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Abstract. Development of calculation methods, allowing determining the lower limits frequencies
of free oscillations is actual. Such methods, in combination with the decisions by the method of finite
element in displacements, will let to assess the accuracy of the frequencies of free oscillations calculated
values. The frequencies of free oscillations constant cross section rods with different supports of the ends
are calculating by the stress finite element analysis. The proposed method is based on combination of
the additional potential energy functional and the virtual displacements principle. The last is used to
construct the equilibrium equations. The solution reduces to finding the minimum of the additional energy
functional with constraints in form of the linear algebraic system equilibrium equations. The equilibrium
equations, taking into account inertia forces, are writing for the finite element mesh nodes in the
directions of coordinate axes. Using the Lagrange multipliers the equilibrium equations are included in the
functional. The Lagrange multipliers are the nodes displacements values. Considered two variants of
bending moment’s approximation on the finite element field: linear and piecewise constant. The free
oscillations forms are represented as polygonal lines. According to the proposed method the first three
frequencies of free oscillations were defined for constant cross-section rods with different supports of the
ends. The calculated values of the frequencies were compared with the exact values. In comparison with
the method of finite elements in displacements, it is shown that the proposed method allows to get the
opposite bound values for the frequencies of free oscillations.

AHHOTaumA. AkTyanbHow sBnsieTcs paspaboTka meToga pacdeTa KOHCTPYKUWIA, MO3BONSIOLLEro
onpenenaTb HWXHWE rpaHuubl 4YacToT cBOGOAHbIX KonebaHwuih. Takme MeTodbl, B COYeTaHUM C
peLeHnsaMn Mo MeTOAY KOHEYHbIX 3NIeMEHTOB B MepeMeLleHNsX, Mo3BONAT AaTb OLEHKY TOYHOCTU
BbIYMCIIEHHBbIX 3HAYeHW YacToT cBoboAHbIX konebaHwi. B paboTe npegnaraeTcs pelleHwe 3agauu
onpegeneHns 4yactoT cBobOAHbIX konebaHui cTepXXHeNn NOCTOAHHOIO CeYeHUst C pasfNyHbIMK OMopamMm
Ha KOHLax MeTOAOM KOHEYHbIX 3MIEMEHTOB B HanpshkeHusx. MeToamka OCHOBbLIBAETCA Ha coYveTaHuu
dyHKLMOHana AONONHUTENbLHON SHEPTUU U NMPUHLUMME BO3MOXHbBIX NepeMeLleHuit, UCnonb3yemMoro ans
MOCTPOEHMS ypaBHEHMIN paBHoBecusd. [locne aunckpetusauum npegmeTHoOW obnactuv, pelleHve 3agauu
CBOAMTCH K MOUCKY MWHMMYyMa (yHKUMOHAana AONOMHUTENBHOM dHeprun gedopmauvun rnpu Hanuvuu
OfpaHMYEeHUn B BMAE CUCTEMbl JIMHEVHbIX anrebpanvyeckux ypaBHEHUW paBHOBECUSA. YpaBHEHUS
paBHOBECUSA, C YYETOM CUI UHEepuuMW, COCTaBnflTCA ANS Y3NOB CETKM KOHEYHbIX 3SfEMEHTOB MO
HanpaBneHnsM OCel KOOpPAMHAT W BKIIYATCA B (DYHKLMOHAN Mpu nomoLwum MHoxutenen JlarpaHxa,
KOTOpLIMW  ABNAIOTCA  BENWYUHbI  MepemMelleHnin  y3noB. PaccmartpusatoTca fABa  BapuaHTa
annpokcuMauum usrnbaromx MOMEHTOB MO 06NacTM KOHEYHOro 3nemMeHTa: NUHeMHas U KYCOYHO-
noctosHHaa. Popma cBOGOAHbIX KonebGaHum npeAacTaBnseTca B BuAe JOMaHHOM nuHuM. [lo
npeanoxeHHoW MeToauke Obiny BbIMONMHEHbI pacyeTbl NePBbIX TPEX 4acToT cBOB6OAHbIX KonebaHun ans
CTEepPXXHEN NOCTOSAHHOIO CeYEHUs C pasnMyHbIMKM BapuaHTaMy ONUpaHus KOHLUOB. BbiNomnHeHoO cpaBHeHne
pacyeTHbIX BEMNWYMH NepBbIX TPeX 4acTOT CBOOOAHbIX konebGaHum C TOYHbIMU 3HadYeHusmu. MokasaHo,
YTO npeariaraemblin METO, pacyeTa No3BONseT NoMy4YmUTb NPOTUBOMONOXHYIO, MO CPABHEHUIO C METOAOM
KOHEYHbIX 3NIEMEHTOB B NEpPeMELLEHNSIX, FPaHMLy 3HaYeHUI Ans YacToT cBo60AHbIX KonebaHui.
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Introduction

