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FINITE ELEMENT MODELLING OF CERAMOMATRIX 

PIEZOCOMPOSITES BY USING EFFECTIVE MODULI METHOD 

WITH DIFFERENT VARIANTS OF BOUNDARY CONDITIONS  
G. Iovane1, A.V. Nasedkin2* 

1Department of Computer Science, University of Salerno, 84084, Fisciano (SA), Italy 
2Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, 8a, Milchakov Street, 

Rostov-on-Don 344090, Russia 

*e-mail: nasedkin@math.sfedu.ru 
 
 
Abstract. The paper presents an investigation of effective properties of piezocomposites of 
piezoceramic/polycrystallites type by using the effective moduli method, the computer 
modeling of representative volumes with random structure of granular heterogeneity and the 
finite element method to solve the homogenization problems. The effective moduli, obtained 
from the problems with different boundary conditions on the edges of representative volumes, 
are analyzed. 
Keywords: piezoelectricity, two-phase piezocomposite, effective moduli, representative 
volume, finite element method, finite element software  
 
 
1. Introduction 
Piezoceramic composite materials have received considerable attention due to their 
application in sensors, actuator and other piezoelectric devices. In order to improve the 
efficiency of these materials, the piezoelectric composites based on piezoceramic matrices has 
been developed recently. Porous piezoceramic materials appeared perspective for use as the 
elements for acoustic transmitters and as renewable energy sources. As it turned out, in 
comparison with dense ceramics, porous piezoceramics had small acoustic impedance, but 
sufficiently high values of piezoelectric sensitivities and thickness piezomoduli. However, 
porous piezoceramics is less strong compared with dense ceramics. To improve the 
mechanical properties of porous piezoceramics, more rigid crystallites can be added into 
ceramic composites. 

The classification of piezoelectric composites was initiated by Newnham's connectivity 
theory. In compliance with this theory, the ceramomatrix or polycrystalline piezocomposites 
can be classified as two or three phase composites with 3-0 connectivity (with closed or 
separate inclusions). The ceramomatrix or polycrystalline composite piezoceramic having 
sizes of inclusions, lesser that 100 µm may be accepted as a quasi-homogeneous medium with 
some effective moduli for most applications.  

The material properties of porous or polymer-crystalline piezocomposites with mixed 
connectivities (3-0, 3-3 or 0-3) have been evaluated using different theoretical and 
computational models in [1–19] and others. Thus, the use of Marutake's and Bruggeman's 
approximations for calculation of effective moduli of piezocomposites was offered [19]. The 
approximate equations for elastic, dielectric and piezoelectric constants of diphasic 
piezocomposite form 3-0 to 3-3 connectivity were obtained in [1] based on simplified model 

Materials Physics and Mechanics 42 (2019) 1-13 Received: October 6, 2018

http://dx.doi.org/10.18720/MPM.4212019_1 
© 2019, Peter the Great St. Petersburg Polytechnic University 
© 2019, Institute of Problems of Mechanical Engineering RAS 



combing cubes and 3-3 models. Some cubic models also were used in [2,14]. The modified 
cubes matrix method was proposed for analysis of the piezocomposite with different 
connectivity in [9] and other papers of the same authors. The dilute, self-consistent, Mori-
Tanaka and differential micromechanics theories were extended in [3] to consider the 
effective characteristic of piezocomposite materials. The application of each theory was based 
on three-dimensional static solution of an ellipsoidal inclusion in an infinite piezoelectric 
media. Theoretical models including optimization techniques and homogenization methods 
have also been proposed for piezocomposite in [17]. 

In the present work, we have developed the effective moduli method and finite element 
technique in accordance with [4,5,20,21]. Theoretical aspects of the effective moduli method 
for inhomogeneous piezoelectric media were examined. Four static piezoelectric problems for 
a representative volume that allow finding the effective moduli of an inhomogeneous body 
were specified. These problems differ by the boundary conditions, which were set on a 
representative volume surfaces: mechanical displacements and electric potential (uϕ), 
mechanical displacements and normal component of electric displacement vector (uD), 
mechanical stress vector and electric potential (σϕ), and mechanical stress vector and normal 
component of electric displacement vector (σ D). Respective equations for calculation of 
effective moduli of piezoelectric media with arbitrary anisotropy were derived. 

Based on these equations the full set of effective moduli for ceramomatrix composite 
piezoceramics having wide injection range was calculated with help of finite element method 
realized in the ANSYS package and in the new software ACELAN-COMPOS. Inclusions 
were modeled by using "granule" algorithm in ACELAN-COMPOS package. Then, the 
representative volume models generated in ACELAN-COMPOS were transferred to the 
ANSYS finite element package, where the effective moduli of the composite were calculated. 

 
2. Mathematical models and the effective moduli method 
As is known, in linear approximation for piezoelectric materials there are a linear relations 
between mechanical and electric fields. These dependences are called the constitutive 
relations and can be presented in the following four equivalent forms [22]: 

EeScT ⋅−⋅= *E , EεSeD ⋅+⋅= S , (1) 
EdTsS ⋅+⋅= *E , EεTdD ⋅+⋅= T , (2) 
DhScT ⋅−⋅= *D , DβShE ⋅+⋅−= S , (3) 
DgTsS ⋅+⋅= *D , DβTgE ⋅+⋅−= T . (4) 

Here, },,,,,{ 121323332211 σσσσσσ=T  is the array of the mechanical stress components 

jiσ ; }2,2,2,,,{ 121323332211 εεεεεε=S , is the array of the strain components jiε ; D  is the 
electric flux density vector or the vector of electric displacement; E  is the electric field 
intensity vector; Ec , Dc  are the 66×  matrices of elastic stiffness moduli at constant electric 
field and at constant electric displacement, respectively; e , d , h , g  are the 63×  matrices of 
piezoelectric moduli (stress coefficients, charge coefficients, strain coefficients, voltage 
coefficients, respectively); Sε , Tε  are the 33×  matrices of dielectric permittivity moduli at 
constant mechanical strain and at constant mechanical stress, respectively; Es , Ds  are the 

66×  matrices of elastic compliance moduli at constant electric field and at constant electric 
displacement, respectively; Sβ , Tβ  are the 33×  matrices of dielectric impermittivity moduli 
at constant mechanical strain and at constant mechanical stress, respectively; *(...)  is the 
transpose operation; and (...)(...) ⋅  is the scalar or internal product operation. The different 
material constants from (1) – (4) are connected through each other by the relations: 
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1)( −= EE cs , 1)( −= DD cs , 1)( −= SS εβ , 1)( −= TT εβ , hecc ⋅+= *ED , gdss ⋅−= *ED , (5) 
*edεε ⋅+= ST , *hgββ ⋅−= ST , Ecde ⋅= , gεd ⋅= T , dβg ⋅= T , Dcgh ⋅= . (6) 

Thus, if one of the sets of material moduli is known, { Ec , e , Sε }, then all other sets 
({ Es , d , Tε }, { Dc , h , Sβ }, or{ Ds , g , Tβ }) can be determined. In this section we show that 
for a composite material one can select such homogenization problems, from which we can 
directly determine one of the sets of effective material moduli: { effEc , effe , effSε }, { effEs , 

effd , effTε }, { effDc , effh , effSβ }, { effDs , effg , effTβ }. 
We will consider a ceramomatrix piezocomposite as a two-phase composite in which 

the first phase (matrix) is a piezoceramic material, and the second phase is the elastic 
inclusions. Let Ω  is the representative volume of heterogeneous ceramomatrix 
piezocomposite materials, )2()1( Ω∪Ω=Ω ; )1(Ω  is the volume occupied by the primary 
material of the matrix; )2(Ω  is the volume or the set of the volumes occupied by the material 
of the inclusions; Ω∂=Γ  is the boundary of the volume, n  the vector of the external unit 
normal to Γ , )(xuu =  is the displacement vector-function, )(xϕϕ =  the electric potential 
function, },,{ 321 xxx=x  is the vector of the Cartesian coordinates.  

In order to determine the effective moduli of this composite material, we will consider 
four set of the homogenization problems [20, 21]. The first set is used most often and is based 
on the following boundary-value problem 

0)(* =⋅∇ TL , 0=⋅∇ D , (7) 
EeScT ⋅−⋅= *E , EεSeD ⋅+⋅= S , (8) 

uLS ⋅∇= )( , ϕ−∇=E , 
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∂
∂
∂

=∇

3

2

1

, (9) 

0
* )( SxLu ⋅= , 0Ex ⋅−=ϕ , Γ∈x , (10) 

where } , , , , ,{ 0605040302010 SSSSSS=S ; β0S  are some constant values that do not depend on 
x ; 0E  is some constant vector. 

Note that the problem (7)–(10) should be solved in an inhomogeneous volume Ω , 
where )( jEE cc = , )( jee = , )( jSS εε =  for )( jΩ∈x , 2 ,1=j . We consider the elastic material of 
inclusions as a piezoelectric material with their elastic stiffness and dielectric permittivities 
moduli and with negligible piezomoduli.  

In the case of ceramomatrix piezocomposite of 6mm class, in order to determine its ten 
independent effective moduli ( eff

11
Ec , eff

12
Ec , eff

13
Ec , eff

33
Ec , eff

44
Ec , eff

31e , eff
33e , eff

15e , eff 
11
Sε , eff 

33
Sε ), it 

is enough to solve five boundary problems (7)–(10) with various values of 0S  and 0E , having 
set only one of the components β0S , lE0  ( 6 ..., ,2 ,1=β ; 3 ,2 ,1=l ) in the boundary conditions 
(10) not equal to zero: 
uϕ – I.   ββ δ 100 SS = , 00 =E  ⇒ 0

eff
1 / Sc kk
E
k σ= ; 3 ,2 ,1=k ; 03

eff
31 / SDe = , (11) 

uϕ – II.  ββ δ 300 SS = , 00 =E  ⇒ 0
eff

3 / Sc kk
E
k σ= ; 3 ,2 ,1=k ; 03

eff
33 / SDe = ,  (12) 

uϕ – III. ββ δ 400 SS = , 00 =E  ⇒ 023
eff

44 / ScE σ= ; 02
eff
15 / SDe = ,  (13) 

uϕ – IV. 00 =S , ll EE 100 δ=   ⇒ 013
eff
15 / Ee σ−= ; 01

eff 
11 / EDS =ε ,  (14) 

uϕ – V.  00 =S , ll EE 300 δ=    ⇒  0
eff
3 / Ee kkk σ−= ; 3 ,2 ,1=k ; 03

eff 
33 / EDS =ε ,  (15) 
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where jiδ  is the Kronecker symbol; and the angle brackets denote the averaged by the 
volume Ω  values:  

∫Ω Ω
Ω

>=< d(...)
||

1(...) . (16) 

The boundary conditions (8) are the linear essentially boundary conditions, which for a 
homogeneous piezoelectric comparison medium provide the constant stresses, electric fluxes, 
strains, and electric intensity fields. However, as has been shown in [20,21], we can use for 
the homogenization problems other boundary conditions, which also provide the constant 
stresses, electric fluxes, strains, and electric intensity fields for a homogeneous comparison 
medium.  

Thus, instead of the boundary conditions (10), we can consider the natural boundary 
condition for the stress with known constant tensions and the essentially electric boundary 
condition with the known linear electric potential function:  

0
** )()( TnLTnL ⋅=⋅ , 0Ex ⋅−=ϕ , Γ∈x . (17) 

Again, in the case of ceramomatrix piezocomposite of 6mm class, for determination full 
set of effective moduli ( eff

11
Es , eff

12
Es , eff

13
Es , eff

33
Es , eff

44
Es , eff

31d , eff
33d , eff

15d , eff 
11
Tε , eff 

33
Tε ), we can 

solve five boundary problems (5) – (7). (14) with various values of 0T  and 0E , having set 
only one of the components β0T , lE0  ( 6 ..., ,2 ,1=β ; 3 ,2 ,1=l ) in the boundary conditions 
(17) not equal to zero: 
σϕ – I.   ββ δ 100 TT = , 00 =E  ⇒ 0

eff
1 /Ts kk
E
k ε= ; 3 ,2 ,1=k ; 03

eff
31 /TDd = ,  (18) 

σϕ – II.  ββ δ 300 TT = , 00 =E  ⇒ 0
eff

3 /Ts kk
E
k ε= ; 3 ,2 ,1=k ; 03

eff
33 /TDd = , (19) 

σϕ – III. ββ δ 400 TT = , 00 =E  ⇒ 023
eff

44 / TsE ε= ; 02
eff
15 /TDd = ,  (20) 

σϕ – IV. 00 =S , ll EE 100 δ=   ⇒ 013
eff
15 / Ed ε= ; 01

eff 
11 / EDT =ε ,  (21) 

σϕ – V.  00 =S , ll EE 300 δ=    ⇒  0
eff
3 / Ed kkk ε= ; 3 ,2 ,1=k ; 03

eff 
33 / EDT =ε . (22) 

If we assume the the essentially mechanical boundary condition with the known linear 
displacements and the natural electric boundary condition with known constant normal 
component of electric flux vector  

