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functions (FCFs) based on the classical Chebyshev polynomials of the first kind have
been introduced, that can be used to obtain the solution of these equations. Also,
the operational matrices of fractional derivative and product for the FCFs have been
constructed. The obtained results illustrated demonstrate that the suggested approaches

are applicable and valid.

Key words: fractional order of the Chebyshev functions; operational matrix; Riccati differential equations;
Galerkin method; differential equation of arbitrary order.

Citation: K. Parand, M. Delkhosh, Operational matrices to solve nonlinear Riccati differential equations
of an arbitrary order, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 10 (3)

(2017) 100—115. DOI: 10.18721/JPM.10310

ONMEPALMOHHBIE MATPULLbI A1 PELUEHUA HEJIMHEMHbBIX

OUDDEPEHLUAJIbHbIX YPABHEHUU PUKKATU
NMPOU3BOJIbHOIO NOPAAKA

K. Mapang, M. lenxow

Yuusepcuter umenun LLlaxmpaa bexewtn, r. TerepaH, MpaH

B cratbe mpemioxkeH 3(pOEKTUBHBIN YUCICHHBII METO/ YMCICHHOTO DPEeIIeHUS
HeJIMHEeNHHbIX AuddepeHIIMalIbHBIX ypaBHEHUI PUKKaTH TPOU3BOJIBHOIO MOPSIKa
(kak 1enoro, Tak U ApoOGHOro). st 3TOro BBOAUTCS APOOHBINA MOPSAOK (DyHKIIMA
YeOnII€Ba Ha OCHOBE KJIaCCMYECKUX MoaMHOMOB YeOniéBa nepBoro poaa. Takas
Mepa IMO3BOJISIET MOJIyYaTh pellleHue 3ThX ypaBHeHUU Pukkatu. [TocTpoeHbl Takxke
orepalroHHas MaTpUla IPOOHBIX MPOU3BOAHBIX OT DYHKIMUI U omnepaliMoHHasT Ma-
TpULIA TPOU3BEACHUIN OPTOTOHAIBHBIX (yHKIMI YeObleEBa 1podHoro nopsaka. Pe-
3yJIbTAThl MPUMEHEHUST METOJA Ha psifie MPUMEPOB I0KA3bIBAIOT, YTO TpeiaraeMblit

MOJXOJ CIPaBeJIUB U TOCTOUH MPUMEHEHUS.
KmoueBble cioBa: 1poOHbIi opsiaoK ¢pyHkuuit Y€okIiesa; onepaioHHas Matpuua; nuddepeHmalb-
Hble ypaBHeHUs Pukkatu; meton anépkuHa; nuddepeHInaibHOe YpaBHEHUE TPOU3BOJIBHOTO MOPSAKA.
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1. Introduction

The Chebyshev polynomials have frequently
been used in the numerical analysis including
polynomial approximation, Gauss-quadrature
integration, integral and differential equations
and spectral methods. Chebyshev polynomials
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have many properties, for example, orthogonal,
recursive, simple real roots, complete in the
space of polynomials. For these reasons, many
researchers have employed these polynomials
in their studies [1 — 3]. One of the attractive
concepts in the initial and boundary value
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problems is the differentiation and integration
of a fractional order [4, 5]. Many researchers
extend classical methods in the studies of
differential and integral equations of an integer
order to fractional type of these problems
[6, 7].

Using some transformations, a number of
researchers extended Chebyshev polynomials
to a semi-infinite or an infinite domain, for
example, by taking

t-L

X = ,L >0,
t+ L

the rational Chebyshev functions on the semi-
infinite domain [8 — 11], by taking

_r
N2+ L
the rational Chebyshev functions on the infinite

domain [12] being introduced.
In this study, by transformation

x=1-2t* a>0,

X = ,L>0,

on the Chebyshev polynomials of the first
kind, the fractional order of the Chebyshev
orthogonal functions in the interval [0, 1] has
been introduced. This can be used to solve
differential equations of an arbitrary order.