Currently, the most common method for determining the frequencies of free oscillations is the finite
element displacement analysis [1-12], less often used mixed [13-20] or analytical methods [21-24]. In
the article [25] for determining the frequency of free oscillations is used the method of boundary
elements. It is known that the method of finite element in displacements gives the more "stiffer" solution
and consequently higher values of the free oscillation frequencies compared to accurate values.
Displacements which were received by mixed or hybrid methods are approached to the exact values both
from below and above. Analytical methods do not have a generality of numerical methods and are
applied for a limited group of problems. Actual problem is to develop a method to determine the upper
boundary of displacements or low boundary of free oscillations frequencies. This possibility is provided by
the functional of additional energy, since the solutions, based on it, are more "flexible", compared with the
exact values [1, 2]. But the direct use of this functional is complicated by necessity using the
approximating functions that satisfy the differential equations of equilibrium [1]. If the nodal unknowns are
self-equilibrated forces, then their choice has difficulties for variety of finite elements. Moreover, these
systems should not include the forces to provide a statically determinate structure fixing. If the decision to
use the stress function was reached, also there are difficulties to their choice and providing static
boundary conditions [2].

In [3] compares the values of the frequencies of the cantilever beams free oscillations, obtained
using the ANSYS, and experimentally measured values. To simulate flexural and torsional vibrations
used fine mesh flat finite elements. Nonlinear free vibrations of curved shallow shells are investigated
using hierarchical finite element in [5]. The decision considers the geometric nonlinearity, shear and
rotational inertia. The first and higher frequencies were calculated and the high accuracy of the proposed
finite element was shown.

Using the flat joint finite elements for modeling the free beam vibrations is offered in [6]. This
approach allows us to consider the effect of shear deformations on the values of the frequencies of free
oscillations. Free nonlinear oscillations rods considering shear deformations are considered in [7]. The
solution is built using finite elements with independent linear approximations of the longitudinal and
transverse displacements, and rotation angles. Hamilton's principle is used for the motion equations. The
paper presents the numerical results, which show the effect of vibration amplitude and shear deformation
on values of the frequencies of free vibrations of beams with different support conditions.

Precision triangular element, considering the shear deformations, is presented in [12] for bending
plates. When the stiffness matrix is formed, the finite element is divided into three triangles. The
proposed element allows us to calculate the frequencies of free vibrations with high precision. In [13]
isoparametric quadrilateral finite element with eight nodes is used to study the free oscillations of thin and
thick plates. It examines the different schemes of construction mass matrices and examples of the
calculation of rectangular plates. It is concluded that the use of the diagonal mass matrix provides a high
accuracy of frequencies. Various forms of the equations of the rods dynamics and significance accurate
determination of the free oscillations frequencies spectrum were shown in [26, 27]. The articles [28—33]
devoted to research of the various variational formulations for deciding nonlinear and thin-wall rods
systems by finite element method in displacements.

In [16] as the nodal unknowns of finite element method are accepted forces, bending and torsional
moments, corresponding deformations and curvatures. Distribution of forces to finite element area is
taken to be linear. The system of equations consists of the equilibrium equations of nodes, which are
formed by means of the principle of possible displacements and strain compatibility equations, which are
written using the static-geometric analogy. The number of unknowns is reduced using the known
relationship between stresses (moments) and strains (curvatures). There are examples of calculating the
bending plates, shallow shells and plane elasticity problems.

Solution of the free vibrations of a rectangular, clamped along the contour plate using the
expansion of displacements in Taylor, McLaren's series is presented in [21]. The article compares the
frequencies of free oscillations of plates with different aspect ratio, obtained using the proposed method
with those of other authors.

