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HOBbIE MATEPUAJIbI ANA BbIAEJIEHUA AHK

Except silicon dioxide, commonly used for DNA isolation, such metal oxides (V) as Ta,O, Nb,O, and
V205 were proposed for this purpose. A method for covering magnetic iron-based nanoparticles with
metal oxides (V) was suggested. The synthesized nanoparticles were used for DNA extraction and the
amount of isolated DNA was compared with the commercially available magnetic particles coated with
silicon dioxide. Magnetic nanoparticles covered with Ta,O, and Nb,O, showed- a greater adsorption
capacity as compared with the same nanoparticles covered with silica and commercial samples. The
synthesized nanoparticles can be suitable for DNA extraction in clinical or research laboratories. The
functional thin films for fast and effective DNA extraction are of great interest for neurobiology

investigations.
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3a UCKITIOYeHUEM JNOKCHUJIa KPEMHMUA, 0OBIYHO NCITOJIB3YEMOTI'O IJIA BhIACTICHU S )lH K, JUISI 9TOM LIeJU

OBLITU TIPENJIOKEHBI TaK1e OKCUIBI MeTa/lioB (V), Kak TaZOS, Nb205 n VZOS. B naHHoOIi cTaThe pac-

CMOTPEH METO[ MOKPBITUS STUMU OKCUIaMU MarHMTHBIX HAHOYACTHUII HA OCHOBE 3KeJie3a, McclenoBa-
Hbl XUMWUYECKHUE U CTPYKTYpHBIe cBoiicTBAa. CUHTE3MpOBAaHHBIE HAHOYACTHUIIBI OBLIM MCIIOJIb30BaHbI
s BeineneHust JIHK, mpoBeneHo cpaBHEHNE ¢ UMEIOIIMMUCS B TTPOJaKe MAaTHUTHBIMU YaCTULIAMM,
MOKPBITHIMU IUOKCUIOM KpeMHHMS. MarHUTHBIC HAHOYACTHLbI, TTOKPBITEIC Ta,0, 1 Nb,O, mokassi-

BalOT HAMOOJBIIYIO aICOPOIIMOHHYIO CITIOCOOHOCTD IO CPABHEHUIO ¢ HAHOYACTUIILIMU, TTOKPHITHIMU
JIMOKCUIOM KPEMHUS U C KOMMepUYeCKU T0CTYMHbIMU. CUHTE3UPOBAHHbIE HAHOYACTHULIBI MOTYT OBIThH
WCITONBb30BaHbl is1 dKkcTpakuuy JJHK B KIMHWYECKUX MM HayYHO-MCCIIENOBATEIbCKUX JJabopaTo-
pusix. DyHKIIMOHANIbHBIE TOHKHE TJIEHKU ISl ObIcTpoit U addexkTuBHOM skcTpakuuu JHK npen-
CTaBJISIIOT OOJIBIIION MHTEPEC TSI UCCIIENOBAHUI B HEMPOOMOIOTUH.

TOHKME ITJIEHKUW; 30J1b-T'EJlb; IHK; MATHUTHBIE HAHOYACTUILIbBI; POBC.
Introduction

Over the last decade the studies on the magnetic
nanoparticles (MNP) have become popular in wide
range of biomedical applications, such as biosensors,
contract agents for magnetic resonance imaging, drug
delivery, etc [1—5]. One of the most common applica-
tions of magnetic nanoparticles is DNA isolation. In
that application the surface of magnetic nanoparticles
is covered with materials which are active for DNA
isolation. So, at the first step MNP surface actively
absorbes DNA molecules and at the next step MNP
are efficiently separated from chemical or biological
suspensions with the magnetic field [6]. Magnetic

separation is recognized as simple and effective meth-
od for nucleic acids purification.

On the other hand materials with high surface
area, such as nanoparticles, are preferred for the
nucleic acids binding. Magnetic particles with shape
of nanospheres, are more preferred in the process of
selection, as they have a greater ability to bind-con-
ductive [7]. Many different DNA isolation Kkits with
magnetic particles are presents in the market, such
as: AGOWA® mag, Dynabeads® DNA and other
[8]. In general, surface cover materials of these mag-
netic nanoparticles is silicon dioxide SiO, or a com-
pound based on it [9—13].
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The principle of DNA isolation on silicon dioxide
matrix is based on the high-affinity of negatively
charged DNA strands to the positively charged so-
dium ions, which are in turn bound to negatively
charged particles of silicon dioxide. Sodium ions act
as a cation bridges, which attract negatively charged
oxygen of the phosphates in the nucleic acid chain.
Sodium ions treat the bonds between hydrogen in
water and negatively charged oxygen ions on silica
surface under high salt (pH < 7). Thus, DNA is firm-
ly connected to the matrix. Purified DNA molecules
can be eluted by low salt solution using Elution buf-
fer or distilled water [ 14—16](fig. 1).
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In the previous work [17] it was assumed that us-
ing of metal oxides (V) (tantalum, niobium and va-
nadium) would provide more effective DNA extrac-
tion than silicon dioxide. Since their crystal lattices
close to stoichiometric ratio 2:5, while the silicon
dioxide stoichiometric composition is close to 1:2.
More effective DNA extraction can be explained by
the ability of metal oxide (V) surface to form 25%
more chemical bonds than SiO, according to oxides