Fractional calculus has a long mathematical
history (since 1695 by Hopital [13]), but, for
many reasons, it was not used in sciences for
many years, for example, the various definitions
of the fractional derivative have existed [14] and
they have no exact geometrical interpretation
[15]. A review of some definition and
applications of fractional derivatives are given
in Refs. [16] and [17]. In recent years, many
physicists and mathematicians have undertaken
studies on this subject, and fractional calculus
has been employed in various investigations [18,
19]. During the last decades, several methods
have been used to solve fractional ordinary/
partial differential equations, and fractional
integral/integro-differential equations, such
as Adomian’s decomposition method [20], a
fractional order of Legendre functions [21], a
fractional order of the Chebyshev functions of
the second kind [22], homotopy analysis method
[23], the Bessel functions and spectral methods
[24], the Legendre and Bernstein polynomials
[25], and other methods [26, 27].

One of the most popular differential
equations that has been considered mostly in
the literature is the Riccati differential equation.
There are several applications of this equation
in algebraic geometry, theory of conformal
mapping, physics and applied problems (see,
for example, Ref. [28]). Some researchers have
used different methods to solve this type of
equations, for examples, Abbasbandy [29] by
using homotopy perturbation method, Ranjbar
et al. [30] by using enhanced homotopy
perturbation method, Cang et al. [31] by using
homotopy analysis method, Balaji [32] by using
the Legendre wavelet operational matrix method,
Parand et al. [33] by using operational matrices
method based on the Bernstein polynomials, Li
et al. [34] by using the Haar wavelet operational
matrix method, Ghomanjani and Khorram
[35] by using the Bezier curves method, and
Merdan [36] by using the fractional variational
iteration method.

The goal of this paper is to present a
numerical method (FCF Galerkin method; FCF
is the Chebyshev function of a fractional order)
to approximate the solution of the nonlinear
Riccati differential equation of an arbitrary
(integer and fractional) order as follows:

Dy(t) + p(1)y* (1) + p,()y(1) = g(), (1)
with # initial conditions:

y(i)(t()):yiaizoala eeey n_la (2)

where o =mn; p(t), p,(1), g(t) € I*([0,1)) are
known functions; y(7) is the unknown function,
and D% is the Caputo fractional differentiation
operator.

The organization of our paper is as follows: in
section 2, some basic definitions and theorems
of fractional calculus are presented. In section 3,
the FCFs and their properties are obtained.
Section 4 is devoted to applying the FCFs
operational matrices of fractional derivative
and product for obtaining the solution of a
fractional differential equation. In section 3,
the method of the work is explained. Examples
of the applications of the proposed method
are given in section 6. Finally, a conclusion is
provided.

2. Basic definitions

In this section, some basic definitions and

101



4 HayuHo-TexHMueckmne segomoctu CI16IT1Y. Pusmko-marematnuyeckne Haykm Ne 10(3) 2017

theorems which are useful for our method have
been introduced.

Definition 1. For any real function f(¢),
t >0, if there exists a real number p >, such
that  f(t) =t? f,(t), where fi(t) e C(0,), is
said to be in space C, neR, and it is in the
space C; if and only if e C,neN.

Definition 2. The fractional derivative of f(t)
in the Caputo sense by the Riemann — Liouville
fractional integral operator of an order o >0 is
defined as follows [37]:

a _;I _ ym-a-1 pm
DO == ! (t = 5" D" f(s)ds,

for m=1{a<m,me N,1)0 and f eC".
Some properties of the operator D* are as
follows. For

fecua MZ—L G,BZO, YZ_I:
N, =1{0,1,2,...}, ¢; € R, and constant C:

HD*C =0,
(i) D*DP f () = D*P f (1), 3)
0,ye Nyandy < o
(fii)D*t" = 4)
%ﬂ‘“, Otherwise.

(iv) D° [Zqﬁ-(r)j =D . ()
i=l1 i=1

Definition 3. Suppose that f,g < C(0,1] and
w(t) is a weight function, then

1
lf @, = [ 0w,
0

1
S8, = [FOg0wr.
0

Theorem 1. (Generalized Taylor’s formula)
Suppose that f(t) e C[0,1] and D** £(¢) e C[0,1],
where k =0,1, ..., m, 0 <a <1. Then we have

“ tia io +
f(t)zng S@O) + ©
g,

+ e —
T'(mo +1)
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o
with 0 < £ <t¢, vVt [0,1].
And thus
m-1 io
t )
f() -3 —— D p0r) <
~ T(io+1) )
"
I'(mo. +1)

where M, > ‘D”’“f(é)‘.