Thus, the main part of work is aimed at improving the method of finite elements in displacements.
Some work focused on the development of finite element methods for some constructions in the form of
the method of forces or stresses. Still actual is problem of constructing solutions by finite element method
in stresses, which will have the same universality, as the finite element method in displacement, and will
allow obtaining of alternative solutions abroad.
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Methods

In [34-38], based on the additional energy functional and the principle of virtual displacements,
were built solving the building structures problems by using the stress finite element analysis. Using for
the approximations of stresses (forces) in the field of finite element constant or piecewise constant
functions we will get the upper border of displacements. In general, the solution of the problem reduces to
finding the minimum of the additional energy functional (1) in the presence of limitations in the form of
equilibrium equations of nodes (2).

ne=u"+Vv*= % f {a}T[E] Ho}d 0 — J {T}"{A}dS - min,

T = .-
{Ci,x} {O'i} + Pi,x = 0, 1 € Zxy
T — = -
{Ci,y} {O'l'} + Pi,y = 0, S :.y,
T, = .-
{Ci,Z} {O'i} + Pi,Z = 0, 1 € Za.
where U* — additional energy of the strains, V* — potential boundary forces corresponding to the specified
displacements [1]; {7;} — vector of unknown node stresses (forces) of finite elements adjacent to the node
i; £, 5,5, — sets of nodes that have free displacements along the axes X, ¥ n Z respectively; {A} —
vector given displacements of nodes; {T} — vector boundary forces; S — boundary surface, on which the
displacement nodes are given; {C;.},{Ci.}.{C;.} — vectors, whose elements are the coefficients
(multipliers) of the unknown node stresses (forces) of finite elements adjacent to the node i; ﬁi‘x, ﬁi‘y_ ﬁi‘z
— external loads potential corresponding to the virtual unit displacements of the node i along axes x,y, z
respectively. The equilibrium equations (2) are formed by means of the principle of virtual displacements
for all admissible displacements of nodes along the coordinate axes. If node united more than two finite

elements, then you must add the equations of equilibrium moments about the axes for this node. Below,
we will view only straight rods, so the equilibrium equations of moments are not considered.

To go to the problem unconstrained minimization, we use the method of Lagrange multipliers. Then
the advanced additional energy functional takes the following form:

Consider the process of constructing resolving equations on the example of a flat rod system (Fig.
1).
* * T, ) .
g =U"+ V" + Xjosy,z Lies; Wi ({Ci,j} {o:} + Pi,j) - min, &)
where u; ; — the actual displacement of the node /i towards j, which is the Lagrange multiplier for the

corresponding equilibrium equation. When using functional (3) there is no need to use a stress field,
which satisfy the differential equations of equilibrium, as required by the principle of minimum additional
energy. The equilibrium equations will be carried out in discrete sense — in the form of the equilibrium
equations of the finite element mesh nodes.

Consider the process of constructing resolving equations on the example of a flat rod system
(Fig. 1).
AY

X

»
»

Figure 1. Flat rod system. Virtual displacements of the node
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— N;
The longitudinal forces and bending moments are the nodal unknowns {O'i} = {Ml-} (Fig. 2).
L

Figure 2. The rod finite element unknowns

Consider the linear approximations of forces and moments in the field of finite element

N = Zi2=1LiNi' M = Ziz:lLiMil (4)
where:
_@+&d o 2x
Li=—=¢=7i=12 (5)
where [¢ — length of the finite element. L; — linear function-forms, recorded by using the relative

coordinate £. The &, x coordinates are measured from the center of the finite element. Thus, fl =-1
and fz = 1. For the constant cross section rod, the additional energy is the sum of two integrals

1€ e
U = 1] N(x)?dx 1jl M(x)?dx )
¢ 2) EA®e " 2), EI¢
0

where E — modulus of elasticity; A — cross-sectional area; [¢ — cross-sectional moment of inertia.