0
* )( SxLu ⋅= , 0DnDn ⋅=⋅ , Γ∈x , (23) 

then for transversely isotropic ceramomatrix piezocomposite we can solve five boundary 
problems (7) – (9), (23) with various values of 0S  and 0D , having set only one of the 
components β0S , lD0  ( 6 ..., ,2 ,1=β ; 3 ,2 ,1=l ) in (23) not equal to zero, and from the 

solution of these problems we directly obtain the effective moduli eff
11
Dc , eff

12
Dc , eff

13
Dc , eff

33
Dc , 

eff
44
Dc , eff

31h , eff
33h , eff

15h , eff 
11
Sβ , eff 

33
Sβ :  

uD – I.   ββ δ 100 SS = , 00 =D  ⇒ 0
eff

1 / Sc kk
D
k σ= ; 3 ,2 ,1=k ; 03

eff
31 / SEh −= ,  (24) 

uD – II.  ββ δ 300 SS = , 00 =D  ⇒ 0
eff

3 / Sc kk
D
k σ= ; 3 ,2 ,1=k ; 03

eff
33 / SEh −= ,   (25) 

uD – III. ββ δ 400 SS = , 00 =D  ⇒ 023
eff

44 / ScD σ= ; 02
eff
15 / SEh −= ,   (26) 

uD – IV. 00 =S , ll DD 100 δ=   ⇒ 013
eff
15 / Dh σ−= ; 01

eff 
11 / DES =β ,   (27) 

uD – V.  00 =S , ll DD 300 δ=    ⇒  0
eff
3 / Dh kkk σ−= ; 3 ,2 ,1=k ; 03

eff 
33 / DES =β .  (28) 

At last, we can consider the natural mechanical and electric boundary conditions with 
the known constant tensions and the normal component of electric flux vector: 

0
** )()( TnLTnL ⋅=⋅ , 0DnDn ⋅=⋅ , Γ∈x . (29) 
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Now for transversely isotropic ceramomatrix piezocomposite we solve five boundary 
problems (7) – (9), (29) with various values of 0T  and 0D , having set in (29) only one 
nonzero components β0T , lD0  ( 6 ..., ,2 ,1=β ; 3 ,2 ,1=l ), and after solving these problems we 

at first obtain the effective moduli eff
11
Ds , eff

12
Ds , eff

13
Ds , eff

33
Ds , eff

44
Ds , eff

31g , eff
33g , eff

15g , eff 
11
Tβ , 

eff 
33
Tβ : 

σ D – I.   ββ δ 100 TT = , 00 =D  ⇒ 0
eff

1 / Ts kk
D
k ε= ; 3 ,2 ,1=k ; 03

eff
31 /TEg −= ,  (30) 

σ D – II.  ββ δ 300 TT = , 00 =D  ⇒ 0
eff

3 / Ts kk
D
k ε= ; 3 ,2 ,1=k ; 03

eff
33 / TEg −= ,  (31) 

σ D – III. ββ δ 400 TT = , 00 =D  ⇒ 023
eff

44 /Ts D ε= ; 02
eff
15 /TEg −= ,  (32) 

σ D q – IV. 00 =T , ll DD 100 δ=   ⇒ 013
eff
15 / Dg ε= ; 01

eff 
11 / DET =β ,  (33) 

σ D – V.  00 =T , ll DD 300 δ=    ⇒  0
eff
3 / Dg kkk ε= ; 3 ,2 ,1=k ; 03

eff 
33 / DET =β .  (34) 

For each set of these problems from found effective moduli we can calculate for 
"equivalent" effective homogeneous medium the other moduli from the constitutive equations 
(1) – (4) and the relations (5), (6). We note, that effective moduli, found from different 
problems uϕ, σϕ, uD, and σ D, will differ, i.e. D

E
uD

EE
u

E
σϕσϕ )()()()( effeffeffeff cccc ≠≠≠ , etc.  

Further, all these problems will be solved in a representative volume Ω  numerically by 
the finite element method. 

 
3. Averaging of inclusions for polycrystalline piezoceramic 
For the case of polycrystalline elastic inclusions, we must calculate at the first stage the 
effective moduli for material of inclusions. At the next stage, we will study piezocomposite 
with isotropic inclusions as two-phase composite according to the approaches described 
above. As an example, we shall consider PZT/α–Al2O3 composite material. 

For calculation of average moduli of inclusions, we shall take into account, that 
inclusions represent the crystallites of sapphire (α-corundum) Al2O3. These inclusions are the 
crystals of system m3  [23], which crystallographic axes are oriented in random manner with 
respect to the global Cartesian coordinate system. In crystallographic axes, its moduli have 
the following structure 
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33

11

11

00
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00

ε
ε

ε
ε , 

where 2/)( 121166
rrr ccc −= . 

In this connection, the effective moduli can be defined as the average moduli of 
monophase polycrystallite of trigonal system [21]. Here, the averaging of crystallites moduli 
on every of the possible orientations of crystallographic axes can be implemented in implicit 
form [24]. As a result, the inclusions can be considered as isotropic material, which effective 
moduli are expressed through the initial stiffness moduli rcαβ  and the flexibility or compliance 

moduli rsαβ  under well-known formulas [24].  
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The Voight's averaging gives the following values for the effective bulk module (2)
VK  

and shear module (2)
Vµ   

∑∑
= =

=
3

1

3

1

(2)

9
1

α β
αβ
r

V cK , 







−+= ∑∑∑∑

= ===

3

1

3

1

6

4

3

1

(2) 63
30
1

α β
αβ

α
αα

α
ααµ rrr

V ccc ,  

Alternative averaging on Reuss for flexibility or compliance tensors allows one to find 
the inverse values for the effective moduli (2)

RK  and (2)
Rµ :  

∑∑
= =

− =
3

1

3

1

1(2) )(
α β

αβ
r

R sK , 







−+= ∑∑∑∑

= ===

−
3

1

3

1

6

4

3

1

1eff 236
15
1)(

α β
αβ

α
αα

α
ααµ rrr

R sss ,  

At the averaging of trigonal system polycrystallite the given formulas can be rewritten 
in the form [24]:  

))2(22(
9
1

13123311
(2) rrrr
V ccccK +++= , )124527(

30
1

4413123311
(2) rrrrr
V ccccc +−−+=µ ,  (35) 

)2(22)( 13123311
1(2) rrrr

R ssssK +++=− , )34527(
15
2)( 4413123311

1(2) rrrrr
R sssss +−−+=−

αµ . (36) 

According to the Hill's approach for the final values of effective moduli of a monophase 
polycrystalline material, we shall take the arithmetic middling values obtained by averaging 
on Voight and Reuss: 

2/)( (2)(2)(2)
RV KKK += , 2/)( (2)(2)(2)

RV µµµ += . (37) 

Then, the average values of Young's module (2)E , Poisson's coefficient (2)ν , and 

stiffness moduli )2(
11c , )2(

12c  for inclusion material can be found by using the standard formulas 
from (2)K  and (2)µ  

)3(
9

(2)(2)

(2)(2)
(2)

µ
µ
+

=
K
K

E , 
)26(

)3(
(2)(2)

(2)(2)
(2)

µ
µ

ν
+

−
=

K
K

. (38) 

)21)(1(
)1(

(2)(2)

(2)(2)
(2)
11 νν

ν
−+

−
=

E
c , 

)21)(1( (2)(2)

(2)(2)
(2)
12 νν

ν
−+

=
E

c . (39) 

The averaging of dielectric permittivities on every of the possible orientations of 
crystallographic axes leads to isotropic dielectric medium with effective permittivity (2)ε : 

2/)2( 3311
eff rr εεε += . (40) 

Thus, the inclusions from sapphire crystallites of trigonal system can be modelled by 
isotropic material with effective elastic moduli (2)E , (2)ν  or )2(

11c , )2(
12c  and dielectric 

permittivitie (2)ε , expressed by moduli of sapphire rcαβ , rsαβ , r
iiε  from formulas (35) – (40). 

 
4. Models of representative volumes 
As a representative volume element, we consider a cube evenly divided into smaller 
piezoelectric cubic finite elements with eight nodes. For a mixed two-phase composite, such 
element can have piezoelectric properties of the first phase or of the second phase. We use the 
3-0 algorithm from ACELAN-COMPOS package for simulation of inclusions as granules, 
consisting of one or more structural elements not connected with other granules [25–27]. In 
this algorithm, the representative volumes consist of domains with 888 ××  elements. Number 
8 for the domain division was chosen for the convenience of implementing numerical 
procedures to generate data structures and verify the phase connectivity. 
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The input user data are the boundary granule size and the maximum quantum of 
inclusions in the representative volume. Random choice of the supporting element for the 
granules ensures in the result the stochastic distribution of material properties in the 
representative volume element. The granule grows in the domain of 888 ××  element size 
according to an algorithm that allows the granule to be shaped as close to the ball as possible, 
while avoiding highly elongated elements.  

Each domain is created by a partially random way, and the representative volumes of 
mmm 888 ××  order are formed in the result of generating the sequence of domains along three 

coordinate axes. Thus, each resulting domain differs from the other. Nevertheless, it maintains 
the connectivity of the main phase and the connectivity of the total volume structure, formed 
by a 3-0 connectivity algorithm from ACELAN-COMPOS package. A detailed description of 
this algorithm is contained in [26,27]. 

Some examples of the representative volume element for 2=m  (eight domains) and for 
3=m  (twenty seven domains) are shown in Fig. 1 and Fig. 2, respectively. In these figures 

the cases (a) and (b) correspond to the percentage of inclusions 10=p  %, and the cases (c) 
and (d) correspond to the percentage of inclusions 60=p  %. 

At the next step, the generated structures were transferred to ANSYS finite element 
package, where all further operations were carried out. 
 

 
(a)    (b)    (c)     (d) 

Fig. 1. Example of a representative volume elements 161616 ×× : (a) whole volume with 10 % 
of inclusions, (b) elastic elements in volume with 10 % of inclusions, (c) whole volume with 

60 % of inclusions, (d) elastic elements in volume with 60 % of inclusions 
 

 
(a)    (b)    (c)     (d) 

Fig. 2. Example of a representative volume elements 323232 ×× : (a) whole volume with 
10 % of inclusions, (b) elastic elements in volume with 10 % of inclusions, (c) whole volume 

with 60 % of inclusions, (d) elastic elements in volume with 60 % of inclusions 
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Then, the problems (7) – (9) with (10), (17), (23) or (29) were solved for the 
representative volume using finite element technology and ANSYS package. In the end, in the 
ANSYS postprocessor the average characteristics (stresses, strains, electric fluxes and electric 
intensity fields) were automatically calculated by (16) according to (11) – (15), (18) – (22), 
(24) – (28), or (30) – (34), and thus the full sets of the effective material moduli of 
piezocomposite were obtained. We used an eight-node finite element SOLID5 with the 
displacements and the electric potential as degrees of freedom in each node and with 
capability of piezoelectric analysis. Computing experiments were performed in ANSYS 
software of 11.0 version. However, the developed programs in macrolanguage APDL ANSYS 
will work in higher versions of ANSYS that support piezoelectric analysis and finite element 
SOLID5. 
 
5. Numerical examples 
To provide an example, we consider a PCR-1/α–Al2O3 composite material. For the dense 
piezoceramic PCR-1 we take the following values of material constants [28]: 

(1) 10
11 15.3 10 ,Ec = ⋅  10)1(

12 107.8 ⋅=Ec , 10)1(
13 107.8 ⋅=Ec , 10)1(

33 107.12 ⋅=Ec ,  

( )1 2( ) 10
44 2.6 /10Ec N m= ⋅ , 1.2)1(

31 −=e , 4.12)1(
33 =e , 3.11)1(

15 =e  (C/m2); 0
)1(

11 572εε =S , 

0
)1(

33 304εε =S , where 12
0 1085.8 −⋅=ε  (F/m) is the dielectric permittivity of the vacuum. We 

assume the following values of material moduli of sapphire [29]: 10
11 107.49 ⋅=rc , 

10
12 103.16 ⋅=rc , 10

13 101.11 ⋅=rc , 10
33 108.49 ⋅=rc , 10

44 107.14 ⋅=rc , 

( )1 20
14 2.35 0 /1rc N m= − ⋅ , 011 34.9 εε =r , 033 54.11 εε =r . Then, after the calculation by 

formulas (32)–(37) we obtain the averaging moduli of (α-corundum as an isotropic phase: 
10)2( 1026.40 ⋅=E  (N/m2); 23.0)2( =ν ; 10)2(

11 1088.46 ⋅=c  (N/m2), 10)2(
21 1022.14 ⋅=c  (N/m2); 

0
eff)2( 10εεε == . For the representative volume, we take mmm 888 ××  element structures 

with number 3=m , which provide close convergence of the computational results. 
We are going to analyze the relative effective moduli. For example, EEE cccr αβαβαβ /)( effeff =  

are the values of the effective moduli effEcαβ , related to the corresponding values of the moduli 
Ecαβ  for the dense piezoceramic without inclusions, and so on.  

Table 1 shows the effective elastic stiffness moduli with a different percentage of 
inclusions for uϕ-problems (7) – (15), σϕ-problems (7) – (9), (17) – (22), uD-problems (7)–
(9), (23) – (28), and σ D-problems (7) – (9), (29) – (34).  

