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The paper puts forward a modification of the no-boundary Hartle-Hawking
wave function in which, in the general case, the Euclidean functional integral can
be described by an inhomogeneous universe. The regularization of this integral is
achieved in arbitrary canonical calibration by abandoning integration over the lapse
and shift functions. This makes it possible to ‘correct’ the sign of the Euclidean action
corresponding to the scale factor of geometry. An additional time parameter associated
with the canonical calibration condition then emerges. An additional condition for
the stationary state of the wave function’s phase after returning to the Lorentzian
signature, serving as the quantum equivalent of the classical principle of the least
action, was used to find this time parameter. We have substantiated the interpretation
of the modified wave function as the amplitude of the universe’s birth from ‘nothing’
with the additional parameter as the time of this process. A homogenecous model of
the universe with a conformally invariant scalar field has been considered. In this case,
two variants of the no-boundary wave function which are solutions of the Wheeler-
DeWitt equation have been found.
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PEFYJIAPU3ALLIUA BOJIHOBOU ®YHKLIUU XAPTJIA - XOKUHTA
H.H. FTopo6ei, A.C. JlyKbIHEHKO

CaHkT-lNeTepbyprckui nonmMtexHnueckmm yHuepcutet [lletpa Benukoro,

CaHkr-lNetep6ypr, Poccuiickas Penepaums

[Mpennoxena moaudukanus HeorpaHWYeHHOU (no-boundary) BosHOBOM (DyHK-
uuu Xaptia — XOKUHTa, B KOTOPOii, B 00LLEeM cilyyae, eBKIUI0B (hyHKIIMOHATbHBIN
WHTETpaJl MOXHO OTIPeNe/NTh HeomHopomHoU BceenmenHoit. Perymspusamus atoro
MHTETpajla JOCTUIaeTCsl B IIPOM3BOJIbHOM KAHOHMYECKON KaJIMOpPOBKE OTKA30M OT
WHTETPUPOBAHUS 110 (DYHKITUSM CJISIOBAHUS M CABUTA. DTO MO3BOJISIET «MCITPABUTH»
3HaK e€BKJIMIOBA JEeHCTBUS, OTBeUalollero MaciuTabHomy dakTopy reomerpuu. Ipu
9TOM BO3HUMKAET IOIOJTHUTEIBHBIN TapaMeTp BpeMEeHU, CBSI3aHHBIA C KaHOHWYE-
CKMM KaJMOpOBOYHBIM yCIoBHeM. ISl HaXOXIEHMSI 3TOTO MapaMeTpa BPeMEHU KC-
MMOJTb30BaH KBAHTOBBIN aHAJIOT KJIACCUYECKOTO TPUHIIMITA HAUMEHBIIIETO JeMCTBUSI.
WM city>XuT 1ONOJHUTENIBHOE YCIOBUE CTALIMOHAPHOCTU (a3bl BOJTHOBOW (DYHKIIMU
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TocJie BO3BpallleHUs K JOPEeHLIeBO curHatype. OO0CHOBaHAa MHTEPIpETaLMs MOAM -
(GULMPOBAHHOM BOJHOBOM (DYHKIIMU KaK aMILIUTYAbI poXXKIeHUsT BceneHHOM U3 «HU-
Yero» ¢ yKazaHHBIM JIOTIOJTHUTETLHBIM ITapaMeTPOM B KauyeCTBE BPEMEHM 3TOTO IPO-
necca. PaccmoTrpena omHopoaHas Monenb BeeneHHO# ¢ KOHPOPMHO-MHBapHUaHTHBIM
CKaJISIpHBIM TI0JIeM. B aTOM ciyvyae HaiimeHsl 1Ba BapyuaHTa BOJTHOBOW (DYHKIIMMA NO-
boundary, KoTophle SIBISIOTCS PelIeHUSIMU ypaBHEeHUsT Yuiiaepa — JeBurra.
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Introduction

The Hartle-Hawking no-boundary wave
function of the universe [1, 2] is a unique
construction in quantum cosmology which has
been put forward to describe the early stages of
the universe evolution. It is possible that this
function describes the whole universe evolution
defining the probability measure on classical
spacetimes [3]. But the problem is that, in the
general case, it has been ill-defined [4] out of the
scope of the semiclassical approximation, since
the Euclidean action of General Relativity (GR)
is not positive-definite. A negative contribution
to the action is related to the conformal scale
factor of geometry [5].