—enT
Denote the vector of nodal unknowns for finite element {O'e} = (N; M; N, M,). Then, after integration
we get that

U; =5 (5% (81"}, ()
where:
_ le le -
3EA® 0 6EA® 0
e I
e1 _ 0 3EI® 0 6EI®
6EA® 0 3EA® 0
I 0 -
- 6EI® 3EIe-

If the approximations of forces and moments are piecewise constant functions, then

— le 0 O 0 -
2EA®
0 zéle 0 0
0 0 0
2E A€
o o o 2
- ZEIe_

Global additional energy matrix [B€] for the whole system is formed from a matrix [B] for each
finite element, in accordance with global indexes of unknowns.
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Figure 3. Local and global coordinate system

To form the equilibrium equations of nodes is introduced local coordinate system o7, associated
with the considered finite element (Fig. 3). The possible displacements of node 6‘ﬂi'x, 5Wi,y along the
global axes X and Y can be represented as the geometric sum of the displacements 5@-,5, 6Wi,,7 along
the local axes. Possible displacement along axis Y causes the following displacements:

Suje = 6wysina, Sw;, = dw;,cosa. (10)

Displacement é‘ﬂi,x can be replaced by the following possible displacements along the axes of the
local coordinate system:

Ou; s = du;,cosa, Sw;, = —b0u;,sina,
Xy X R 4 (11)
cosa = e sina = e
Displacements of points of the finite elements, abutting to this node, are linear functions (Fig. 4a).
Therefore, displacement causes the constant deformation

e = 2hiE, (12)

e
Then the energy deformation of the finite element in view of (4) is
—e le
8Uie = [, N(x)8edx = (Ny + N,

Su;g
5

(13)

If displacement of the node is directed along the normal éw,,, then the finite element moved as
rigid body (Fig. 4b), so that the axis curvature of the rod is zero. In this case, the deformations energy
equal the work of nodal moments:

—e M, — M
§U;y = (My — My)g = (21—1) SWo - (14)
n
1 2 't
° \Su-;
a) =
Jl‘["l _‘2*
(et 1 s
1 Ie 2/ E:
M, M,
b)

Figure 4. Possible displacements in the local coordinate system
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In general, the expression (14) can be written in relative coordinates of the nodes.

6 L 1A
wi "f $2_. &M, (15)

The relative coordinates of the nodes have the foIIowmg values: & =—1,¢, = 1. Using the
expressions (13), (15) and (10), the energy of deformation from possible displacement of the node along
the global X-axis of coordinates is written in the foIIowing form:

5557; 6W”7€L (&1My + §M,) =

cosa E iS

—e
6Ui,x = (Nl + NZ) -

(flMl + 'szz) (16)
In vector notation
Ui, = {c2)'(5°) (1)

Equation (17) can be expressed by the vector unknowns of all finite elements, adjacent to the
node.

UL, = (€9} (@0}, (18)

The elements of the vector (18) are moved in a pre-zeroed global vector {Cief} in accordance with

global numeration of unknowns. The size of the vector {Cief} is equal to the number of nodal unknowns.
For all finite elements, adjacent to the node i

U = 2AC50Y @ = {Cin} @22 (19)

The potential of external forces at possible unit displacement along the X-axis
67 ﬁ =Ptz Z qile, (20)

where: P; ., — projection of the force on the X-axis; gy — evenly distributed load for the finite element,
adjacent to the node i. Equilibrium equation of the node along the X axis will be have the standard form

{Ci,x}T{Ei} +P;, =0. 1)

For possible displacement of the node dw; v = 1 along the Y-axis

551'6,3/ sin (N1 +Ny) + ——— E (51M1 + &M;). (22)

In vector notation

- () @), @)

[ sina
2

& & cosa
le

CY=1 sima [ (24)

2

&€& cosa
\ e )

The potential of external forces at possible unit displacement along the Y-axis

17 - 1
8Viy = Piy = Py +-Xeqyl®, (25)

Equilibrium equation of the node along the Y-axis will be like (22).
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Consider the free oscillations of constant cross-section rods. To illustrate the method simply
supported rod, divided into three finite elements, is showed in Figure 5. The nodal displacements and
bending moments will be unknowns.