 
Table 1. Relative values of effective elastic stiffness moduli 
Relative 
moduli 

Boundary 
problem 

Percentage of inclusions 
10 20 30 40 50 60 

)( eff 
11
Ecr  

uϕ 1.128 1.261 1.406 1.581 1.767 1.931 
σϕ 1.116 1.222 1.352 1.502 1.676 1.837 
uD 1.128 1.261 1.407 1.581 1.767 1.933 
σ D 1.115 1.225 1.352 1.505 1.683 1.842 

)( eff 
12
Ecr  

uϕ 1.047 1.098 1.146 1.198 1.254 1.310 
σϕ 1.051 1.102 1.157 1.208 1.275 1.314 
uD 1.047 1.098 1.146 1.198 1.254 1.311 
σ D 1.049 1.108 1.153 1.210 1.284 1.316 

)( eff 
13
Ecr  uϕ 1.048 1.099 1.147 1.191 1.250 1.295 
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σϕ 1.054 1.101 1.168 1.208 1.254 1.318 
uD 1.049 1.100 1.147 1.190 1.247 1.289 
σ D 1.051 1.098 1.157 1,197 1.245 1.297 

)( eff 
33
Ecr  

uϕ 1.193 1.391 1.618 1.843 2.083 2.337 
σϕ 1.170 1.315 1.529 1.713 1.932 2.179 
uD 1.195 1.397 1.629 1.860 2.101 2.367 
σ D 1.176 1.335 1.556 1.759 1.984 2.259 

)( eff 
44
Ecr  

uϕ 1.336 1.708 2.134 2.542 3.055 3.550 
σϕ 1.278 1.564 1.896 2.250 2.697 3.157 
uD 1.341 1.725 2.159 2.580 3.106 3.608 
σ D 1.294 1.595 1.972 2.341 2.815 3.328 

 
Tables 2, 3 and 4 present similar results for effective piezoelectric moduli (stress 

coefficients) eff
31e , eff

33e , and eff
15e , effective dielectric permittivity moduli eff 

11
Sε , eff 

33
Sε , and 

effective piezoelectric moduli (charge coefficients) eff
31d , eff

33d , and eff
15d , respectively. Note 

that the values of piezoelectric charge coefficients have a significant influence on the 
performance of piezoelectric devices, especially for hydroacoustic applications.  

 
Table 2. Relative values of effective piezoelectric moduli (stress coefficients) 
Relative 
moduli 

Boundary 
problem 

Percentage of inclusions 
10 20 30 40 50 60 

)( eff
31er  

uϕ 0.956 0.907 0.830 0.727 0.620 0.509 
σϕ 0.977 0.936 0.909 0.814 0.693 0.624 
uD 0.959 0.914 0.834 0.727 0.610 0.470 
σ D 0.968 0.909 0.863 0.758 0.626 0.520 

)( eff
33er  

uϕ 0.897 0.788 0.676 0.574 0.473 0.376 
σϕ 0.909 0.828 0.723 0.641 0.545 0.448 
uD 0.892 0.778 0.659 0.547 0.444 0.324 
σ D 0.900 0.806 0.689 0.588 0.487 0.351 

)( eff
15er  

uϕ 0.898 0.787 0.660 0.572 0.468 0.347 
σϕ 0.912 0.822 0.719 0.639 0.527 0.433 
uD 0.893 0.772 0.638 0.541 0.425 0.298 
σ D 0.903 0.798 0.675 0.584 0.459 0.339 

 
Table 3. Relative values of effective dielectric permittivity moduli 
Relative 
moduli 

Boundary 
problem 

Percentage of inclusions 
10 20 30 40 50 60 

)( eff 
11
Sr ε  

uϕ 0.872 0.741 0.608 0.511 0.415 0.308 
σϕ 0.875 0.755 0.619 0.528 0.435 0.325 
uD 0.867 0.727 0.589 0.484 0.378 0.268 
σ D 0.870 0.736 0.600 0.497 0.389 0.279 

)( eff 
33
Sr ε  

uϕ 0.883 0.765 0.652 0.551 0.454 0.364 
σϕ 0.887 0.775 0.665 0.569 0.472 0.382 
uD 0.880 0.758 0.640 0.532 0.434 0.323 
σ D 0.882 0.765 0.647 0.543 0.443 0.329 
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Table 4. Relative values of effective piezoelectric moduli (charge coefficients) 
Relative 
moduli 

Boundary 
problem 

Percentage of inclusions 
10 20 30 40 50 60 

)( eff
31dr  

uϕ 0.645 0.444 0.304 0.210 0.146 0.100 
σϕ 0.690 0.517 0.374 0.271 0.188 0.137 
uD 0.641 0.438 0.297 0.201 0.139 0.087 
σ D 0.675 0.488 0.344 0.239 0.161 0.104 

)( eff
33dr  

uϕ 0.650 0.448 0.306 0.214 0.150 0.103 
σϕ 0.692 0.521 0.370 0.273 0.194 0.138 
uD 0.645 0.440 0.297 0.203 0.140 0.087 
σ D 0.676 0.492 0.340 0.240 0.166 0.103 

)( eff
15dr  

uϕ 0.672 0.461 0.309 0.225 0.153 0.098 
σϕ 0.714 0.526 0.379 0.284 0.195 0.137 
uD 0.666 0.447 0.295 0.210 0.137 0.083 
σ D 0.697 0.500 0.342 0.249 0.163 0.102 

 
For piezocomposite with soft inclusions, we have obtained the following results. The 

models (uϕ) and (uD), in which fixation conditions are pointed out, are more rigid than the 
models (σϕ) and (σ D), in which mechanical stresses are fixed. Therefore, the effective 
stiffness moduli for models with specified displacements are greater than for models with 
specified stresses, i.e. ξαβσξαβ u

EE cc )()( eff eff < , D ,ϕξ = . At the same time, the influence of 
electric boundary conditions on the stiffness moduli is extremely insignificant. 

For effective dielectric permittivity moduli the following inequalities hold: 
σϕϕσ εεεε )()()()( eff eff eff eff S

iiu
S
iiD

S
iiuD

S
ii <<< . Thus, the dielectric constants are the highest for 

the model with specified stresses and electric potential. Note that the differences in the values 
of the effective dielectric permittivity moduli increase as the percentage of the non-
piezoelectric phase increases.  

The inequalities for effective piezoelectric stress coefficients somewhat differ from their 
inequalities for effective dielectric permittivity moduli: σϕσϕ )()()()( eff

33
eff
33

eff
33

eff
33 eeee DuuD <<< , 

σϕσϕ )()()()( eff
15

eff
15

eff
15

eff
15 eeee DuuD <<< , σϕσϕ |)(||)(||)(||)(| eff

31
eff
31

eff
31

eff
31 eeee DuDu <<< . It can be 

seen that both the values of the piezomoduli and the values of the dielectric constants are 
maximum for the σϕ-problem. The differences in the values of the effective piezoelectric 
stress coefficients also increase as the fraction of the elastic inclusions increases. 

The inequalities for nonzero effective piezoelectric charge coefficients almost repeat the 
corresponding inequalities for effective piezoelectric stress coefficients: 

σϕασαϕαα |)(||)(||)(||)(| effeffeffeff
iDiuiuDi dddd <<< . Note that the choice of boundary conditions 

has the greatest influence on the piezoelectric charge coefficients, and the relative differences 
between the values of these piezomoduli can reach 50 %.  
 
6. Conclusions 
Thus, in present paper we develop the effective moduli method and finite element technique 
in accordance with [20, 21]. To find the effective moduli of an inhomogeneous body, we set 
four static piezoelectric problems for a representative volume. These problems differ by the 
boundary conditions, which are set on the representative volume surfaces, and which 
guarantee the constant values of electric displacements, strains, stresses and electric fields for 
homogeneous material. Special formulas are derived to calculate the effective moduli of 
piezoelectric media with arbitrary anisotropy. Based on these formulas, we find the full set of 
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effective moduli for ceramic polycrystalline piezocomposites using finite element method. 
The finite element computations were implemented using the computation package ANSYS, 
and specially developed computer programs were written in macrolanguage APDL ANSYS. 
At that, the generation of the granular structures for representative volumes was carried out 
using separate finite element software ACELAN-COMPOS. 

As a representative volume, we consider a cube evenly divided into cubic piezoelectric 
finite elements. At the first stage, depending on the given percentage of inclusions the 
material properties, selected by special granular algorithm ACELAN-COMPOS finite 
elements, are modified to the properties of inclusions. Further from the solutions of 
homogenization problems, we determine the effective moduli of the piezocomposite made of 
piezoceramics and crystallites. To provide an example, we consider polycrystalline 
piezoceramics with sapphire (α-corundum) crystallites Al2O3 as inclusions. The effective 
moduli for inclusions are calculated as the average moduli of monophase polycrystallite of 
trigonal system. The results of calculations give the full set of effective moduli.  

We note that the results obtained here differ from the results presented in [16,30,31]. In 
particular, we did not obtain a growth of the piezoelectric modulus eff

33d  in the range of  
0–20 % of the inclusions. These differences are due to that the porous ceramomatrix 
composites were studied in [16,30,31]. Thus, the optical photomicrographs of the polished 
surface of these piezocomposites, obtained in the Research Institute of Physics from Southern 
Federal University [16,30], are shown in Fig. 3.  
 

 
Fig. 3. Optical photomicrographs of porous ceramomatrix 
 piezocomposites with different percentage of inclusion 

 
From these figures, it can be seen that the pores in piezoceramics are ten times smaller 

than the sizes of crystallites. Therefore, for such complex three-phase material the 
homogenization can be carried out in two stages. At the first stage, the effective moduli of 
porous piezoceramics can be calculated, and at the second stage, the effective moduli of two-
phase composite ceramic/crystallites can be determined. Then, for modelling the porous 
piezoceramics, one can use the models developed in [32–35], where pores were considered as 
voids, as well as the models of inhomogeneous polarization near the pore boundary [20]. We 
plan that these approaches will be the subject of further research.  
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Abstract. We present an energetic model to describe the initial stage of growth of GaAs 
nanowire seeds in SiOx/Si (111) templates. The model explains the experimentally observed 
geometry of GaAs seed crystal emerging from Ga droplets in the holes, with either stepwise 
or ring geometry at the outer periphery of the holes and restricted by the steps that are much 
larger than monoatomic. Understanding and controlling this geometry is crucial for further 
growth of nanowires, improving their vertical yield and optimizing the morphology and 
crystal structure.      
Keywords: GaAs nanowires, Ga droplet, elastic stress relaxation, surface energy, silicon 
templates 
 
1. Introduction 
Epitaxial growth of III-V nanowires [1] and other elongated structures [2] on silicon 
substrates may enable excellent crystal quality which is unattainable in thin films or even 
quantum dots [3].  Self-assisted, or self-catalyzed vapor-liquid-solid (VLS) growth of GaAs 
nanowires on Si (111) substrates, promoted by gallium droplets [4-8], has recently emerged as 
a gold-free alternative of a more traditional gold-catalyzed VLS growth [9-12], selective area 
epitaxy [13] or self-induced growth of nanowires [14]. During self-catalyzed growth of GaAs 
nanowires in lithographically defined templates in SiOx/Si (111) substrates, the liquid gallium 
droplets are pre-deposited and then GaAs nanowire seeds nucleate from thee droplets in the 
holes. This initial stage of GaAs nanowires nucleation in largest measure determine the 
physical properties of the future nanowire arrays, such as the vertical yield, morphology and 
crystal structure [15-17]. In this work, we try to understand the unusual geometry of GaAs 
underneath gallium droplets in the holes, with either stepwise or ring geometry at the outer 
periphery of the holes and restricted by the steps that are much higher than monoatomic [17].  
 
2. Model 
In the standard VLS growth of developed nanowires far away from the substrate, theoretical 
considerations [18-20] and in situ growth monitoring [21,22] reveal mononuclear formation 
of planar nanowire monolayers which proceeds layer-by-layer so that the flowing steps are 
always monoatomic. However, the VLS growth within the holes is different – first, GaAs 
crystal nucleates on the lattice mismatched silicon substrate and, second, the crystal has 
lateral solid-solid interface with the SiOx mask rather than free sidewalls in contact with 
vapor.   
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Fig. 1. Schematics of the geometry of GaAs growing from liquid gallium in a SiOx/Si (111) 

hole. The hole walls are SiOx and the bottom is silicon. The opening angle ϕ can vary from 0 
to π depending on the gallium droplet and seed size. The GaAs crystal is a section of 

cylindrical ring (or the full ring at )πϕ = of height h and width w , with the aspect ratio hw /  
 

Initially, the gallium droplet may occupy a part of the hole (for smaller gallium 
volumes) or completely fill the hole (for larger gallium volumes) as shown schematically in 
Fig. 1. In the former case, the gallium droplet should be positioned at the edge of the hole for 
surface energetic reasons [23]. The initial droplet volume can be characterized by the angle 
ϕ showing which portion of the hole bottom is covered with liquid gallium ( πϕ <  for 
incomplete and πϕ =  for complete filling). Assuming cylindrical geometry, we consider free 
energy of forming a GaAs crystal at the outer periphery of the hole, with the opening angle 
ϕ2  ( πϕ <  corresponds to incomplete and πϕ =  to complete ring), width w  and height z  

(see Fig. 1), at a fixed volume of GaAs. The latter is given by zSV = , where 
)2()( 222 xxrwrrS −=−−= ϕϕϕ  is the surface area of the base and rwx /=  is the width of 

the crystal divided to the hole radius 2/dr =  (the case 0→x  corresponds to planar growth 
on the inner sidewalls of SiOx and 1=x  to planar growth on the silicon bottom. Disregarding 
the volume term with chemical potential (which is the same for any configuration of the GaAs 
crystal at a fixed V ), we can write         
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Here, the first term describes the elastic energy contribution induced by the lattice 
mismatch between GaAs and Si [24-27], with =λ 1.4×1011 J/m3 as the effective elastic 
modulus of bulk GaAs, =0ε 0.04 at the lattice mismatch, and ≅A  7.5 as the relaxation 
coefficient [26]. Very importantly, coherent growth of GaAs on silicon requires the radius of 
the GaAs crystal to be smaller than the critical radius of 53 nm [27], which is fulfilled under 
the experimental conditions of Ref. [17] and hence all GaAs NWs should be free of 
dislocations at the base. The next three terms stand for the surface energies of vertical 
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sidewalls of GaAs, with *γ  representing the surface energies of the corresponding vertical 
interfaces as shown in Fig. 1 (the GaAs-SiOx and GaAs-Ga surfaces are created and the  
SiOx-Ga one is eliminated upon nucleation). The last term stands for the in-plane surface 
energy change, with γ  representing the surface energies of the corresponding in-plane 
interfaces (the GaAs-Si and GaAs-Ga surfaces are created and the Si-Ga one is eliminated 
upon nucleation).   