Proof: See Ref. [38].

In the case of a =1, the generalized Taylor’s
formula (6) is reduced to the classical Taylor’s
formula.

3. Fractional order of the Chebyshev functions
(FCFs)

In this section, first, the fractional order of
the Chebyshev functions has been defined, and
then some properties and convergence of them
for our method have been introduced.

3.1. The FCFs definition. By transfo-
rmation

z=1-2t*, a>0,
on the classical Chebyshev polynomials, the

FCFs in the interval [0, 1] are defined, that
will be denoted by

FT(1) = T, (1 - 2*).

By this definition, the singular Sturm —
Liouville differential equation of the classical
Chebyshev polynomials becomes:

Ji-r d Jl_t&iFT:(t) N

t%l dt t%fl dt ®)

+ M’ FT*(¢) = 0,

where ¢ €[0,1] and the FCFs are the eigen-
functions of Eq. (8).

The FT,(r) can be obtained using the
recursive relation, as follows (n >1) :

FT3 (1) = L FT (1) = 1 - 21°,
FT3(0) = Q= 4*)FT} (1) - FT, ().

Fig. 1 shows graphs of FCFs for various
values of n and o.

The analytical form of FT,(r) of the de-
gree no is given by
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o P n2 (n +k— 1)'
FI; (r)—Z( P STeTAT
(9)
— Zﬁn,k t(xk,
%=0
where

2%

B = (- M2k =D g, <1

(n—k)!(2k)!

Note that F7,'(0) =1 and FT, (1) = (-1)".
The weight function for the FCFs is

|

t2

N
and the FCFs with this weight function are

orthogonal in the interval [0, 1] that are satisfied
in a following relation:

w(t) =

(10)

n~mn>

1
IFT,,“(t)FT,;} OW(n)dt = ¢,
5 2a
where 3, is the Kronecker delta, ¢, =2, and
c,=1for n>1.
Eq. (10) is provable using the property of
orthogonality in the Chebyshev polynomials.
3.2. Approximation of functions. Any
function y(¢) € C[0,1] can be expanded as
follows:

y(t) =) a,FT} (1),
n=0

a)

05 |

where the coefficients a, are obtained by the
inner product:
¥, FT} @), = O a,FT; (1), FT (1),
n=0
and using the property of orthogonality of the
FCFs we have
1
a, = 20 J.Fﬂf‘(t)y(t)w(t)dt,n > 0.
e, 3
In practice, we have to use the first m terms
of FCFs and approximate y(¢) :

m-1
y(t) = y, (1) = > a,FT;}(r) = AT@(r), (11)
n=0
with
A=lay,a, ..., a,,], (12)

O(1) = [FT(t), FT (1), ..., FTu(O]".(13)

3.3. Convergence of method. The following
theorem shows that by increasing m, the
approximation solution f,, (¢) is convergent to
f(t) exponentially.

Theorem 2. Suppose that

D* f(t)eC[0,1] for k =0,1, ..., m
and E,, is the subspace being generated by
{FI5' (1), FT* (1), ..., FT,/ (1)}
If 1, = AT® is the best approximation to f
b)

10 JERCITR o

o.sl\\

Ly A
-0.5 \ -\. \ / ./ / \‘\

Fig. 1. Graphs of the FCFs with o = 0.40 and various values of # (a), and with n = 4
and various values of a (b)
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g
I
from E, ., then the error bound is presented as 1
fOllOWS F(Otk + I)F [S + k- 2}
M, - Tk —asDreak) =0 1)
11O = Slt) S e o
(ma +1) Dy =0, (16)
where M, > |D"™ /(1)1 € [0,1]. Jor i,j =01, .., m~1.

Proof. By Theorem 1, we have
m-1 l'o.