stoichiometry. In recent study we proposed a tech-
nological framework for fabrication of the magnetic
iron-based nanoparticles covered by SiO, and Ta,
Nb, V oxides in order to verify this assumption. Syn-
thesised magnetic nanoparticles with bioactive sur-
face were used for DNA extraction and quantitative
characteristics of isolated DNA [18] were compared
with commercial Syntol ® magnetic particles.

Materials and Methods

The non-agglomerative spherical magnetic nano-
particles of Fe,O, were produced by aerosol CVD
synthesis method. The experimental setup for the
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CVC synthesis of nanoparticles has been described
elsewhere [19, 20]. Briefly, the liquid precursor,
Fe(CO),, was heated in a bubbler, evaporate and

transported by inert gas (argon or helium) flow into
a heated tubular furnace. The tubular furnace pro-
vides a heat source for the controlled decomposition
of the precursor. The product of the precursor de-
composition was collected in a vacuum chamber on
the surface of a rotating chiller cooled by liquid ni-
trogen. An iron particle passivation process was
achieved by dosing oxygen before opening the cham-
ber to air. The precursor decomposition temperature
was set at 400 °C. After the synthesis initial Fe-based
nanoparticles have core-shell structure: core is pure
iron and shell is 1-2 nm thick magnetite. SEM mi-
crograph of as-produced nanoparticles are shown in
the fig. 2.
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Fig. 2. SEM electron micrograph of Fe30 , MNPs

Magnetic nanoparticles we covered with oxides
using sol-gel synthesis method. MNPs were covered
with metal oxides in the following compositions:
Fe.0,/SiO,; Fe.0,/Si0O,/Nb,O; Fe.0,/Si0O,/Ta,0,;
Fe,0,/Si0,/V,0,. All reagents and materials are
commercially available in Sigma Aldrich: tantalum
(V) chloride, niobium (V) chloride, vanadium (V)
oxide, isoamyl alcohol, thionyl chloride and ethanol.

The structure of the materials was analyzed by
scanning electron microscopy (SEM, Leo DSM 982
Gemini and JEOL JSM_7500F microscopes). The
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phase composition of the materials was studied by
X-ray photoelectron spectroscopy (XPS) on a
Thermo Scientific K-alpha spectrometer (USA) with
monochrome radiation source (Al Ka). Ion etching
of samples was carried out until the element content
became constant as a function of the etching depth.

The biological material obtaining and DNA isola-
tion process was carried out in the Immanuel Kant
Baltic Federal University.

Real-time polymerase chain reaction (RT-PCR)
was carried out using PCR CFX96 Real-Time PCR
Detection System («Bio-Rad», USA). PCR tube
contained 20 ul reaction mixture: DNA-polymerase
buffer Taq (“Evrogen”, Russia) — 1x, 2,5 mM MgCl,
(«Syntol», Russia, 0,25 mM of each dNTPs («Syntol»,
Russia, Tag-polymerase («Syntol», Russia) — 1x, the
neurotrophin receptor gene primer - TrkB - 0,5 uM.
The amplification reaction was started with the
following conditions: 95 °C for 3 min (once), 95 °C
for 10's, 63 °C for 40 s, (50 cycles).

Results and discussion

Preparation of metal oxides (V) thin film
on the surface of MNPs precursors

At the first step the nanoparticles were covered by
silicon dioxide thin films by sol-gel synthesis method
by using the well-known process described in [21].
We mixed 15 mg of MNPs, 500 ul ethanol, 500 ul
deionized and deoxygenated water, 50 ul ammonium
solution (25% wt) and 3 ul tetraethoxysilane. Mixture
was shaken on vortex and sonicated for 0,5 h. The
tube with MNPs was placed in the magnetic rack/
After the separation particles, liquid was removed by
pipetting.

Silicon dioxide thin film on the surface of MNPs
was used as a substrate for formation of metal oxide
(V) thin-films. For the synthesis of thin layers of
metal oxides on the silica surface of MNPs corre-
sponding etoxides (Nb(C,H,0),; Ta(C,H,0),) were
used as precursors for Ta and Nb oxides coating and
vanadium oxychloride (VOCI,) was used for vana-

dium ones. Precursors were synthesized in labora-
tory using reaction between metal chlorides and ab-
soluted ethanol [22—24], excess of HCI was removed
by reaction with gaseous ammonium.