Introducing dimensionless free energy )/( 2
0VGf λε∆= , after some simple 

manipulations we get  
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in-plane surface energy change. When 2<<x , Eq. (2) is simplified to  
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where we do not write an unimportant x -independent constant. The parameter 
)/()2/( 3

holeVVrVv π≅=  is proportional to the ratio of the GaAs volume to the effective total 
volume of the hole 32 rVhole π=  at the hole height rh 2=  corresponding to the hole aspect 
ratio of 1. Clearly, the x  dependence of the free energy given by Eq. (4) is controlled by five 
parameters, the volume coefficient 1<<v , the elastic energy relaxation A , the opening angle 
ϕ , and the two surface energy coefficients a and c describing the changes of the vertical and 
in-plane surface energies upon nucleation of a GaAs crystal in the hole. The case 0<c , 0>a  
corresponds to the situation where GaAs initially wets the Si substrate but not the SiOx walls 
of the hole [25], consistent with the fact that GaAs crystals grow in two-dimensional (2D) 
form on silicon and as irregular three-dimensional (3D) crystals on SiOx [15,16]. 
 
3. Results and discussion  
The energetically preferred configuration 0x is now determined by the minimum of )(xf  in 
Eq. (4) for a given set of parameters. If we assume cva <<)2/( ϕ , the minimum at 
intermediate x appears due to the elastic energy term in Eq. (4) for sufficiently large GaAs 
volumes when 2xAv ϕ>>  and corresponds to the ring width 

2
0

0 λε
γ∆

≅
A

w .                                                                       (5) 

With the known A  and 2
0λε , the experimentally observed ratio ≅r/0ω 0.25 for  

r =30 nm corresponds to a plausible =∆γ -0.225 J/m2. Figure 2 shows the free energy as a 
function of x  for the full ring geometry of GaAs ( πϕ = ) with these parameters and at  

=∆ *γ 0.05 J/m2, corresponding to =2/a 0.0074 and =c -0.033, for different values of

holeVV / .  
These graphs show the following major properties. For very small GaAs volumes (the 

curve at 02.0/ =holeVV ), the energetically preferred configuration is 2D GaAs layer. As the 
GaAs volume increases, the free energy acquires the local minimum at ≅x 0.2 for the 
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parameters considered, which becomes global at a slightly larger ≅0x 0.23, corresponding to 
the energetically preferred width Rw 23.00 ≅ , as observed in the experiments of Ref. [17]. 
Further increase of the GaAs volume does not affect the position of the energy minimum. 
According to Eq. (5), the width of the ring does not depend on the opening angle, yielding the 
same width for differently sized gallium droplets in the holes. The height of the rings 

)/( 0
2

0 xRVh ϕ= increases linearly with the GaAs volume and becomes larger for smaller ϕ .           
 

 
Fig. 2: Free energy versus relative width of full GaAs rings ( πϕ = ) for different holeVV /

values (lowest curve - holeVV /  = 0.02, highest curve -  holeVV /  = 0.15), showing the collapse 
to a volume-independent preferred configuration corresponding to the minimum free energy 

at 23.00 ≅x  
  

In conclusion, our analytic model correctly describes the experimentally observed 
shapes of GaAs nanowire seed crystals nucleating from gallium droplets in SiOx/Si (111) 
templates. These results are also supported by a more detailed numerical modeling [17]. A 
combination of the elastic energy relaxation due to the lattice mismatch between GaAs and 
Si (111) substrate and the surface energy constrains leads to the unusual geometry of GaAs 
crystals in the form of either steps or rings whose heights are much larger than monoatomic. 
These results can further be used as the initial condition for the description of subsequent time 
evolution of the GaAs nanowire morphology starting from the holes.       
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Abstract. The paper presents a numerical simulation of hypervelocity impacts of variously 
shaped projectiles with thin bumpers. A numerical model was verified using a full-scale 
experiment of hypervelocity impact of a sphere with thin aluminum-alloy bumper. 
Hypervelocity impacts of nonspherical projectiles of different spatial orientation with thin 
bumpers were also numerically investigated. The investigations show that a hypervelocity 
impact of a nonspherical projectile advancing with its sharp edge towards the bumper results 
in a denser debris cloud formation and, therefore, such an impact is more dangerous than any 
of other considered cases for the spaced protection. 
Keywords: hypervelocity impact, space debris, non-spherical projectiles, debris clouds, 
Whipple shields 
 
 
1. Introduction 
A quantity of space debris in the near-Earth space is growing in geometric progression [1,2]. 
Such debris consists of used rocket stages, colliding fragments of spent satellites, etc. Fast and 
aggressive space development makes protection of space equipment, manned and unmanned 
space vehicles against hypervelocity impacts in the space very important.  

Whipple shields, two or more rigid thin bumpers spaced at a certain distance from each 
other, are used for protection of the International Space Station against micrometeoroids and 
man-made debris. The main idea of such spaced multilayer protection is that a hypervelocity 
projectile breaks and disperses after the interaction with the first bumper. A debris cloud 
resulted from that impact expands and interacts with the next bumper at a larger area, thus the 
load intensity of the next bumper significantly decreases [4]. Front bumpers of Whipple 
shields used at the ISS (International Space Station), about 1-2 mm thickness, are made of 
heat-strengthened aluminum-alloy, the spaces between the bumpers are filled with layers of 
woven materials made of aramid and ceramic fibers; the back bumpers are made of 
aluminum-alloy of about 3-4 mm thickness [5]. 

For full-scale experimental studies of hypervelocity impacts, projectiles are accelerated 
mainly by multistage light gas guns. Such studies require many financial and labor 
expenditures; moreover, with that method of acceleration, it is very hard to achieve a 
projectile velocity higher than 11-12 km/s. However, velocities of space 
debris/micrometeoroids impacts can exceed 15 and 30 km/s correspondingly. Therefore, the 
quantity and quality of full-scale experiments are limited. From another hand, numerical 
simulations are free from the above-mentioned disadvantages; it is a cost-efficient, visual and 
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descriptive method of hypervelocity impact investigations. The numerical simulation can 
result in new geometrical shapes and configurations of the bumpers allowing efficiently 
absorbing the energy of projectiles of a considerable range of velocities, shapes, and 
dimensions. Moreover, a shape of debris clouds and their energy, after passing the front 
bumper, can be studied with a high time resolution, which is very valuable from the scientific 
point of view. The numerical investigation of the debris cloud dynamics, its propulsion and 
expansion velocities, mass distribution of debris in the cloud can allow to formulate 
requirements to a multilayer shield protection more accurately. 

 
2. Verification of numerical simulation of hypervelocity impact of spherical projectile 
with thin bumper  
The numerical simulation of a hypervelocity impact of spherical projectiles with a thin 
bumper was performed using smoothed particles hydrodynamics method [6]. This grid-free 
Lagrangian method is widely used for describing hypervelocity impact processes; numerical 
data obtained using this method are in good agreement with known full-scaled 
experiments [7,8]. Johnson-Cook plasticity and damage equations [9] were applied to 
describe a behavior of projectiles and bumpers made of aluminum alloys. In the plasticity 
equation von Mises flow stress Y depends on strain εp, strain rate εp

* and homologous 
temperature of the material Tg which depends on temperature T, initial temperature T0 and 
melting temperature Tm:  
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A failure criterion – critical strain εf, is a function of pressure, strain rate and 
homologous temperature (D1, D2, D3, D4, D5, - empirical coefficients):  
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The material failure occurs when D is equal to 1: 
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For a projectile made of aluminum Al 1100, the equation of state has a form of the  
Mie–Gruneisen equation assuming linear dependence of pressure P on internal energy E. For 
the shock-compressed material, the pressure was found from: 
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where c – the sound velocity in the material, 0γ  – the Gruneisen parameter of the material. 
For the expanding material the pressure was found from: 

EсP 0
2
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For an Al 6061-T6 heat-strengthen aluminum alloy bumper the equation of state was in 

the form of a linear polynomial (C1, C2, C3, C4 - coefficients):  
ECCCCP 4

3
3

2
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Parameter µ is the ratio of material density ρ to its initial density ρ0: 
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The approach to plasticity and failure description was made in favor of Johnson-Cook 
equations because they allow taking into account strain rate and softening temperature 
including a phase transition. It is important to take into account those factors because at a 
hypervelocity impact materials of a projectile and a bumper can melt and evaporate. For 
example, at more than 3 km/s impact velocity interacting aluminum objects partially melt; at 
more than 7 km/s impact velocity the projectile fully melts [10].  

 
Table 1. Parameters of materials in plasticity and failure equations 

Parameter Unit Al 1100 Al 6061-T6 
Initial density, ρ0 kg/m3 2770 2750 
Yield stress, A Pa 4.1×107 3.241×108 

Strain hardening constant, B Pa 1.25×108 1.138×108 

Strain hardening coefficient, n  0.183 0.42 
Strain rate constant, C  0.001 0.002 
Thermal softening coefficient, m  0.859 1.34 
Initial temperature, T0 K 293 293 
Melting temperature, Tm K 893 893 
Fracture coefficients, D1  0.071 -0.77 
D2  1.248 1.45 
D3  -1.142 -0.47 
D4  0.0097 0 
D5  0 1.6 

 
The projectile and the bumper melting and evaporating at a hypervelocity impact 

increase the protection efficiency. As it is shown in [11], at 7.4 km/s velocity of the copper 
projectile the copper bumpers are most weight efficient; they have 30% less surface density 
than the aluminum bumpers with similar protective characteristics. It happens because a 
copper projectile melts and evaporates most intensively when it interacts with a copper 
bumper. The chosen equations are widely used for numerical simulations of material impulse 
loading processes. Therefore, parameters of materials given in Tables 1, 2, 3 for calculations 
were taken from known sources [12,13].  

 
Table 2. Coefficients in the equation of state for Al 6061-T6 

C1, GPa C2, GPa C3, GPa C4 
74.2 60.5 36.5 1.96 

 
Table 3. Coefficients in the equation of state for Al 1100 

c, m/s S1 γ0 
3935 1.578 1.69 

 
The numerical model used in the calculations in this work was verified using the known 

full-scale experiment. In the paper [14] the experiment of a hypervelocity impact between 
5.01-mm ball and 1-mm thick bumper was described. The bumper was made of aluminum 
alloy Al 6061-T6, and the projectile was made of aluminum Al 1100. The mass of the 
projectile was 0.18 g. In the full-scale experiment, the impact was at the 90° angle to the 
bumper surface and the impact velocity was in the range of 4.17-4.33 km/s. The 
shadowgraphs of the debris cloud forming at the impact and expanding in time were taken at 
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various moments of time – up to 40 μs after the impact. Therefore, the model parameters were 
chosen so that the numerical calculation results were in the best agreement with the 
experimental data. 

The hypervelocity impact between a 5.01-mm ball of 0.18g mass and made of Al 1100 
and a plane bumper of 1 mm thickness made of Al 6061-T6 was numerically simulated. The 
impact was at 4.19 km/s velocity and perpendicular to the bumper surface. All simulations 
were performed in 3D formulation. 

 

 
Fig. 1. Debris cloud formed 16 μs and 24 μs after the impact, side view. Spherical Al 1100 

projectile with velocity of 4.19 km/s, Al 6061-T6 bumper with thickness of 1 mm 
 

Figure 1 presents images (side views) of the debris clouds resulted from the impacts at 
16 μs and 24 μs moments of time and initial state of the problem (0 μs). The numerical 
calculation is in good agreement with the full-scale experimental data. The main mass of 
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debris is concentrated in a head part of the cloud. The images obtained in both the full-scale 
and numerical experiments show the characteristic “bulge” in the head part (vanguard) of the 
debris cloud. The numerical simulation allows distinctly distinguishing materials of the 
projectile and the bumper and track dynamics of the bulge generation and development frame-
by-frame with 10-8 s time resolution.   