Figure 5. Simply supported rod: a) finite elements;
b) a form of free oscillations; c) linear approximation of moments;
d) piecewise constant approximation of moments

The length of the finite element — 1°, bending stiffness — El, the mass per unit length of rod — m. In
Figure 6, for any finite element, the following notation: M, M, — the internal bending moments; R;, R, —
nodal reactions corresponding bending moments; F;, F, — nodal reactions, corresponding inertia forces
f(x, t). The longitudinal vibrations are absent.

y
AY +y
M AP flx,1) N fix f) Fa() F(t)
1rrrrHr112‘\; EZEsRZAEE Y \ 2 X
A ! e A -) 1 B 2 L mTi mT!J
Rl Rg
a) b) c)

Figure 6. The finite element: a) internal forces and nodal reactions;
b) dynamic finite element model with distributed mass;
c) dynamic finite element model with concentrated masses

Using the principle of virtual displacements or equations of equilibrium moments, nodal reactions
R, R, can be expressed through the nodal bending moments. For example, reaction R, is the derivative

—e _
of the virtual deformations energy 6Ui‘n by virtual displacement 5W2,,7 (see (14)). Expression for the
finite element nodal forces in the matrix form is written as

1 -1

el =15 T or ey = aerguey 26)
=

Matrix [A€] is static equations matrix. Vector {R°} is vector of unknown nodal bending moments for
finite element. The form of the rod oscillations is approximated by broken line (Fig. 5b). In the field of
finite element, displacements of points are represented by a linear function. Thus, the distributed forces
of inertia are determined by expression (28):

f(x,t) = —mj = mw? (yl (1 - lie) + vy, lie) sin(wt). (27)

Then, excluding Sin(a)t), we obtain nodal reactions corresponding distributed inertia forces
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w?ml®  w?ml®
Fy_| s 6 Y1 €1 Ipelf..e
{FZ} " |w?ml® w?mi® {)’2} or {F°} = [B°]{y°}. (28)
6 3

If the mass concentrated in the nodes, we obtain a diagonal matrix

[a)zmle 0 ]

B°] = | i w?ml® | (29)
L O >
Additional energy of the finite element strains is expressed as the integral
e = 2 f M, (30)
2), EI
After integration, we obtain the following matrix expression:
e = 2{M°}" [D°]{M°}, (31)

Flexibility matrix [D€] is written in two versions — [D€];;, for linear (Fig. 5c) and [D®],;. for
piecewise constant (Fig. 5d) approximations of the moments:

l l l

D% = P ), D1 = |22, |- (32)

6EI  3EI 2E1
By forming from local vectors and matrices (with index e) according to the unknown’s numeration,

we obtain similar global matrix and vector for the whole system. Expressing through them functional (3)
we get:

1
Iz = E{M}T[D]{M} + {y}" ([Al{M} + {F}) > min. (33)
By equating to zero the derivatives of the (34) along the vectors {M} and {y}, we obtain
[D]{M} + [A]"{y} = O, (34)
[Al{M} + {F} = 0. (35)

The vector of inertia forces expressed through the global matrix [B], then the system of linear
homogeneous equations takes the following form:

{[D]{M} +[A]"{y} =0,
[A{M} + [B]{y} = 0.

By equating to zero the determinant of the system (36), we find the frequencies of the free
oscillations wW. The number of unknowns of the system (36) can be reduced. To do this, we express the
vector {M} from the first matrix equation in system (36) and substitute it in the second equation. Then we

will get the system of equations (37). The system (38) is obtained by expression vector {y} from the
second matrix equation in (36).

(36)

(—[AIID]'[A]" + [BD{y} =0, (37)

(—[A]"[B]7*[A] + [DD{M} = 0. (38)

The system (37) have advantage, if we will use the piecewise constant approximation of moments

along length of the finite element. Then the matrix [D] consists of the matrices [D®],;c and the matrix
[D]_1 elements are calculated analytically. If we used only concentrated masses, then matrix [B] will
take the diagonal form. In this case, it is easier to use the system of equations (38). If matrices [D] and

[B] does not have the diagonal form, the frequency must be determined by the system (36), which is

Tyukalov Yu.Ya. Stress finite element models for determining the frequencies of free oscillations. Magazine of
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bigger than the system (37) or (38). If we calculate the frequency by means an iterative process, it would
require more computing operations.

Results and Discussion

To evaluate the accuracy determination of the frequencies by the method proposed above, we
have been calculated first three frequencies of the free oscillations for constant cross-section rods with
different supports of the ends. To simplify the analysis length, bending stiffness and mass per meter of
the rods was taken equal to unity. In the calculations was used Mathcad 14.0 program.