In the present paper we propose an
adaptation (by integral regularization) of the
Hartle-Hawking no-boundary wave function
that allows to avoid the mentioned difficulty.
Moreover, we put forward another physical
interpretation of this regularization, namely, this
selected state of the universe will be considered
as initial, without any dynamical subject-
matter. The dynamics can be formulated
separately using the ordinary GR Hamiltonian
with the Lorentzian signature. This is due to
the fact that the proposed adaptation violates
the initial covariance of the Hartle-Hawking
formulation, and the obtained wave function
will not generally be a solution of the Wheeler-
DeWitt equation.

In order to determine this selected state
within the Hartle-Hawking no-boundary
formulation we propose to make (at our will)
the change of the sign of the negative term in
the Euclidean action of GR (subsequently as
“Euclidean GR”).

Our first comment is that the sign will be
restored afterwards. But this change is fraught

with consequence: classical constraints of the
Euclidean GR become unsolvable in the real
range of variables’ values.

This means that integrating over the lapse
and shift functions in the continual-integral
representation of the no-boundary wave
function becomes meaningless. Because of this,
we simply fix these variables up to the next stage
of our regularization procedure. In this way the
Euclidean no-boundary wave function appears
to be determined in a relativistic canonical
calibration with a fixed Euclidean interval of
time (it is arbitrary so far).

After integrating over all physical degrees
of freedom, it is necessary to restore at once
both the initial negative sign of the Euclidean
action related to the conformal scale factor and
the Lorentzian signature of the whole action
by the Wick rotation of the Euclidean time in
the opposite direction at the complex plane.
As a result, the Euclidean no-boundary wave
function will become complex. The final step
of our regularization is fixation of the time
parameter governing the wave function in
addition.

For this purpose we propose to use the
additional condition of the wave-function’s
phase stationary state relative to variations of
the time parameter. The condition of the phase
stationary state is a quantum equivalent of the
classical principal of the least action in the GR.
The equations resulting from this condition
fix the lapse and shift functions. Solving the
stationary equations, we determine the no-
boundary wave function of the universe up to a
constant multiplier.

In the present paper, we consider this
regularization procedure in the case of a simplest
minisuperspace model of the universe with a
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conformal invariant scalar field. Although this
example is far from an appropriate description
of reality, it is suitable for its simple model
[6]. In our framework the resulting regularized
no-boundary wave function will be a non-
trivial solution of the Wheeler-DeWitt (WDW)
equation of the model, and so it will be
stationary.

Minisuperspace with the conformal invariant
scalar field

In the case of the homogeneous Robertson-
Walker metric (Euclidean signature) which has
the form

ds’ = 6’[N*(v)d7* + a*(1)dQ3], (D)

where o’ = (2 /3n)m,, and dQj is the metric
of the 3D sphere with the unit radius, and the
conformal invariant scalar field ¢(t), the clas-
sical action of GR may be written in the form
of Ref. [6] as follows:

I=1,+1, Q)
et (1 da)
Ia :—EE')-dTN|:[ﬁEJ +a }, (3)

1 - ld\y2 )
[ =—[dN|ll =22 + 4
¢ 2'([T I:(Ndrj v @

where N = Na, v = ({2 /n)ac.
The Wheeler-DeWitt equation of the model
has the form

1 o(,0 , 0 2
L L e - 2 W (a,0)=0.(5
LP oa (a aaj . oy’ T (@) )

We have introduced a regularization pa-
rameter ¢ in Eq. (3) whose “normal” value
is +1. Further, for simplicity we will take the
parameter of operator ordering p = 0.

Following Ref. [3], let us consider the con-
figurations of the scale factor a on a disc with
boundary conditions: a(0) = 0 (the South Pole)
and a(l) = b at the final spatial section.

For the initial configurations of the con-
formal scalar field ¢ at the South Pole let us
consider two cases:

(i) ®0)=0 (wyis smooth in the South
Pole);

(i) ¢(0)=0 (¢ is smooth in the South
Pole, but y(0) =0).
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Indeed,

T

W(t) o d + ap = T (Ina)y +ad. (6)

It follows from here for the second case:
vy o @ in the limit 1 — 0.

In both cases we take (1) =y at the final
spatial section. Since the integration over the
(renormalized) lapse function N(t) will not be
performed from this point on, we obtain the
dependence of the universe’s state at the final
spatial section on an additional real Euclidean
time parameter C:

C= jdtN(t). (7)

In the ordinary covariant quantum theory,
the integration over the interval C e [0,) with
corresponding measure is supposed [7]. We
have chosen another possibility: this parameter
will be fixed by the QAP at the final stage of
our definition of the no-boundary wave func-
tion of the universe.