 

 
Fig. 2. "Bulge" development in the debris cloud vanguard. Positions of fragments, belonging 
to the back surface of the sphere are pointed out. Spherical Al 1100 projectile with mass of 

0.18 g and velocity of 4.19 km/s, Al 6061-T6 bumper with thickness of 1 mm 
 

The numerical calculations show that the bulge in the vanguard of the debris cloud 
consists of projectile particles gathered into a dense group and advancing along the impact 
trajectory. At 2.5 μs (Fig. 2) the projectile debris has formed rather a dense group of the shape 
reminding the initial shape of the projectile. That group has a mixed phase composition; the 
debris are in both liquid and solid phases there. In time, the solid fragments from the remote 
surface of the projectile are outrunning the main mass of the debris in the vanguard and 
forming the bulge in the head part of the cloud. It happens because these fragments are 
moving with higher longitudinal velocity than the bumper debris and other debris of the 
projectile. The similar bulge was observed in [15,16] under alike initial conditions – impact 
velocity, projectile diameter and bumper thickness, but the projectile and the bumper were 
made from a different grade of aluminum. By all appearance, for such a bulge formation the 
projectile material should have less density and ultimate strength than the bumper material. 
Under that condition, 4.19 km/s impact velocity is not enough for complete melting of the 
projectile and the remote part of it remains in the solid phase [17]. The evaporated and melted 
material is expanding rather evenly with the cloud advancement, whereas the solid particles 
remain on the impact axis. Exactly those particles are the biggest threat for the spaced 
multilayer bumper protection. 

At 16 μs moment of time the cloud length/diameter ratio in the widest part is 1.58 mm 
(the numerical calculation) and 1.53 mm (the full-scale experiment), the error is less than 
3.5%. At 24 μs moment the length/diameter ratio is 1.58 mm (numerical calculation) and 
1.59 mm (the full-scale experiment), the error is less than 0.5%. With inaccuracy of the 
geometric dimensions measuring taken into the account, it is fair to conclude that the 
numerical calculation error in comparison with the full-scale experiment is less than 4%. 
From the equality of the cloud's geometric dimensions (length and diameter) at the same 
moments of time, we can conclude that relations of the expansion velocity in longitudinal and 
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transverse directions are equal in both full-scale and numerical experiments. The diameter 
values of the crater forming on the bumper are also in satisfactory agreement. In the 
numerical calculation, it is 11.3 mm, in the full-scale experiment – 11 mm. The vanguard 
cloud velocity is 3.74 km/s in the calculation and 3.8 km/s in the full-scale experiment. In 
general, the numerical simulation has been performed with satisfactory accuracy, therefore, 
the selected approach and the material parameters can be used for investigation of 
hypervelocity impacts between projectiles and bumpers of other configuration. 

 
3. Simulation of non-spherical projectiles impact with thin bumper  
A spherical shape of the projectile is a simplification, in real life space debris colliding with 
space vehicles can be of various shapes. Numerical calculations allow investigating 
hypervelocity impacts of projectiles of various shape and spatial orientation and comparing 
differences and characteristics of debris clouds formed in various cases. With the help of the 
verified model, a hypervelocity impact of a cylindrical projectile (its diameter is equal to its 
length) on a thin bumper has been simulated. The impact velocity, projectile material 
(Al 1100), bumper material (Al 6061-T6), bumper thickness (1 mm) and projectile mass 
(0.18 g) are identical to the verified case. Therefore, results of impacts of projectiles with the 
same kinetic energy but of various shapes can be compared; and it is possible to determine the 
distinctive features of debris clouds formed as a result of the impacts of various projectiles. 
 

 
Fig. 3. The debris cloud formed after the impact of 0,18 g cylindrical Al 1100 projectile with 
1mm thin Al 6061-T6 bumper at various moments of time. Side view. Projectile velocity – 

4.19 km/s, projectile mass – 0.18 g, bumper thickness – 1 mm. (Note, that in the side view of 
three-dimensional problem cylinder with its diameter equal to length looks like a cube) 

 
At the initial stage of the debris cloud formation, the symmetric outer cone of particles 

of rear bumper surface is formed on the impact axis (Fig. 3). In time, the outer cone is 
expanding and a dense debris group, rather evenly distributed on the cloud front surface, is 
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following it. The debris mass advancing along the impact axis is approximately 20% out of 
the initial projectile mass. The debris vanguard on the front surface is expanding evenly with 
the cloud advancement. The debris cluster on the impact axis following the cone is less 
subjected to the expansion and preserves practically all its mass during the simulated period 
(0-12 μs). Thus, that cluster is the most dangerous part of the debris cloud for the spaced 
bumper protection against the cylindrical projectile impact. 

Similar debris cloud characteristics – the cluster on the impact axis and the leading cone 
were obtained experimentally in [18]. In that hypervelocity impact experiment, cylindrical 
projectile was made of Al 2024-T4 and 2 mm thin bumper was made of  
Al 6061-T6. Most likely, the leading debris cone is formed due to the bumper material 
spallation. In that case, the initial stage of the bumper destruction has a shock-wave nature 
induced by shock waves generation in the bumper resulted from the plane shock and 
rarefaction waves following the shock wave front. 
 
4. Study of cubic projectile orientation effect on results of impact with thin bumper 
Axial-symmetric projectiles (cylinders, balls) can be accelerated to space velocities (4-5 km/s 
and more) by light gas guns. It is simpler to study hypervelocity impacts of projectiles without 
axial symmetry (projectiles of arbitrary shapes that are closer to real life space debris) 
numerically. For the extreme case study 3D calculations of a cubic shape projectile with its 
face and edge orientated toward a thin bumper have been performed.  

Initial conditions, mass and velocity of cubic projectiles, projectiles' and bumpers' 
materials, coincide with those used in the calculations of impacts between the spherical and 
cylindrical projectiles and the thin bumper. Two cases of hypervelocity impacts have been 
studied: in the first case, the cube face was parallel to the bumper surface; in the second case, 
the projectile edge was oriented to the bumper surface. 

The development dynamics of the debris cloud in both simulated cases (Fig. 4) has been 
studied and compared. When the cube impacts by its face, a formed debris cloud is similar to 
the one resulted from a cylindrical projectile of the same mass and with a diameter equal to 
the length. Both clouds have similar characteristics– the leading cone and the dense group of 
the projectile particles with the 20% out of the initial projectile mass in the vanguard of the 
debris cloud. The characteristic cloud dimensions at 12 μs moment of time, such as a length 
without the leading debris cone and a diameter in the widest part, are approximately equal. 
The cloud length without the bumper debris cone is 38.5 mm, which is approximately the 
same as the diameter in the widest part (38 mm). 

We observe a different picture when the cube impacts by its edge (Fig. 4). In this case, 
most of the projectile fragments (more than 50% of the initial mass) are concentrated in the 
dense group on the impact axis. The diameter of the cloud in the widest part reduces to 24 mm 
at 12 μs moment of time. In case of the cube face impact, the angle of the debris dispersion is 
about 30 degrees to the impact trajectory; debris are evenly dispersed on the cloud front 
surface and form a small compaction on the impact axis. In the case of the cube edge impact, 
the resulted debris cloud is narrower and oblong. The angle of the debris dispersion is 
20 degrees to the impact trajectory; the projectile debris forms a dense group in the center. In 
this case, the cloud vanguard velocity is 3,9 km/s, which is 7% higher than in the case of the 
face impact. Such reduction in the debris dispersion area and an increase of the debris velocity 
reduces the efficiency of spaced multilayer protection. The leading cone of debris is absent 
due to a constant applied load that prevents the spallation of the rear bumper surface. 

The results of calculations show that at hypervelocity impacts of projectiles of 
nonspherical, cylindrical or cubic, shapes with a protective structure consisting of two spaced 
bumpers, the load intensity on the second bumper cannot be significantly reduced by 
increasing the distance between the bumpers. The best solution is to fill the space between the 
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bumpers with ballistic materials or with some liquid or gaseous medium [19]. In case of a 
spherical projectile, projectile and bumper debris are dispersed on the cloud vanguard rather 
evenly. Such a cloud is expanding to all directions uniformly, therefore increasing the gap 
between the bumpers we increase the load area. However, in the case of a nonspherical 
projectile, a dense debris group is formed on the impact axis; this group does not expand 
considerably in time, and it interacts with the second bumper on the same area independently 
on the distance between the bumpers. This phenomenon is visualized better in case of the 
cubic edge impact on the bumper; when more than a half of the initial projectile mass remains 
on the impact axis. It could be caused by a shorter lifetime of shock waves and fewer pressure 
values developing in nonspherical projectiles [20]. As a result, the projectile destruction is 
less intensive; larger fragments are formed that can be seen in the case of the cube sharp edge 
impact. 

 

 
Fig. 4. Comparison of the debris clouds formed in various moments of time due after 

hypervelocity impacts of cube Al-1100 projectiles of different spatial orientations with thin  
Al 6061-T6 bumpers. Side view. Projectile velocity – 4.19 km/s, projectile mass – 0.18 g, 
bumper thickness – 1 mm. (Note, that in the side view of three-dimensional problem cube 

oriented with its edge towards the bumper looks like a hexagon) 
 

Comparing images of the debris clouds formed in all cases considered, it is fair to 
conclude that at a hypervelocity impact of nonspherical particle by their sharp edge with a 
spaced bumper protection the penetration of the second bumper is most probable. Such a 
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configuration, two bumpers at a certain distance from each other, is much less efficient in 
protection against space debris of nonspherical shape. Thus, the conclusion made in [21] is 
confirmed. 
 
6. Conclusions 
In general, all results obtained by the calculations are in good agreement with known 
experimental data. Thus, the model used in this work can be applied to further studies on 
hypervelocity impacts. The numerical model describing a process of a hypervelocity impact 
of a spherical projectile on a thin bumper has been verified. Based on the similarity between 
know experimental results and obtained numerical data, we can conclude that the method 
applied, equations and material parameters are valid.  

The performed calculations show that at a hypervelocity impact of an aluminum ball on 
a bumper made of a heat-strengthen aluminum alloy, a "bulge" is formed in the cloud 
vanguard on the impact axis. It consists of material of the remote surface of the projectile. At 
the hypervelocity face impact of a cylindrical or cubic projectile, a leading cone is formed due 
to the spallation of rear surface of the bumper.  

The calculations of a nonspherical projectile orientation effect on the debris cloud 
formation have been performed. Two boundary cases – cubic face and cubic sharp edge 
impacts, have been considered. In case of the face impact, the angle of disperse is higher than 
in case of the edge impact, and the debris are rather evenly dispersed on the cloud vanguard 
with small thickness (bulge) on the impact axis. When the cube impacts by its edge, the cloud 
formed is much narrower, the disperse angle is only 75% of the angle in the face impact case. 
The debris are dispersed on the vanguard unevenly, more than 50% of the initial projectile 
mass is concentrated in the dense group on the impact axis, and the cloud vanguard 
advancement velocity is 10 % higher. 

Reduction of the debris dispersion area and an increase of their velocity cause reduction 
of the bumper protection efficiency. The calculations of hypervelocity impacts of 
nonspherical projectiles using the verified model show that penetration of two spaced 
bumpers is most probable in the case when a cubic projectile impacts the bumper by its sharp 
angle, which is verified by know experimental data. At hypervelocity impact between a 
nonspherical, cylindrical or cubic projectile (with its sharp edge) and a two spaced bumper 
protection, the load intensity of the second bumper cannot be significantly reduced by 
increasing the distance between the bumpers, because the main part of fragments in the debris 
cloud is propagating along the impact axis. 
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Abstract. Crystalline structure and composition of the ZnO films grown by atomic layer 
deposition (ALD) on the n- and p-type Si (100) substrates with a SiC buffer layer were 
studied. The SiC buffer layers have been synthesized by a novel method of atomic 
substitution (partial chemical replacement) of Si atoms by carbon atoms in the subsurface 
layer of the Si substrate. A four-component epitaxial texture of ZnO in a direction close to 
[101] on the n- and p-type (100) Si vicinal substrates with a SiC buffer layer has been 
revealed and investigated with electron diffraction. Formation mechanism of the epitaxial 
textures of ZnO was found to depend on the conductivity type (n- or p-type) of the Si (100) 
substrates. A theoretical model explaining the effect of the texture formation and its 
dependence on the type of Si substrate conductivity has been proposed. The effect is 
associated with the transformation of the vicinal Si (100) surfaces into the SiC surfaces during 
its synthesis by the atomic substitution method. Significant differences have been found 
between the structures and between the growth mechanisms of the ZnO layers on the 
SiC/Si (111) and (100) substrates. 
Keywords: zinc oxide films, ALD method, silicon carbide; epitaxy; thin film growth 
 