Graphics in Figures 7—14 show comparison of the calculated values of the first three frequencies of
free oscillations with the exact values. The first version of the figures (green line — 1) corresponds to a
linear approximation moments along length of the finite element, the second — a piecewise constant
moments (blue line — 2).

The results show, that by using the concentrated masses (Fig. 7-10) frequencies calculation
values are approached to exact values from below, when we use both linear and piecewise constant
approximation of the moments.

If the mass of the rod is evenly distributed (Fig. 11-14) and moments are piecewise constants, the
frequencies are approached to exact values from below. When using linear approximation moments — the
calculated frequencies are approached to exact values from above, as in the case of using the finite
element method in displacement.

The proposed method of calculation allows you to get the opposite bound values for the
frequencies of free oscillations, in comparison with the finite element analysis in displacements. This
requires use the concentrated masses and linear or piecewise constant approximation of the moments.
Also, we can use the distributed mass in combined with piecewise constant approximation of the
moments.
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Figure 7. The frequency of free oscillations of a cantilever rod depending
on the number of grid nodes. The mass of the rod concentrated at the nodes

Trokanos 10.51. OmnpenerneHre 9acToT CBOOOTHBIX KOJEOAHHMI METOIOM KOHEYHBIX JJIE€MEHTOB B HAINPSDKCHUSX //
HmxeHepHo-cTpouTenbHbIN xypHAI. 2016. Ne 7(67). C. 39-54.

47



48

Magazine of Civil Engineering, No. 7, 2016

140

120

100

a 1 2 3 4 5

Figure 8. The frequencies of free oscillations of a clamped rod depending
on the number of grid nodes. The mass of the rod concentrated at the nodes
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Figure 9. The frequencies of free oscillations of a rod with one clamped and one hinge supports
depending on the number of grid nodes. The mass of the rod is concentrated at the nodes
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Figure 10. The frequency of free oscillations of simply supported rod depending
on the number of grid nodes. The mass of the rod is concentrated at the nodes
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Figure 11. Frequencies of free oscillations of the clamped rod, depending
on the number of grid nodes. The mass of the rod is evenly distributed
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Figure 12. The frequency of free oscillations of a cantilever rod depending
on the number of grid nodes. The mass of the rod is evenly distributed
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Figure 13. The frequency of free oscillations of a rod with one clamped and one hinged supports
depending on the number of grid nodes. The mass of the rod is evenly distributed
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Figure 14. The frequency of free oscillations of hinged rod depending
on the number of grid nodes. The mass of the rod is evenly distributed

Tables 1-4 show the calculations results and their accuracy estimates that were received by using
the concentrated masses and linear approximation of the moments. Table 5 show the calculation results
accuracy estimates. Number of grid nodes is equal five. In Table 5 rods are designated as: 1 — cantilever
rod; 2 — clamped rod; 3 — rod with one clamped and one hinged supports; 4 — hinged rod.

The above data in Tables 1—4 show, that by crushing grid the results accuracy is increasing quite
quickly. For cantilever beam, the calculating error is reducing from 30.2 % to 1.8 % for the first frequency,
from 26.2 to 5.9 for the second frequency and from 23.8 to 9.3 for the third frequency. Obviously, for a
more accurate calculation of the second and third frequencies values is required more nodes. For other
supports of the rods, the accuracy of the calculated frequency values is substantially higher and it is
satisfactory for all three frequencies even at five nodes.

In Table 5 the accuracy estimates of the calculated results in percentage for the grid with five
nodes are shown. The highest precision is achieved by using a linear approximation of the bending
moments and concentrated masses. Less accurate results are obtained by using a piecewise constant
approximation points and distributed masses. More nodes of the grid are required to achieve high
accuracy of the results using piecewise constant approximations of moments and concentrated masses,
but in this case, as in the previous two, calculated values of the frequencies are approaching to the exact
values from below. When using linear approximation moments and distributed mass, the calculated
frequencies are approached to exact values from above and are required more nodes for achieve high
accuracy of the results.