— ioc 0+

y Z e 2O

and

tma
|f() -y <M, Tt )’

Since the best approximation to f from E,
is AT®(¢), and y € E°, thus

lF® - £,OL <|f@) -y, <

MZ j.tgﬁdma—l d
o t —
T(mo+1)* 1
M? T

" T(ma+ 1) 22" am!
The theorem is proved.

4. Operational matrices of FCFs

In this section, operational matrices of
fractional derivatives and the product for the
FCFs are constructed. These matrices can be
used to solve the linear and nonlinear differential
equations of an arbitrary order.

4.1. The fractional derivative operational
matrix of FCFs. The Caputo fractional derivative
operator of an order o > 0 of the vector ®(¢)
in the Eq. (13) can be expressed by

De®(t) = D Yd(r).

In the following theorem, the operational
matrix of fractional derivatives of the FCFs is
generalized.

Theorem 3. Let ®©(t) be FCFs vector in the
Eq. (13), and D' be an mxm operational
matrix of Caputo fractional derivatives of an
order o > 0, then:

(14)

(a) _
D (15)

lkBjS
j k=15=0
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Proof. Using Eq. (14), by orthogonality
property of FCFs, for i=1,2, ..., m-1 and

j=0,1, .. m-1, we have
D = j DFT () FT (H)w(t)dt =
“cf 0 k=1 " Lok —a+1)

o

j 7_1
xZﬁj,st‘m ,—t_ ” dt =
I'(ak +1)
Zzﬁ”‘ﬁ” Tak—-o+1)

TCj k1520
1
1 tu(k+s—§]—l
Sy
v V1-—1“
Now, by integration of the above equation,

Eq. (15) can be proved.
And since D*FTj(t) = 0, therefore

(17)

dt.

1
ID“F]})“(t)FTj“(t)w(t)dt -0,
0

and Eq. (16) can be proved.

The theorem is proved.

Remark 1. The fractional derivative
operational matrix of FCFs for a =1 is the
same functions as the shifted Chebyshev
polynomials [39].

4.2. The product operational matrix of FCFs.
The following property of the product of two
FCFs vectors will also be applied.

o)D) A ~ AD(), (18)

where A is an mxm product operational
matrix for the vector A = {a,}".

Theorem 4. Let @(t) be FCFs vector in Egq.
(13) and A be a vector, then the elements of A

are obtained as
m-1

Aj = zakgijka

k=0

(19)
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where

c—", i#0andj+0,
2cj

and (k =i+ jork =i - j]);

) Sk (j=0andk = i)
ik =€)

or (i =0andk = j);
0, otherwise.

Proof. Using Eq. (18), by the orthogonal
property Eq. (10) the elements {Aij};’;:lo can be
calculated from

N 2(1 m-1
Ajj = . zakgijk,
¢ k=0

where g, is given by

(20)

1
8 = IFT,.“(I)FT;‘(t)FTk“(t)w(t)dt.
0

To simplify the g, the following property
is used:

FTAOFT} (1) = 3 (FT () + FT 0). @)
By substituting Eq. (21) in g, we have

Tk 120 andj +0,
4o,

and (k =i+ jork =i - j]);

T[Ck . .

—X (j=0andk =i

g =1 2a G )
or (i =0 and k = j);
0, otherwise.

Now by using Eq. (20), the theorem can
be proved.

The theorem is proved.

Remark 2. The product operational matrix
of FCFs is the same function as the shifted
Chebyshev polynomials [39]. As a whole, it can
be said that the components of A are indepen-
dent of « values.

5. Application of the method

We expand unknown functions y(?),

D*y(¢) and known functions p,(¢), p,(2), g()
as follows:
m-1

y(t) = y, (1) = > a,FT(t) = AT®(1), (22)
n=0
m-1
D*y(t) = > a,D*FT}(r) = AT D'V0(1), (23)
n=0

m-1
p(0) = Y, FTL (1) = B o),
n=0

m-1
p(0) = Y P, FT}} (1) = By (),
n=0

m-1
g(t) = Y g, FT (1) = G" (),
n=0
and
Y2(1) =~ AT Ad(p),
n(OY (1) ~ Bl 4.0(1),

P (DY(1) ~ B AD(),
where A is the product operational matrix of

~T
vector A A.
By substituting the approximations presented
above into Eq. (1) we obtain:

AT D a(t) + BT Aid(r) +
+ Bl Ao(t) = GT o).