 
1. Introduction 
This work continues the previous studies [1] of the growth of the zinc oxide (ZnO) films by 
atomic layer deposition (ALD) on silicon (Si) substrates with silicon carbide (SiC) buffer 
layers  grown by the method of topochemical substitution of atoms [2-4]. Zinc oxide, as is 
well known, crystallizes in a hexagonal lattice system with lattice parameters a = 0.325 nm 
and c = 0.521 nm. The Silicon carbide films on the silicon surfaces, which are the substrate 
for the ZnO layer, were synthesized by the atomic substitution method. Depending on the 
crystallographic orientation, the Si surfaces can consist of both layers of the cubic SiC phase 
and layers of the hexagonal phase [5]. On the Si (111) surface, essentially a cubic polytype of 
3C-SiC is formed [5], on the Si (110) surface, mainly hexagonal polytypes grow, with the  
6H-SiC polytype being basically formed and, to a lesser degree, the 4H-SiC polytype [5].  
A film consisting of a mixture of various SiC polytypes grows on the (100) Si surface. In [6], 
it was found that the structure of the surface SiC layers synthesized on the vicinal surfaces of 
Si (100) substrates deviating from the basic orientation by 2° − 7° substantially depends on 
the doping type of the initial silicon substrate. It turned out [6] that in the process of replacing 
silicon atoms with carbon atoms, singular (100) Si faces transform into a SiC face consisting 
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of an ensemble of facets resembling sawtooth structures, whose lateral surfaces are covered 
with (111) planes.  These studies showed that on the vicinal p-type Si surface, deviated by 4° 
and more from the singular face (100) during the synthesis of SiC, an ordered phase of SiC is 
formed, with surface morphology in the form of facets (flakes) consisting of cubic and 
hexagonal layers. In this case, the planes of the hexagonal facets may have the orientation: 
[11�02�]; [11�00]; [11�01�]. Cubic facets consist of (111) faces and are positioned at an angle of 
54°44′ to the (100) face. If initially the vicinal surface of the Si (100) substrate was prepared 
from Si cut at an angle of 4° to the surface (100), for example, towards [011], then after 
thermal annealing [3,6], such a surface will be covered with an ensemble of steps (011). After 
topochemical transformation of this surface into the SiC surface, it would be covered by an 
ensemble of facets with (111) planes (111) located at an angle of 54°44′ to the (100) face. 
Moreover, all facets will be ordered along the [011] direction at an angle of ≈ 35° to the 
(001). Thus, during the synthesis of SiC, a modified SiC surface is formed, structured along 
the [011] direction. As shown by earlier studies [7], Si substrates with a SiC layer structured 
in a similar way are good templates for the growth of semi-polar hexagonal AlN and GaN 
crystals. Such a quasi-stepped surface of a silicon carbide layer stimulates the formation of 
nuclei of hexagonal semi-polar AlN, and the semi-polar layer of AlN, that in turn stimulates 
the formation of a semi-polar GaN layer, for example, the (11�01) GaN plane is located at an 
angle of 35−47° with the "C" GaN axis and the (001) SiC plane. 

On the vicinal n-type Si surface deviated by an angle of 4° or more from the singular 
(100) face, the process during the synthesis of SiC  proceeds differently. On this surface, only 
the 3C-SiC cubic phase is formed, and the density of the (111) facets is not large, and they are 
very small. As a result, polycrystalline AlN and GaN films grow on vicinal n-type Si surfaces, 
as a rule, when grown by the method of chloride-hydride epitaxy (HVPE), because the 
substrate has very few orienting centers, and the differences between the SiC lattice 
parameters in the plane (100) and the lattice parameters of GaN along its semipolar planes, for 
example (11�01), are rather large. It was shown in [8] that in order to grow semipolar AlN and 
GaN layers on the faceted the SiC/Si(100) surface, it is necessary to create an AlN nucleus, 
whose critical size would not exceed the size of the SiC facet. This requires a high growth rate 
of the AlN layer of the order of 1 μm /hour. Otherwise, the polar AlN and GaN layers will 
grow, which on the SiC/Si (100) surface will have a polycrystalline structure. 

In this connection, it is of great interest to find out the differences in the morphology 
and structure of ZnO layers grown on n and p type Si (100) substrates with a SiC buffer layer. 
Such a study is very important for finding out the mechanism of growth of the ZnO layer on 
SiC/Si (100). It should be noted that for comparison, we present some data on the formation 
of ZnO on SiC grown on Si (111). In this work, we do not consider growth on a pure silicon 
substrate in since as was shown in [1], ZnO films grown by the ALD method on Si have a 
polycrystalline structure. 

Thus, the aim of the present work is to study the morphology and crystal structure of 
ZnO layers grown by the ALD method, depending on the orientation of the initial Si substrate 
and the type of its conductivity. 

 
2. Experimental technique 
The epitaxial SiC layer was grown on vicinal surfaces, with a deviation of 4° from the (100) 
plane, of the n- and p-type Si (100) substrates. Silicon substrates with a resistivity of 10 Ω⋅cm 
were used for SiC growth. The growth of SiC was carried out using the new method of 
chemical substitution of atoms developed in [2–4]. To synthesize a SiC layer by this method, 
following to [2–4], a topochemical reaction between the single-crystal Si substrate and carbon 
monoxide CO gas was used. 
2Si (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + CO (𝑔𝑔𝑐𝑐𝑐𝑐) = SiC(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + SiO(𝑔𝑔𝑐𝑐𝑐𝑐) ↑.   (1) 
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The analysis [2-4] showed that reaction (1) splits into two successive stages. 
Si (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + CO (𝑔𝑔𝑐𝑐𝑐𝑐) = C + SiO(𝑔𝑔𝑐𝑐𝑐𝑐) ↑ + 𝑉𝑉𝑆𝑆𝑆𝑆, (2) 
Si (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + C +   𝑉𝑉𝑆𝑆𝑆𝑆 = SiC(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐).      (3) 

Silicon vacancies  𝑉𝑉𝑆𝑆𝑆𝑆 play a key role at both stages of transformation [2–6]. In the first 
stage of reaction (2), they ensure not only the diffusion of the CO reagent to the reaction zone, 
but also the reaction product of SiO from the reaction zone. In addition, the C atom and the 
vacancy  𝑉𝑉𝑆𝑆𝑆𝑆, which are formed in pairs in stage (2), have a strong interaction with each other, 
caused by the overlapping of elastic fields in a medium with cubic symmetry, to which silicon 
crystal belongs [2-5]. In particular, if these pairs align along the [111] direction, which 
corresponds to an energy minimum, they form a stable configuration, which we call dilatation 
dipoles by analogy with electric dipoles. In fact, silicon saturated with such dilatation dipoles 
(4 dipoles per Si cell) is an intermediate complex or an intermediate phase for almost barrier-
free conversion into silicon carbide [9]. Since the SiC cell volume is two times smaller than 
the Si cell volume, the presence of vacancies here also plays a key role, providing a barrier-
free displacement of large regions of the crystal. 

Topochemical reaction (1) proceeded in a vacuum furnace at a temperature 
𝑇𝑇 = 1280 ℃ and a pressure of CO 𝑝𝑝𝐶𝐶𝐶𝐶 = 0.4 Torr for 25 min. An epitaxial SiC film with a 
thickness of about 50 nm was formed from a mixture of predominantly hexagonal 4H and 6H 
polytypes [5]. Under the SiC film in the Si bulk, voids and cavities were formed, caused by 
the evolution of an ensemble of dilatation dipoles and merely silicon vacancies. They do not 
affect the SiC quality. 

Then, ZnO films were deposited on the obtained Si templates with a buffer layer of SiC 
by the method of molecular layering. Zinc oxide, as in [1], was obtained by molecular 
layering [1,10,11] using diethyl zinc (Zn(C2H5)2) reagents and deionized water (H2O). These 
substances, having a sufficiently high vapor pressure, were alternately supplied in a stream of 
nitrogen, which served as the carrier gas. When a substrate was exposed to water vapor, an 
adsorbed phase of the corresponding OH groups forms on it. During subsequent exposure to 
diethyl zinc, ZnO structural units are formed on the substrate due to the interaction with 
OH groups. The sum of these two stages is described by the reaction 
Zn(C2H5)2 + H2O = ZnO + 2C2H6.                              (4) 

At a given flow of reagents, the temperature is chosen so that the reagent excess, 
together with the reaction product C2H6, have time to leave the reactor. The substrate 
temperature was 250℃. Reactions occur on the substrate surface at high speed, so the film 
growth is determined mainly by the speed of delivery of the reagent molecules from the gas 
phase to the substrate surface. The substrate processing time in reagent vapors was 
10−2 − 5 ∙ 10−2s, purge time was 4-5 s. Thus, the deposition time of one monolayer (one 
reaction cycle) was about 8–10 s. The thickness of the ZnO films was ~ 200 nm. 

The grown ZnO films were studied by scanning electron microscopy, elemental 
microanalysis, X-ray diffraction and reflection high-energy electron diffraction (RHEED). 
Elemental analysis and scanning microscopy of the films were carried out on a Zeiss Merlin 
microscope with a thermopole-left cathode, equipped with an analytical attachment for energy 
dispersive elemental microanalysis of Oxford Instruments INCA X-Act. The accelerating 
voltage of the electron beam was 10 kV, and the beam current was 220 pA. An Everhart-
Thornley detector and a semiconductor back-scattered electron detector were used to record 
the images. X-ray diffraction studies were performed with a D8 Discover high resolution 
diffractometer (Bruker AXS) using a parallel beam of filtered CuKα radiation with a point 
focus and a spot diameter of 0.5 mm. To obtain electron diffraction data, we used an  
EMR-100 electron diffractometer with an electron energy of 50 keV. 
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3. Research results 
Scanning electron microscopy and elemental analysis. Figure 1 shows the image of 

the end sections of the ZnO/SiC /Si (100) samples grown on n-type and p-type Si obtained 
using a scanning electron microscope. 
                    

                     
                                         a                                                             b 
 

                                              
                                                                              c 
 

Fig. 1. SEM images of the end cut of ZnO/SiC/Si(100) samples and ZnO/SiC/Si (111) 
samples; (a) on n-type Si (100); (b) on p-type Si (100); (c) on Si (111) of n, p-type 

conductivity, obtained with a scanning raster electron microscope. Under the SiC layer, pores 
and voids in the volume of Si are seen 

 
On a SiC/Si (100) n-type substrate, a ZnO layer with a thickness of about 170 nm has 

grown. The thickness of the ZnO layer on a SiC / Si(100) p-type substrate was about 230 nm. 
The thicknesses of the ZnO layers on SiC /Si(111) n-type and p-type substrates were of the 
order of 250 nm. The thickness of the SiC layer on n-type Si (100) was ~ 50 nm, the thickness 
of the SiC layer on p-type Si (100) was ~ 60 nm, the thickness of the SiC layers on n- and  
p-type Si (111) substrates were ~ 110 nm. Under the SiC layer there are pores in the bulk of 
the silicon substrate, which were formed as a result of the topochemical reaction (2) and (3). 
Figure 2 presents the results of X-ray fluorescent microanalysis of the ZnO film composition. 
X-ray fluorescence analysis was performed at various points of the ZnO film, namely: on its 
surface, in the middle part of the ZnO layer, at the interface of the ZnO film with the SiC film, 
in the middle part of the SiC layer, at the interface of the SiC layer with the Si substrate, and 
approximately at a distance of about 1 μm from the SiC–Si interface into the depth of the 
silicon substrate. The analysis showed that ZnO films grown on SiC/Si (100) substrates of 
both  n-type and p-type are stoichiometric. The atomic content in the ZnO layer grown on an 
n-type substrate is the following: Zn = 26.5%, oxygen O = 17.2%, silicon Si = 19.3%, carbon 
C = 37%. The content of the same atoms in the ZnO layer grown on an p-type substrate is  
Zn = 25.8%, oxygen O = 17.7%, silicon Si = 19.3%, carbon C = 37%. ZnO films grown on 
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SiC/Si(111) n-type and p-type substrates contained above given atoms in the following 
composition: Zn = 25.6%, O = 17.8%, Si = 18.7%, C = 37.9%. Note that the concentration of 
silicon and carbon in this case should not be taken into account, since during microanalysis, 
the electron beam penetrates to a depth exceeding the thickness of the ZnO films. The excess 
carbon concentration in comparison with silicon only means that there is a SiC layer between 
the ZnO layer and Si. The analysis carried out by us showed that the Zn/O ratio is higher for 
the ZnO sample on an n-type substrate, i.e. oxygen concentration is greater in samples grown 
on a p-type substrate. This means that the concentration of oxygen vacancies is somewhat 
higher in a ZnO film grown on an n-type substrate. As is known, oxygen vacancies are 
electron donors. However, this difference is comparable with the magnitude of the error of the 
method. 
 

 
Fig. 2. X-ray fluorescence analysis spectra for Kα and Lβ lines showing the content of Zn, O, 

C, and Si in the center of the ZnO layer  grown on SiC/Si (100) and SiC/Si (111) samples 
with n-and p- type silicon 

 
X-ray diffraction studies. X-ray diffraction studies showed that on the SiC sublayers 

grown on n-type and p-type Si (100) and Si (111) substrates a uniaxial three-component ZnO 
texture along the [101], [001] and [hk0] directions was formed (in the latter case the [hk0] 
directions were oriented along the surface normal, and the [001] directions of crystallites were 
parallel to the surface and had random azimuthal orientations). A typical image of X-ray 
reflections of such a "background" uniaxial texture is shown in Fig.3. 