Regularization of the Hartle-Hawking
no-boundary wave function

Let us consider a functional integral over the
field configurations (a(t),y(t)) with the given
boundary values at the final spatial section (b, y)
and the corresponding smoothness conditions at
the South Pole (setting here 7 =1):

¥(b,1,C) = [ DaDyexp(-1). ()

For the integral (8) to be finite we set the
regularization parameter & equal to —1 at this
stage. Then the Gauss integral (8) can be cal-
culated without effort. The following simple
example illustrates the regularization procedure
proposed here (for £ =1):

|, drexp(ex?) = im0

J-€

The only irritant in our regularization pro-
cedure is an occurrence of the constant multi-
plier (=i)*, which arises in Eq. (8) after inte-
gration over a(t). But this multiplier does not
depend on the dynamical variables, so it can
be omitted.

Notice that the regularization parameter &
in the integral (3) can be inserted into the lapse
function N(t), so that we derive two indepen-
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dent variables Na(T),N¢(T) and, correspond-
ingly, two parameters C,,C, which should be
identified at the final stage.

Let us consider the results of integration in
two cases mentioned above.

In the former case (i) the Gauss integral
(8) equals

(=)" exp(=1)), (10)

where the action in the exponent is calcu-
lated on the classical trajectory (a,(?),y,(?)),
t €]0,C] with the corresponding boundary
condition:

b X
(1) = ——sht, y.(r) = —~%—cht. 11
a,(1) shCS > vi() chCC (1)

As a result, the action is equal to

I - %(—gbzthc +y2cthC).  (12)
In the latter case (i),
b x
(1) = ——=sht, v, (1) = —%—sht 13
a;(1) e’ > v, (7) she She (13)
and
I, - %(—gbz +)hC. (14)

Let us now restore the “normal” value of
the regularization parameter § = +1, and return
to the real time C =iT. As the result, the Eu-
clidean action in the exponent of formula (10)
becomes an imaginary phase function, which
defines a real phase which we consider as a
quantum action corresponding to the birth of
the universe. In the former case (y is smooth
in the South Pole) the quantum action is

S = %(b2th +x*ctgT). (15)

At the last step in our definition of the wave
function, we fix the time of birth 7 using the
additional condition of the extreme value of
the quantum action:

oS, b x

e 2 - . 2 = 0’

oT cos"T sin°T
from which

(16)

er =%, (17)

The solution of Eq. (17) can be interpreted

as the time of the universe’s birth in the inti-
mated state from “nothing”. The correspond-
ing stationary value of the quantum action is

S, =by. (18)

1
It is easy to check that the stationary wave
function

¥, = Aexp(iby) (19)

is one of the solutions of the WDW equation
(5) with p=1.

In the latter case (¢ is smooth in the South
Pole) the corresponding quantum action is

Sy =3B el Q)

The condition for it to be stationary with
respect to the variation of the time of birth 7'
implies —b* +y* = 0.

Therefore, the stationary wave function
would be taken as

Wi = AS(bZ - Xz)- (21)

It is also a solution of the WDW Eq. (5).
The time of this state’s birth is not defined.

Conclusion

In the present paper a regularized definition
of the universe’s Hartle-Hawking no-boundary
wave function being divergence-free has been
proposed. The regularization was achieved
by abandoning integration over the lapse and
shift functions, the wave function being in
the functional-integral representation. This
adaptation violates the covariance of the
initial theory, so in general, the obtained wave
function is not a solution of the Wheeler-
DeWitt equation.

This procedure can be interpreted as a
complex amplitude of the universe’s birth from
“nothing” with the time parameter not defined
yet. Considering the phase of the complex
amplitude as a quantum equivalent of the
classical action, at the last step in our definition
of the wave function we proposed to fix the time
of birth 7 using the additional condition of the
parameter extremum of the quantum action.

In the present paper, two variants of initial
conditions (conditions of smooth) for the scalar
field were considered for the uniform model of
the universe with the conformally invariant scalar
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field. The no-boundary wave functions of the
universe were obtained in the both cases. These
functions were solutions of the WDW equations.

Hence, both solutions have turned to be
stationary for the simple model of the universe

considered here.
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