Now, by multiplying the two sides of Eq.
(24) in ®7(¢), then integrating in the interval
[0, 1], according to orthogonality of FCFs, we
get (the Galerkin method):

ATD® + BT A4y + BT A=G",  (25)

which is a linear or a nonlinear system of
algebraic equations.

Now, for satisfying the initial conditions,
we replace n equations of these equations (25)
with # initial conditions (2), and obtain a
linear or a nonlinear system with m equations
and m unknowns. By solving this system, the
approximate solution of Eq. (1) according to
Eq. (22) is obtained.

The residual error function has been
defined according to Egs. (1), (22), and (23)
as follows:

Res(r) = A" D™ (1) + p (t)y2 (1) +
+ Py (D), (1) — g(1).

(24)

(26)
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6. Illustrative examples

In this section, by using the proposed
method, several nonlinear fractional Riccati
differential equations are solved to show the
efficiency and applicability of the FCFs method
based on the spectral method.

Example 1. Consider the following nonlinear
Riccati differential equation [21, 40, 41]:

Dy(t)+y*(t) =1, 0<a,t <1, (27)
with the initial condition
¥(0) = 0. (28)
a)
x 1010
4
3
2
1
0
2 0.4 6 0.8 0
) [
-1
-2
-3
b)
108
10°°
1071
10°1
1012
0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Obtained graphs of the absolute (a)
and the residual (b) error functions with m = 12
and o = 1 (for Example 1)
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The exact solution, when o =1, is

e’ —1

f=——. (29)
) e +1

By applying the technique described in the

last section, the problem can be converted to

the following:
(A" D + AT () = GTa(r),

where A is obtained from Eq. (19) and
G" =11,0,0, ..., 0].

Now, with the replacement of the m-th
equation of these equations with the initial
condition (28), a set of m nonlinear algebraic
equations can be generated, as follows:

AT(D® + 4) =G,
AT®(0) = 0.

Fig. 2 shows the absolute error of the
approximate solution with the exact solution
and the residual error for o =1 and m = 12.

Fig. 3 shows the approximate solutions for
various values o and m = 10. Definitely, in
Fig. 3, a, when o tends to 1, the approximate
solutions of y(z) will converge to the exact
solution in Eq. (29), and, in Fig. 3, b, when a
tends to 0, the approximate solutions of y(7)
will converge to the exact solution

~1++/5

() = R

Table 1 shows the residual errors and the
obtained values of y(¢) by the present method
for various values o and m = 12.

Table 2 shows a comparison of obtained
values of y(z) by the present method and HPM
(see Ref. [41]) for o =1 and m = 12.

In the case with o =050 and m = 12
in the Riccati differential equation (27), the
approximate solution in a series expansion is
obtained as:

y(t) = 1.1283789766/t + 0.0000436003¢ —
~ 0.9595868217¢*2 + 0.0298952318¢ +
+ 1.0378491665>/? +1.36635473621° —
— 6.3882854589¢"/? + 8.7043955759¢* —
— 6.19003998821"/? +2.3468978237¢° —