An epitaxial texture along the direction close to [101] was superimposed on the 
background uniaxial zinc oxide texture. The 2θ-χ diagrams of the ZnO layers grown on the 
SiC/Si (100) substrates of the n- and p-type conductivity are shown in Fig.4. 
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Fig. 3. A typical series of symmetrical θ-2θ scans for different tilt angles χ of a ZnO layer 

grown on a SiC/Si(100) substrate with either n-type or p-type silicon. sample. The 
background texture maxima of ZnO are visible at  χ = 0 (|| [101] + || [001]). A χ-profile of 

such a diagram at a given Bragg angle (2θ) represents a meridional profile of the 
corresponding pole figure 

 

              
                                       a                                                                        b 
Fig. 4. A series of symmetrical θ-2θ scans for various tilt angles χ of ZnO samples grown on 

the SiC/Si (100) substrates; (a) Si (100) n-type; (b) Si (100) p-type. The epitaxial texture 
maxima are visible 

 
The combined pole figure of the ZnO/SiC/Si (100) sample grown on n-type Si (100) is 

shown in Fig. 5. 
Figure 5 clearly shows the relatively sharp texture maxima of SiC and ZnO, which are 

characteristic of epitaxial textures. For the ZnO/SiC /Si (100) sample grown on the p-type 
Si (100) the combined PF is similar. 

Figure 6 shows the 2θ-χ diagrams for the ZnO layer (texture || [101] + || 001]) grown on 
the SiC/Si(111) substrates with n- and p-type silicon.  

For all samples, the profiles of the texture maxima for the main directions (χ scans) 
were obtained, and the peaks were fitted with the Gaussian functions. Full widths of these 
curves at half maximum (FWHM) measured with a standard error of about 1% characterize 
the texture sharpness. The ZnO [101] texture maximum had FWHM ≈ 5.4° on the 
SiC/Si (100) substrate with the n-type conductivity. On a SiC/Si (100) substrate with the  
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p-type conductivity the same texture has a sharpness of 4.9°. On the other hand, the sharpness 
of the ZnO texture along the [001] direction on the SiC/Si (100) substrate with the n-type 
conductivity was 5.10°, which is similar to that on the p-type silicon (5.3°). On the n-type 
SiC/Si (111) substrates the ZnO texture had a sharpness of 6.30° and 4.5° along the [101] and 
[001] directions, correspondingly. On the p-type SiC/Si (111) substrate the texture sharpness 
was as large as 7.2° in the [101] direction and only 4.5° in the [001] direction. 

 

 
Fig. 5. The combined pole figure for the ZnO/SiC/Si (100) sample grown on the n-type  

Si (100). The  angle χ varied from 0 to +700 in the process of measurement 
 

               
                                 a                                                                                 b 

Fig. 6. A series of symmetrical θ-2θ scans for various tilt angles χ of ZnO samples with 
texture || [101] + || [001] grown on SiC/Si(111) substrates. (a) - n-type conductivity;  

(b) - p-type conductivity 
 

Electron diffraction studies. Figure 7 shows the RHEED pattern obtained from the 
surface of ZnO samples formed on SiC grown on n- and p-type Si (100), obtained on an 
EMR-100 electron diffraction image at 50 keV electron energy. Diffraction patterns are 
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shown along two directions, namely, along the projection of the [001] axis and in the 
projection of the [011] axis. As is known, while registering a RHEED pattern, electrons with 
an energy of 50 keV penetrate into the film layer to a depth not exceeding 30–50 nm, while 
X-ray beams penetrate much deeper. Therefore, RHEED is appropriate to investigate the 
structure of the surface layers, which may differ from the structure averaged over the entire 
thickness of the layer, which was studied by X-ray diffraction. Above, we showed that the 
ZnO layer is textured, with some order along the [101] and [001] directions. As a rule, with an 
increase in the film thickness, if the substrate has ordering centers, the degree of film 
crystallinity may increase [12]. This is what we observe in Fig. 7. For the ZnO layer grown on 
a n-type Si (100) substrate as well as for the ZnO layer grown on a p-type Si (100) substrate, 
there is a gradual transformation from texture to epitaxial orientation. So, in Fig. 7a and 
Fig. 7c it is clearly seen that the ZnO epitaxial layer starts to form along the [001] axis at the 
surface of SiC samples grown on a n-type Si substrate as well as on a p-type Si substrate. The 
reflexes are still quite diffused, though there are reflexes indicating the presence of the twin 
phase. However, in general, an epitaxial structure has already been formed in this zone. 
Moreover, within the experimental error, this structure is more ordered for a sample grown on 
an n-type substrate. This result coincides with the result of our research of the FWHM of the 
texture profiles. Studies of electron diffraction patterns in the projection onto the axis of the 
[101] zone (Fig. 7b and Fig. 7d) show that the ZnO sample grown on an n-type substrate in 
this direction is only a slightly ordered texture. On the other hand, the structure of the ZnO 
layer grown on the p-type substrate along the [101] direction is more ordered than the 
structure of the ZnO layer on the n-type substrate. Despite the diffusion of reflexes, this 
surface is closer to the epitaxial one than to the textured surface. This result also coincides 
with the result of our research of the FWHM of the texture profiles. 
 

                   
                                     a                                                                    b 

                              
                                     c                                                                    d 

Fig. 7. RHEED patterns from ZnO samples formed on SiC grown on n- and p-type Si (100) 
obtained in two directions; in the projections of the [001] and [101] and axes (a) – n-type 
Si (100) in the [001] direction; (b) – n-type Si (100) in the [011] direction; (c) – p-type 

Si (100) in the [001] direction; (d) – p-type Si (100) in the [101] direction 
 
Figure 8 shows RHEED patterns for reflection from the surface of ZnO samples formed 

on SiC of SiC on n- and p-type Si (111). 
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                                       c                                                                    d 
Fig. 8. RHEED patterns from ZnO samples grown on SiC on n- and p-type Si (111) registered 
along two directions; in the projection of the [001] axis and in the projection of the [101] axis. 

(a) – n-type Si (111) in the [001] direction; (b) – n-type Si (111) in the [011] direction;  
(c) p-type Si (111) in the [001] direction; (d) – p-type Si (111) with p-type conductivity in the 

[101] direction 
 

From the data shown in Fig. 8, it follows that the ZnO layers lying near the surface of 
the ZnO/SiC /Si (111) films are textured both in the direction of the [001] zone axis and in the 
direction of the [101] axis regardless of the type of the substrate conductivity. The appearance 
of a larger number of diffused point reflections in Fig. 8c and Fig. 8d as compared with the 
reflexes in Fig. 8a and Fig. 8b can be attributed, in our opinion, to the experimental error. It is 
important to note the following. The ZnO layers grown on SiC/Si (111) are much less ordered 
than the ZnO layers grown on SiC/Si (100) substrates. Averaging the FWHM profiles along 
the [001] and [101] directions also confirms this conclusion. 

 
4. Conclusion 
Thus, in the present work, it was proved that the surface of SiC films grown by replacing 
Si (100) atoms is covered by an ensemble of ordering centers, i.e. crystal facets. In this case, 
as was previously theoretically shown [6], the facets on the vicinal surface of p-type Si are 
ordered and consist of layers of both cubic and hexagonal phases. This structure of SiC layers 
affects a strong ordering effect on the growth of epitaxial layers of crystals crystallizing in 
hexagonal symmetry. Thus, in the present study, we unambiguously showed that SiC/Si (100) 
hybrid substrates synthesized by the method of topochemical substitution of atoms for p-type 
Si, have ordering effects not only on the AlN and GaN layers growing by the HVPE method 
at high synthesis temperatures, but also on ZnO layers synthesized by the ALD method at low 
synthesis temperatures (about 250°C). Thus, the facet formation on the surface of SiC films 
grown by the method of topochemical substitution of atoms on Si (100) leads to the removal 
of the degeneracy of the surface symmetry and the formation of growth centers of ZnO films 
along certain directions. 

 
Acknowledgements. This work was supported by the Russian Science Foundation (Grant 
No. 14-12-01102). The synthesis of films by the ALD method, electron microscopic and X-ray 
diffraction studies were performed using the equipment of the resource centers of the 
Scientific Park of St. Petersburg State University "Nanotechnology", "X-ray diffraction 

38 S.A. Kukushkin, A.V. Osipov, I.A. Kasatkin, V.Y.Mikhailovskii, A.I. Romanychev



methods of research", and "Innovative technologies of composite nanomaterials". The growth 
of SiC layers and the study of their properties were carried out using a unique scientific setup 
"Physics, Chemistry, and Mechanics of Crystals and Thin Films" (IPMash RAS, 
St.Petersburg). 
 
References 
[1] Kukushkin SA, Osipov AV, Romanychev AI. Epitaxial Growth of Zinc Oxide by the 
Method of Atomic Layer Deposition on SiC/Si Substrates. Phys. Sol. State. 2016;58(7): 1448-
1452. 
[2] Kukushkin SA, Osipov AV. A new method for the synthesis of epitaxial layers of silicon 
carbide on silicon owing to formation of dilatation dipoles. J. Appl. Phys. 2013;113: 024909. 
[3] Kukushkin SA, Osipov AV. Quantum mechanical theory of epitaxial transformation of 
silicon to silicon carbide. J. Phys. D: Appl. Phys. 2017;50: 464006. 
[4] Kukushkin SA, Osipov AV, Feoktistov NA. Synthesis of Epitaxial Silicon Carbide Films 
through the Substitution of Atoms in the Silicon Crystal Lattice: A Review. Phys. Sol. State. 
2014;56(8): 1507-1535. 
[5] Kukushkin SA, Osipov AV. Determining Polytype Composition of Silicon Carbide Films 
by UV Ellipsometry. Techn. Phys. Lett. 2016;42(2): 175-178. 
[6] Kukushkin SA, Osipov AV, Soshnikov IP. Growth of epitaxial SiC layer on Si (100) 
surface of n- and p- type of conductivity by the atoms substitution method. Rev. Adv. Mater. 
Sci. 2017;52: 29-42. 
[7] Bessolov VN, Konenkova EV, Kukushkin SA, Osipov AV, Rodin SN. Semipolar gallium 
nitride on silicon: Technology and properties. Rev. Adv. Mater. Sci. 2014;38: 75-93. 
[8] Bessolov VN, Zubkova AV, Konenkova EV, Konenkov SD, Kukushkin SA, Orlova TA, 
Rodin SN, Rubets VP, Kibalov DS, Smirnov VK. Semipolar GaN(10–11) Epitaxial Layer 
Prepared on Nano-Patterned SiC/Si(100) Template. Phys. Status Solidi B. 2018;256: 1800268. 
[9] Kukushkin SA, Osipov AV. First-Order Phase Transition through an Intermediate State. 
Phys. Sol. State. 2014;56(4): 792-800. 
[10] Tynell T, Karppinen M. Atomic layer deposition of ZnO: A Review. Semicond. Sci. 
Technol. 2014;29(4): 043001.  
[11] Akopyan IK, Davydov VY, Labzovskaya ME, Labzovskaya ME, Lisachenko AA, 
Mogunov YA, Nazarov DV, Novikov BV, Romanychev AI, Serov AY, Smirnov AN, Titov 
VV, Filosofov NG. Photoluminescence Spectra of thin Zno films grown by ALD technology. 
Phys. Sol. State. 2015;57(9):1865-1869. 
[12] Kukushkin SA, Osipov AV. Nucleation kinetics of nano-films. In: Nalwa HS. (ed.) 
Encyclopedia of Nanoscience and Nanotechnology. Vol. 8. American Scientific Publication; 
2004. p.113-136.  
 

Formation of ordered ZnO structures grown by the ALD method on hybrid SiC/Si (100) substrates 39



 

 

THE INFLUENCE OF AN ADHESIVE LAYER ON THE INTERACTION 

BETWEEN A PIEZO-ACTUATOR AND AN ELASTIC 3D-LAYER AND 

ON THE EXCITED WAVE FIELDS 
E.V. Kirillova1, W. Seemann2, M.S. Shevtsova1,2* 

1RheinMain University of Applied Sciences, Wiesbaden, Germany  
2Karlsruhe Institute of Technology, Karlsruhe, Germany 

*e-mail: maria.shevtsova@hs-rm.de 
 
g 

Abstract. Piezoceramic transducers are extensively used in nondestructive testing (NDT), 
structural health monitoring (SHM) and condition monitoring (CM) of various mechanical 
systems including wind turbines, aircraft structures, bridges and pipeline systems. 
Piezoelectric transducers are surface bonded on the host structure and are excited to produce 
structural responses. This article highlights the effect of the adhesive layer between the 
studied structure and the transducer on the contact characteristics and the structural wave 
fields. The research also focuses on the efficiency of the both methods used for calculation of 
the occuring wave fields: finite-element (FE) method and semi-analytical approach based on 
the Green’s matrix representations and the Fourier transform.  
Keywords: anisotropic infinite layer, Green's matrix, piezoelectric actuator, wave excitation, 
finite element model, Fourier transform 
 
t 
1. Introduction 
The condition monitoring (CM) of functional and safety-relevant components is an urgent 
requirement in different industrial sectors [1,2]. Condition monitoring allows one to mitigate 
risk, boost safety, and reduce maintenance costs for dynamically loaded components and 
systems. Compared to traditional non-destructive testing [3], where a more or less regular but 
timely inspection of the component takes place, in the CM the sensors remain permanently on 
or in the structure to be monitored and are polled on a permanent or periodic base. As a result, 
occurring damage can be detected by changes in the sensor signal almost immediately. 
Structural Health Monitoring [4–7] enables condition-based maintenance, increasing safety.  