Table 1. The results for cantilever rod (Fig. 7 green line — 1)

Exact value Exact value Exact value
Number _ 1 — 29 — 61.701
of grid w1 = 3.516 rad/sec Wy = 22.035 rad/sec w3 = 61.701 rad/sec
nodes Calculated Error % Calculated Error % Calculated Error %
values values values
1 2.449 30.3 — — — —
2 3.156 10.2 16.258 26.2 - -
3 3.346 4.8 18.886 14.3 47.028 23.8
4 3.418 2.8 20.090 8.8 53.202 13.8
5 3.453 1.8 20.734 5.9 55.953 9.3

Tyukalov Yu.Ya. Stress finite element models for determining the frequencies of free oscillations. Magazine of
Civil Engineering. 2016. No. 7. Pp. 39-54. doi: 10.5862/MCE.67.5
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Table 2. The results for clamped rod (Fig. 8 green line — 1)

Exact value Exact value Exact value
Number _ _ —
of grid w4 = 22.373 rad/sec W, = 61.67 rad/sec w3 = 120.903 rad/sec
nodes Calculated Error % Calculated Error % Calculated Error %
values values values
1 19.596 12.4 — — — —
2 20.069 10.3 57.65 6.5 - -
3 22.302 0.3 59.20 4.0 97.40 19.4
4 22.350 0.1 60.90 1.25 113.12 6.4
5 22.364 0.04 61.39 0.45 118.01 2.4

Table 3. The results for rod with one clamped and one hinge supports (Fig. 9 green line — 1)

Exact value Exact value Exact value
Number _ _ _
of grid w1 = 15.418 rad/sec Wy = 49.964 rad/sec | w3 = 104.248 rad/sec
nodes Calculated Error % Calculated Error % Calculated Error %
values values values
1 14.832 3.8 — — — —
2 15.349 0.45 45.632 8.7 — —
3 15.402 0.10 49.054 1.8 91.53 12.2
4 15.412 0.04 49.683 0.56 100.43 3.7
5 15.416 0.01 49.851 0.23 102.82 1.4
Table 4. The results for simply supported rod (Fig. 10 green line — 1)
Exact value Exact value Exact value
Number _ / _ / _ /
of grid w1 = 9.869 rad/sec Wy = 39.478 rad/sec w3 = 88.826 rad/sec
nodes Calculated Error % Calculated Error % Calculated Error %
values values values
1 9.798 0.7 — - - —
2 9.859 0.1 38.184 3.3 — —
3 9.867 0.02 39.192 0.7 83.21 6.3
4 9.868 0.01 39.381 0.25 87.18 1.8
5 9.869 0 39.436 0.1 88.18 0.7

Table 5. Accuracy estimate of the calculated results in percentage

w | Roa | M- linear M-tinear | M Ese
m - distributed | m - concentrated m — distributed m — concentrated
1 0.3 1.8 1.8 3.2
2 27 0.04 7.8 10.1
Y| 3 26 0.01 35 5.9
4 23 0 0 23
1 4.0 5.9 6.0 14.4
2 98 0.45 12.3 20.5
Y21 3 98 0.23 6.0 14.3
4 0.4 0.1 0.1 8.8
1 13.2 9.3 9.3 26.5
2 -19.7 24 15.6 31.0
] 3 -21.0 14 8.5 252
4 216 0.7 0.7 18.9
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HmxeHepHo-cTpouTenbHbIN xypHAI. 2016. Ne 7(67). C. 39-54.

51



Magazine of Civil Engineering, No. 7, 2016

Conclusions

1. The proposed method of calculation allows getting the opposite bound values (bottom values) for the
frequencies of free oscillations, in comparison with the finite element analysis in displacements.

2. The highest precision is achieved by using a linear approximation of the bending moments and
concentrated masses. For grid with five nodes the maximal calculating error is 1.8 % — for first
frequency, 5.9 % — for second frequency and 9.3 % — for third frequency. The calculated values of the
frequencies are approaching to the exact values from below.

3. Use the concentrated masses and linear or piecewise constant approximation of the moments or the
distributed mass in combined with piecewise constant approximation of the moments, the calculated
values of the frequencies are approaching to the exact values from below.

4. Using linear approximation moments and distributed mass, the calculated frequencies are approached
to exact values from above. For grid with five nodes the maximal calculating error is 2.7 % — for first
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frequency, 9.8 % — for second frequency and 21.6 % — for third frequency.
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