- 0.3771636132+'1/2,
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a) b) jaias
0.7 e // 06— ’,_,——/———j;“"/’» B,y
'/'/;y - Sl > /‘/'
0.6 ////// - // // "
0.5 //,'/ / /‘/'
Wl il 7 75
04 ///_4'/ i
7/ 4/ .
o 5 {/ 03 v
A /
2 ////'/ 02/
021 = // 7// .[-
0.1 ///// 0.1 "
0 0.2 0.4 0.6 0.8 1.0 0 0.2 04 0.6 0.8 1.0
1 t
[F-- 0=0.50 — — 0=0.75 — ~ =090 — " — ¢=0.95 —— a=1.00 |—a=0.01---- 0=0.05 — — 0=0.10 — - ¢=0.25 — - — 0=0.50|
Fig. 3. Obtained graphs of the approximate solutions with m = 10 and the various values of a:
when a tends to 1 (a) and to 0 (b) (for Example 1)
Table 1
Values of y(7) obtained by the present method with m = 12 (for Example 1)
a=0.50 a=0.90 a=1.00
t Approximate | Residual | Approximate | Residual | Approximate | Absolute | Residual
solution error solution error solution error error
0.0 0.00000000 0.00e—0 0.00000000 0.00e—0 | 0.00000000 | 0.00e—00 | 0.00e—0
0.1 0.33010841 4.52e—8 0.13003745 | 2.44¢—9 | 0.09966799 1.11e—10 | 5.60e—9
0.2 0.43683875 5.94e—8 0.23878913 | 2.77e—9 | 0.19737532 | 2.04e—10 | 6.16e—9
0.3 0.50488936 4.06e—8 0.33596217 | 1.72¢—8 | 0.29131261 2.10e—12 | 7.85e—9
0.4 0.55378188 1.30e—7 0.42258308 | 3.40e—8 | 0.37994896 | 2.23e—10 | 5.59¢—9
0.5 0.59119411 6.50e—8 0.49913519 | 2.39e—8 | 0.46211715 | 4.03¢e—10 | 1.34e—9
0.6 0.62101362 8.59¢—8 0.56617156 | 8.20e—9 | 0.53704956 1.79e—10 | 7.61e—9
0.7 0.64548540 1.07e—7 0.62439622 | 3.18¢—8 | 0.60436777 | 8.59e—11 8.46e—9
0.8 0.66601875 7.7e—10 0.67462699 | 3.34e—8 | 0.66403677 | 2.70e—10 | 5.82e—9
0.9 0.68355221 7.44e—8 0.71773475 | 3.13e—8 | 0.71629787 1.89¢—10 | 5.96e—9
1.0 0.69873922 1.11e—7 0.75458880 | 3.44e—8 | 0.76159415 | 2.66e—11 | 9.21e— 9
Table 2

Comparison of obtained values of y(7) with a = 1(for Example 1)

t HPM [41] | Present method | Exact solution | Absolute error | Residual error
0.1 0.099668 0.0996679945 0.0996679946 1.11e—10 5.60e—9
0.2 0.197375 0.1973753204 0.1973753202 2.04¢—10 6.16e—9
0.3 0.291312 0.2913126124 0.2913126124 2.10e—12 7.85e—9
0.4 0.379944 0.3799489620 0.3799489622 2.23e—10 5.59¢—9
0.5 0.462078 0.4621171576 0.4621171572 4.03e—10 1.34e—9
0.6 0.536857 0.5370495668 0.5370495669 1.79e—10 7.61e—9
0.7 0.603631 0.6043677770 0.6043677771 8.59¢—11 8.46e—9
0.8 0.661706 0.6640367705 0.6640367702 2.70e—10 5.82e—9
0.9 0.709919 0.7162978700 0.7162978701 1.89e—10 5.96e—9
1.0 0.746032 0.7615941559 0.7615941559 2.66e—11 9.21e—9

Note. HPM — the Homotopy Pertubation Method.
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Example 2. Consider the following nonlinear
Riccati differential equation [21, 40, 41] that
has the form

Dy(1) + yz(t) -2y(t)=1, 0<a,t<1,(30)
with the initial condition

y(0) =0.
The exact solution, when o =1, is

y(t) = 1 +~2tanh (\/it + %log [@]J .(32)

(1)

\/§+1

By applying the technique described in the
last section, the problem can be converted to

(ATD@ + AT A - 24T)d(t) = GT (1),
where 2 is obtained from Eq. (19), and
G" =[1,0,0, ..., 0].

Now, with the replacement of the m-th
equation of these equations with the initial
condition (31), a set of m nonlinear algebraic
equations can be generated as follows:

AT(D@ + A-21)=GT,
AT®(0) = 0.

Fig. 4 shows the absolute error of the
approximate solution with respect to the
exact one and the residual error for a =1 and
m = 30.