For the synthesis 15 mg MNPs (Fe/SiO,) - coated

by SiO, (described above), was added 0.7 ml deioni-
zed water, 0,05 ml 25% ammonia solution for HCI

neutralizing (which released during VOCI, hydrolysis
process) and 0.01 ml ethylenglycol (is a complexing
agent). In the resulting solution dropwise 0.03 ml 10%
solution corresponding precursor — (Nb(C,H,O),;

Ta(C,H,O), — wherein the metal oxides are sol. The

mixture was stirred for 10 min and placed on an ul-
trasonic bath under room temperature for 10 min - 3
times. The tube with MNPs was placed in the mag-
netic rack, after the separation particles, liquid was
removed by pipetting. Then MNPs were washed three
times with 1 ml deionized water under magnetic
separation process.

As the results four type of coating had been syn-
thesized on the surface of MNPs: 1) Fe/SiO,; 2) Fe/

Si0,/Ta,0,; 3) Fe/Si0,/Nb,O,; 4) Fe/SiO,/V,0..
These particles were used in further experiments.

Particles characterization

Chemical composition of MNP’s surface with
different coatings was studied by X-ray photoelectron
spectroscopy (XPS) The X-ray beam size was 400
microns. Overview spectra were obtained with elec-
tron transmission energy 200 eV with step 1,0 eV, the
number of scans was 15. High-resolution spectra (Si,
Nb, Ta, V, O) were obtained with electron transmis-
sion energy 50 eV with step 1,0 eV, the number of
scans 7. Cleaning of the samples after air contamina-
tion was carried out by Ar"ion etching under at 200
eV for 30 sec. XPS spectra before and after ion etc-
hing are shown in fig. 3. The ion beam with 20 mm
diameter had a uniform radial distribution of ion
current.

SEM celectron micrographs of MNPs coated by
silica and niobium oxide are shown in fig. 4.

SEM electron micrographs confirmed the fact
that coated MNPs do not form agglomerates in fluids.
The average MNP size is 25 nm, MNPs shape is close
to spherical.

Testing MNP’s for DNA isolation

The sorption efficiency of metal oxides (V) was
analysed by conducting real-time polymerase chain
reaction. For this purpose we isolated DNA using
standard protocol based on magnetic particles DNA
isolation method, described in [10]. In order to de-
termine the optimal conditions for DNA binding by
metal oxides (V) we have changed some parameters
of standard protocol.
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Fig. 3. XPS spectra of Fe30 4/ Si0, and Fe3O 4/Si02/Nb205 before (a, ¢) and after (b, d)
etching
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Fig. 4. SEM electron micrographs of: a) MNPs coated SiO,,
b) MNPs coated SiO,/Nb,O..

DNA isolation was carried out with standard
protocol, described previously, with metal oxides
(V) and commercially available sorbents (“Syntol”,
Russia). The resulting amplification curves are
shown in fig. 5.

Basing on the values of average DNA threshold
cycles (fig. 5) we can conclude that MNPs covered
by niobium oxide (V) thin films have the highest
sorption properties.
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The worst result was shown by commercial MNPs
produced by «Syntol» (Russia). The average differ-
ence in threshold cycles between the MNPs covered
by metal oxides (V) and MNPs covered by silicon
dioxide («Syntol») was about 3 cycles.

This phenomenon can be explained by the differ-
ence in amount of formed chemical bonds available
for DNA binding and it turn to decreased the quan-
tity of extracted DNA.
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Fig. 5. The amplification curves obtained during the real-time PCR for isolated DNA
using the standard protocol with SiO2 and Nb20O5 as sorption materials (a) and (¢)
respectively and average DNA threshold cycles with silicon dioxide; tantalum oxide (V);
niobium oxide (V); vanadium oxide (V); silicon dioxide («Syntol») as sorption materials

Conclusions

The metal oxides (V) have ability to form addi-
tional chemical bonds, which increase sorption ca-
pacity of MNPs covered by the metal oxides (V) thin
film for DNA biding. However, the total usable area
of surface is a dominant factor for achieving high
sensitivity and efficiency of DNA extraction using
MNPs. This fact was confirmed by the example of
MNPs obtained by aerosol synthesis with silica com-
pound as a sorbent, obtained by sol-gel method and
commercial magnetic particles “Syntol”. Further-
more, obtained results suggest that the developed

thins film materials based on metal oxides (V) are
suitable for the DNA extraction in clinical or research
laboratories. Described above investigation results
are relevant for future developments of micro- and
nanodiagnostic systems, which might be realized
“on-chip”, since the thin film materials are shown
prospective for DNA isolation.
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