMINATION.

The article is devoted to the study of bifurcations of stationary convection regimes in a closed, heated from below and tilted square cylinder filled with air for cases of heat-insulated and perfectly heat-conducting sidewalls. The temperature and velocity fields were obtained using grid method for inclinations from a horizontal position up to 30 degrees in the range of Rayleigh numbers up to 20-fold excess of its critical value. The limit angle of anomalous-flow existence in the cylinder with the heat-insulated walls was established to be about 3 times greater than that in the cylinder with the heat-conducting ones. In the case of the heat-conducting walls the maximum angle of the anomalous-flow existence reached 7.7 degrees at a 3.3-fold excess of the critical value of Rayleigh number.

THERMAL CONVECTION, INCLINATION OF THE CAVITY, ANOMALOUS FLOW, NUMERICAL SIMULATION.

REFERENCES

- [1] A.N. Sharifulin, A.N. Poludnitsin, A.S. Kravchuk, Laboratornoye modelirovaniye nelokalnogo vozniknoveniya tropicheskogo tsiklona [Laboratory-scale simulation of nonlocal generation of a tropical cyclone], ZhETF. 134 (6) (2008) 1269–1273.
- [2] **J. Mizushima, O. Matsuda,** Onset of 3D thermal convection in a cubic cavity, J. Phys. Soc. Japan. 66 (8) (1997) 2337–2341.
- [3] **V.I. Polezhayev,** Techeniye i teploobmen pri yestestvennoy konvektsii gaza v zamknutoy oblasti posle poteri ustoychivosti gidrostaticheskogo ravnovesiya [Flow and heat transfer with natural convection of a gas in a closed region after loss of hydrostatic equilibrium stability], Izv. AS USSR. No. 5 (1968) 124–129.
- [4] **V.D. Zimin, A.I. Ketov,** Nadkriticheskiye konvektivnyye dvizheniya v kubicheskoy polosti [Supercritical convective motions in a cubic cavity], Izv. AS USSR, Mechanics of Fluid and Gases. No. 5 (1974) 110–114.
- [5] **K.A. Cliffe, K.H. Winters,** A numerical study of the cusp catastrophe for Benard convection

- in tilted cavities, J. Comp. Phys. 54 (3) (1984) 531–534.
- [6] A.N. Sharifulin, A.N. Poludnitsin, Eksperimentalnoye opredeleniye predelov sushchestvovaniya anomalnogo konvektivnogo techeniya v naklonyayemom kube [Experimental determination of limits of existence of anomalous convective currents in tilted cube], J. Appl. Mech. and Techn. Phys. 55 (3(325)) (2014) 103–112.
- [7] **E.L. Tarunin,** Vychislitelnyy eksperiment v zadachakh svobodnoy konvektsii [Numerical experiment in free convection problems], Irkutsk, Izd-vo Irkutskogo un-ta, 1990.
- [8] **R.V. Sagitov, A.N. Sharifulin,** Ustoychivost statsionarnoy teplovoy konvektsii v naklonyayemoy pryamougolnoy polosti v malomodovom priblizhenii [Stability of steady state thermal convection in a titled rectangular cavity in low-mode approach], Teplofizika i aeromekhanika. 15(2) (2008) 247–256.
- [9] **J. Mizushima, Y. Hara,** Routes to unicellular convection in a tilted rectangular cavity, J. Phys. Soc. Japan. 69 (8) (2000) 2371–2374.

- [10] **M. Lappa,** Thermal convection: patterns, evolution and stability, Chichester, Wiley, 2010.
- [11] **J. Mizushima,** Onset of the thermal convection in a finite two-dimensional box, J. Phys. Soc. Japan. 64 (7) (1995) 2420–2432.
- [12] **T. Adachi**, Stability of natural convection in an inclined square duct with perfectly conducting side walls, Intern. J. of Heat and Mass Transfer. 49(13) (2006) 2372–2380.
- [13] **A.I. Nikitin, A.N. Sharifulin,** O bifurkatsiyakh statsionarnykh rezhimov teplovoy konvektsii v zamknutoy polosti, porozhdayemykh osobennostyu tipa sborki Uitni [Concerning the bifurcations of steady-state thermal convection regimes in a closed cavity due to the Whitney folding-type singularity], In: Protsessy teplo i massoperenosa vyazkoy zhidkosti, Sverdlovsk, UNTs AS USSR, 1986, Pp. 32–39.
 - [14] D.A. Fominskiy, A.N. Sharifulin, Numerical

- determination of the borders for existence of anomalous convective flow in a cylinder tilted, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. No. 2(170) (2013) 191–196.
- [15] A.N. Sharifulin, S.A. Suslov, Konvektivnyye bifurkatsii neszhimayemoy zhidkosti v naklonyayemoy polosti kvadratnogo secheniya [Convective bifurcation of an incompressible fluid in a tilted square cavity], Mater. 10th Intern.. conf. "Vysokoproizvoditelnyye parallelnyye vychisleniya na klasternykh sistemakh" (NRS-2010), Perm, Nov. 1–3, 2010. Perm: Perm. Gos. Tekhn. Un-t. 2 (2010) 315–319.
- [16] V.I. Polezhaev, M.N. Myakshina, S.A. Nikitin, Heat transfer due to buoyancy-driven convective interaction in enclosures: Fundamentals and applications, International Journal of Heat and Mass Transfer. 55(1) (2012) 156–165.

THE AUTHORS

SHARIFULIN Albert N.

Perm National Research Polytechnic University 29 Komsomolsky Ave., Perm, 614990, Russian Federation sharifulin@bk.ru

POLUDNITSIN Anatoliy N.

Perm State University 15 Bukireva St., Perm, 614113, Russian Federation panam.48@mail.ru