Fig. 5 shows the approximate solutions for
various values of o and m = 12. Definitely, in
Fig. 5, a, when o tends to 1, the approximate
solutions of y(f) will converge to the exact
solution of Eq. (32), and, in Fig. 5, b, when a
tends to 0, the approximate solutions of y(r)
will converge to the exact solution

(1) = 1+2\/§ _

Table 3 shows the residual errors and the
obtained values of y(¢) by the present method
for various o values.

Table 4 shows a comparison of obtained
values of y(f) by the present method and by
HPM (see Ref. [41]) for a =1 and m = 30.

Example 3. Consider the following nonlinear
Riccati differential equation that has the form

D y(r) - A () + €' y(r) = €,
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0<a<2 0<t<l, (33)
with initial conditions
y0)=1, y'(0)=1 (ifa >1). (34)

The exact solution, when a =2 and o =1,
is
y(t)=e'. (35)

By applying the technique described in the
last section, the problem can be converted to

(AT D@ — AT A + B A)a(r) = GTa(7),

where A is obtained from Eq. (19).
Now, with the replacement of the two last

a) )
ﬂ
1.0
||

0.5

o]

b)

10-17
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10°1°
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10»23

|0-24

0 0.2 0.4 0.6 0.8 t

Fig. 4. Obtained graphs of the absolute (a) and the
residual (b) error functions with m =30 and o =1
(for Example 2)
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Fig. 5. Obtained graphs of the approximate solutions (a) and the residual error functions (b) with m = 12
and the various values of o: when o tends to 1 (a) and to 0 (b) (for Example 2)

Table 3
Values of y(7) obtained by the present method (for Example 2)
a=0.75 (m=15) a=0.90 (m = 15) a = 1.00 (m = 30)
t | Approximate | Residual | Approximate | Residual | Approximate | Absolute | Residual
solution error solution error solution error error
0.0 [ 0.00000000 1.82e—5 0.00000000 5.95¢—8 0.00000000 0.00e—00 | 5.07e—19
0.1 0.24543249 9.80e—6 0.15070989 5.93e—8 0.11029519 2.40e—21 | 4.79¢—19
0.2 | 0.47509479 4.56e—6 0.31486440 1.74e—8 0.24197679 2.51e—21 | 5.36e—19
0.3 | 0.71002417 1.20e—5 0.49866532 1.31e—8 0.39510484 3.23e—21 | 5.90e—19
0.4 | 0.93853496 1.83e—5 0.69753897 3.40e—8 0.56781216 3.96e—21 | 6.14e—19
0.5 1.14906032 1.21e—5 0.90366760 6.32e—8 0.75601439 1.69e—21 | 6.74e—19
0.6 1.33433341 4.40e—6 1.10786162 8.52¢—8 0.95356621 9.35e—21 | 6.95¢e—19
0.7 1.49192213 1.66e—5 1.30143258 9.38e—8 1.15294896 6.26e—21 | 7.15¢—19
0.8 1.62298951 1.76e—5 1.47770301 9.52¢—8 1.34636365 5.69¢e—21 | 6.15¢—19
0.9 1.73060956 1.67e—5 1.63273978 6.72e—8 1.52691131 3.33¢e—21 | 6.89¢—19
1.0 1.81851003 1.86e—5 1.76527518 9.64e—8 1.68949839 8.45¢—21 | 7.38e—19
Table 4
Comparison of obtained values of y(7) with o = 1 (for Example 2)
t | HPM [41] Present method Exact solution Absolute | Residual
error error

0.1 0.110294 0.11029519691696228095 | 0.11029519691696228096 | 2.40e—21 | 4.79¢—19
0.2 | 0.241965 0.24197679962110923224 | 0.24197679962110923224 | 2.51e—21 | 5.36e—19
0.3 | 0.395106 0.39510484866037839343 | 0.39510484866037839343 | 3.23e—21 | 5.90e—19
0.4 | 0.568115 0.56781216629293854988 | 0.56781216629293854987 | 3.96e—21 | 6.14e—19
0.5 | 0.757564 0.75601439343137566624 | 0.75601439343137566624 | 1.69e—21 | 6.74e—19
0.6 | 0.958259 0.95356621647192273865 | 0.95356621647192273865 | 9.35e—21 | 6.95¢—19
0.7 1.163459 1.15294896697962321762 | 1.15294896697962321762 | 6.26e—21 | 7.15¢—19
0.8 1.365240 1.34636365536837509274 | 1.34636365536837509274 | 5.69¢—21 | 6.15¢—19
0.9 | 1.554960 1.52691131328062418721 | 1.52691131328062418721 | 3.33e—21 | 6.89e—19
1.0 | 1.723810 1.68949839159438298686 | 1.68949839159438298686 | 8.45¢—21 | 7.38¢—19
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Table 5
Values of y(7) with m = 12 obtained by the present method (for Example 3)
a=1.80 a = 1.50 a = 1.00
t Approximate | Residual | Approximate |Residual| Approximate Residual
solution error solution error solution error
0.0 1.0000000000 | 0.00e—0 | 1.0000000000 [0.00e—0| 1.0000000000 | 0.00e—00
0.1 1.0235085766 | 2.33e—8 | 1.0247048727 |6.95e—8| 1.1051709180 | 3.51e—12
0.2 1.0595333960 | 8.59e—8 | 1.0697960272 |1.34e—7| 1.2214027581 | 3.51e—12
0.3 1.1076128039 | 1.63e—7 | 1.1293315559 |[3.17e—7| 1.3498588075 | 8.22¢—12
0.4 1.1674004066 | 8.30e—8 | 1.2014933888 [2.15¢—7| 1.4918246976 | 3.31e—12
0.5 1.2387187663 | 8.14e—8 | 1.2853141729 |[1.67e—7| 1.6487212707 | 8.31e—12
0.6 1.3214261255 | 1.19e—7 | 1.3800725660 |3.14e—7| 1.8221188003 | 3.31e—12
0.7 1.4153208915 | 1.19¢—8 | 1.4850282438 |5.83e—8| 2.0137527074 | 8.22¢—12
0.8 1.5200543734 | 8.75e—8 | 1.5992421055 [2.20e—7| 2.2255409284 | 3.51e—12
0.9 1.6350374400 | 1.13e—7 | 1.7214121635 |3.04e—7| 2.4596031111 | 3.51e—12
1.0 1.7593322223 | 1.21e—7 | 1.8496977803 |3.39¢e—7| 2.7182818284 | 8.31e—12

equations of these equations with the initial
conditions (34), a set of m nonlinear algebraic
equations can be generated as follows:

(A"D — A" A+ Bl 4) =G,
AT®(0) =1,
ATDYD0) =1, if o > 1.

Fig. 6 shows the absolute errors of the
approximate solutions with respect to the exact
solution and the residual errors for o =1 and
o =2 with m=12.

Fig. 7 shows the approximate solutions for
the various values

0<a<l10, 1<a<l7 and 1.7<a <2.0

with m = 10.

Definitely, when o tendsto 1, from the left-
hand side (Fig. 7, a), the approximate solutions
of y(¢f) will converge to the exact one in Eq.
(35), and when o tends to 1, from the right-
hand side (Fig. 7, b), the approximate solutions
of y(#) will converge to the exact solution in Eq.
(35), and when o tends to 2, from the left-
hand side (Fig. 7, ¢), the approximate solutions
of y(¢#) will converge to the exact solution in
Eq. (35). As can be seen, for o from 1.0 to
about 1.7, the graph of the function is moving
from a=1.0 to a =1.7 (Fig. 7, b), and then

the graph of the function is returning to a = 2.0
(Fig. 7, ¢). Fig. 7, d shows the residual errors
for various values o with m =12.

Table 5 shows the residual errors and the
obtained values of y(f) by the present method
for various values o and m =12.

7. Conclusion

In this paper, we have introduced the
fractional order of the Chebyshev functions
of the first kind. Then the operational
matrices of fractional derivatives and the
product of these orthogonal functions have
been obtained. These matrices can be used
to solve the linear and nonlinear differential
equations, as well as the nonlinear Riccati
differential equations of an arbitrary (integer
and fractional) order. As it has been shown, the
method is converging and has an approximate
accuracy and stability. Illustrative examples
have shown that this method has good results
and suitable accuracy in comparison to other
methods.
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