For integrated structural monitoring the ultrasonic waves in the form of Lamb waves 
represent a promising approach [8–12] since they appear merely in plate and shell structures, 
propagate over long distances and have a high sensitivity to detect damage. In order to use 
Lamb waves for damage detection in terms of active and integrated structural monitoring, 
special systems of sensors and actuators are required for excitation, reading and interpretation 
of the waves [11–18]. The actuators and sensors should be designed as surface transducers 
and are stated at the surface of the structure. Numerous studies assume an ideal contact 
between transducer and studied structure, however the effect of the bonding layer is described 
only in a few works [10,11,19–21]. This idealized assumption is not robust enough for 
structural monitoring since the transducers are always connected to the plate structure via an 
adhesive bonding layer. The adhesive layer transmits the forces between transducer and 
structure by mean shear stress. Due to its elastic properties, the power transmission is not 
ideal and is associated with losses. These losses are summarized in the literature under the 
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term shear lag. Giurgiutiu in [6] proposes a model of mode transfer behaviour, which takes 
into account the influence of the adhesive layer on the shear force. A few studies [16–19,21] 
have been devoted to the effects of adhesive layers between surface-mounted PZTs and host 
structures for very low excitation frequencies up to several kHz, which corresponds to much 
bigger wavelengths compared to the size of the PZT. The shear lag effect [16] becomes more 
dominant with a lower shear modulus and thicker adhesive layer, and shear transfer between 
the PZT and host structure becomes less effective. In [11] effects of the adhesive bond-line 
layer on the Lamb wave generation and reception were simulated and compared with the 
available test data. It has been experimentally demonstrated in this article that the signal 
increases in amplitude as the thickness of the adhesive layer increases from 10 to 40 μm. It is 
explained by the fact that the resonance phenomenon of the PZT with a thicker and softer 
adhesive layer is less restricted, so that more energy could be generated from the PZT 
excitation. The study of the effect of adhesive layer remains a live issue and will be 
investigated. 

The aim of this paper is to assess the need for using an adhesive layer between the host 
structure and piezoelectric element for modelling the wave propagation. With this purpose the 
dependence of the contact stresses and displacements on the characteristics of adhesive layer 
are analysed in the first part of the current study. Then the effect of taking into account this 
layer on the wave propagation in the isotropic and anisotropic layers is examined. These 
simulations are carried out using the FE-package Comsol Multiphysics at different vibration 
frequencies. The second part of the paper is devoted to comparing the results obtained for the 
FE- and the semi-analytical model, based on the Fourier transform, the Green’s matrix 
representation [8,13] and the numerical contour integration. 
 
2. Problem formulation 
An infinite layer of thickness h is considered, which occupies the volume 

( ){ }0;;,, ≤≤−∞<<−∞∞<<∞−= zhyxzyxD . a  The oscillations of the layer are excited by a 
PZT-actuator of thickness hPZT and radius a, mounted on the upper surface of the host 
structure as shown in the Fig. 1. The thickness of the adhesive layer between the structure and 
the piezoelectric tablet is hb. Time dependency is assumed harmonic in the form tie ω− , where 
ω is the vibration frequency.  
 

 
Fig. 1. Scheme of the loaded structure 

 
Lame's equations for the steady-state harmonic vibrations of the layer are written in 

compact form: 
2 0L ρω+ =u u , (1) 

where ρ is the mass density and u is the displacement field. The upper and bottom surfaces of 
the layer are free of stress. The displacements u are caused by harmonic vibrations of a 
piezoelectric patch driven by a harmonically oscillating potential applied to the upper and 
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lower surfaces of the piezoelectric actuator. The fundamental equations of the PZT-actuator 
are represented in strain-charge form:  

*E= ⋅ + ⋅ε s σ d E  (2) 

0 r
σε= ⋅ + ⋅D d σ ε E ,  (3) 

where σ is the stress tensor and ε is the strain tensor, Es is the compliance tensor for constant 
electric field, d is the piezoelectric charge coefficients matrix, E is the electric-field vector, D 
is the electric charge displacement density, and r

σε  is the electric permittivity tensor, constant 
ε0 is the electric permittivity of free space and “*” indicates transpose operation. The tensor ε 
and the vector E are expressed in terms of the displacements u and the electric potential ϕ
respectively  

*)(
2
1 uuε ∇+∇= , (4) 

ϕ−∇=E . (5) 
The first aim of this study is to determine the displacement fields u occurring in 

isotropic and anisotropic infinite layers and to estimate the influence of the adhesive layer 
properties on the resulting contact characteristics calculated for the FE-model. This model is 
considered in detail in the next section.  
 
3. Finite Element Model 
Let us consider two different finite-element models simulating the structures actuated by a 
circular piezoelectric wafer. In the first model an isotropic thin layer of thickness h=2 mm is 
actuated by a piezoelectric thin-film actuator of thickness hPZT=0.2 mm and radius a=10 mm 
made of PZT-5H with the piezoelectric constant d31=−265 mm/kV. Material properties of the 
host structure are taken as follows: mass density ρ =2500 kg/m3, Poisson’s ratio ν=0.33 and 
Young's modulus E=20 GPa.  

According to the second model an anisotropic layer of thickness h=4 mm is made of 
carbon fibre reinforced plastic (CFRP) material T700 is driven by piezoelectric actuator of the 
thickness hPZT=2.1 mm and radius a=25 mm. The piezoelectric constant of the PZT-4 
material used in the actuator is d31=−140 mm/kV. Mechanical properties of the host structure 
are given through the following engineering constants: E1=127.6 GPa, E2=11.3 GPa, 
E3=11.3 GPa, G12=5.97 GPa, G13=5.97 GPa, G23=3.75 GPa, Poisson's ratios ν12= ν13=0.3, 
ν23=0.34 and material density ρ =1578 kg/m3.  

In both FE-models the piezoelectric actuators are bonded to the host structure using an 
adhesive layer with the following properties: mass density ρ =910 kg/m3, Poisson's ratio 
ν23=0.37 and Young's modulus E=1.02 GPa. Thickness of the bonding layer is taken to be 
hb=50 µm.  

In both considered models, an electric potential is applied on the top of the PZT 
actuator, while its bottom surface is grounded. The amplitude of the electric potential is taken 
U=100 V in case of the isotropic host structure, and U=400 V in the second model with 
anisotropic host structure. A perfectly matched layer (PML) simulates a reflectionless 
boundary condition. The outer edge of the PML is fixed. All other boundaries are assumed to 
be free.  

Unknown wave-fields are obtained by the frequency response analysis in a wide 
frequency range. Calculations are performed for both models in case with and without a 
bonding layer. 
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4. Numerical results for the finite element model 
Comparison of the contact characteristics for the models with and without bonding 

layer. Below in Fig. 2, contact shear stresses for the isotropic structure are presented 
depending on the glue thickness. The vibration frequencies are taken equal to f=15 kHz (a) 
and f=145 kHz (b). One can see that a thicker bonding layer with the thickness hb=50 µm 
produces a weakened load transfer between the piezoelectric actuator and the host structure. 
In the model without bonding layer when hb=0 µm the shear stresses are concentrated at the 
edge of the circular contact zone. Fig. 3 demonstrates the amplitudes of the r- components of 
contact displacements distribution, while the z-components are present in Fig. 4 at the 
vibration frequencies f=15 kHz (a) and f=145 kHz (b). It should be noticed that the use of a 
bonding layer leads to a smoother distribution of the displacements near the end of the contact 
zone. It is apparent that in the case of lower frequencies, the contact displacements can be 
approximated by a linear function. With the growth of the frequency, the distribution of 
contact characteristics has a more complicated character and cannot be approximated by well-
known simple functions. 

In Fig. 5, contact shear stresses for the anisotropic layer are present depending on the 
glue thickness and the angle γ . It is obvious that the influences of a bonding layer on the 
contact shear stresses and displacement fields are the same as for the isotropic structure. It 
should be noticed that the contact characteristics calculated for 0γ =  , along the fibers, have 

significantly higher amplitudes than the characteristics obtained at 90γ =  . Contact r-

displacements presented in Fig. 6 have approximately three times higher amplitudes at 0γ =   
(a) than at °= 90γ  (b).  

 

 
a) 

b) 
Fig. 2. Absolute values of contact shear stresses in an isotropic structure depending on the 

thickness of the bonding layer at f=15 kHz (a) and f=145 kHz (b) 
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Fig. 3. Absolute values of r -components of contact displacements in an isotropic structure 
depending on the thickness of the bonding layer at f=15 kHz (a) and f=145 kHz (b) 

 

  
a) b) 

Fig. 4. Absolute values of z-components of contact displacements in an isotropic structure 
depending on the thickness of the bonding layer at f=15 kHz (a) and f=145 kHz (b) 

  
a) b) 
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Fig. 5. Absolute values of contact shear stresses in an anisotropic structure depending on the 

bond thickness and angle γ at f=15 kHz 

 

  
a) b) 

Fig. 6. Absolute values of contact r-displacements in an anisotropic structure depending on 

the thickness of the bonding layer at 0γ =   (a) and 90γ =   (b) at f=15 kHz 

 
Dependency of wave propagation on the adhesive layer characteristics.  

Below the surface r- (a) and z- (b) displacements of the isotropic layer are presented at 
vibration frequency f=15 kHz (Fig.7) and f=145 kHz (Fig. 8). The results obtained for two 
models with and without bonding layer between the host structure and the PZT-actuator are 
compared. One can see that the bonding layer influences mostly the r-components of the 
surface displacements near the vibration source. The difference of displacement amplitudes in 
a far field is insignificant for both r- and z-components.  
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(a) 

(b) 
Fig. 7. Real and imaginary parts of surface r- (a) and z- (b)  displacements for an isotropic 

plate depending on the bond thickness at f=15 kHz 

 
Similar calculations were simulated for an anisotropic CFRP-plate. The comparison was 

performed at different directions: along the fibre direction at °= 0γ  and at °= 90γ  across the 
fibres. The surface r-displacements distribution of the anisotropic plate is present in Fig. 9, 
and Fig. 10 demonstrates z-displacements. In both figures wave fields are calculated at a 
vibration frequency f=10 kHz and the angles °= 0γ  (a) and °= 90γ  (b). It is obvious that 
similar to the isotropic structure case the influence of the bonding layer on the surface 
displacements is negligible in the far field. The amplitudes obtained for the model without 
bonding layer take higher values near the vibration source compared to the model with an 
adhesive layer.  

It is apparent from the Fig. 9 that the amplitudes of surface r-displacements calculated 
along the fibers direction (a) take more than ten times higher values than the displacements in 
perpendicular direction (b). One can see from Fig. 10 that the z-components of displacements 
calculated across the fibers (a) have approximately five times lower values than the 
displacements along the composite fibers. This effect is clearly visible in Fig. 11, where the 
surface plot of the z-displacements at vibration frequency f=10 kHz is shown. In this figure 
the highest amplitudes are present in red color and it is visible that the oscillations propagate 
along the composite fibers from the vibration source placed in the middle of the host 
structure. They slightly attenuate along the host structure and approach zero values in the area 
of a perfectly matched layer. 
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(a) 

(b) 
Fig. 8. Real and imaginary parts of surface r- (a) and z- (b) displacements for an isotropic 

plate depending on the bond thickness at f=145 kHz 

   (a) 

(b) 
Fig. 9. Real and imaginary parts of surface r-displacement depending on the bond thickness at 

°= 0γ  (a) and °= 90γ  (b) at f=10 kHz 
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(a) 

(b) 
Fig. 10. Real and imaginary parts of surface z-displacement depending on the bond thickness 

at °= 0γ  (a) and °= 90γ  (b) at f=10 kHz 

 

a)
b) 

Fig. 11. Surface plots of z-displacement [µm] distribution in a carbon fiber plate at different 
vibration frequencies: f=10 kHz (a) and f=50 kHz (b) 
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5. Simulation of the wave field using Fourier transform 
The second semi-analytical approach for the determination of wave fields appearing in 
isotropic or anisotropic infinite layers is based on an application of the Fourier transform and 
Green’s matrix formulation. The Fourier transform with respect to the coordinates x, y is 
applied to the equation (1) and boundary conditions. The solution of the considered problem 
can be represented in the Fourier domain as follows [8]: 

( ) ( ) ( )212121 ,,,,, αααααα jiji QzKzU = , 3,2,1, =ji , (6) 
where ( )zKij ,, 21 αα  is the Fourier transform of the elements of Green’s matrix K of the 
considered structure, and vector Q  with the components ( )21,ααjQ  is the Fourier transform of 
the load vector ( )yx,q . An algorithm to evaluate Green’s matrix in the frequency-
wavenumber domain is described in detail in [8]. In order to obtain the displacement vector u, 
the inverse Fourier transform to the vector U was applied: 

( ) ( ) ( ) ( )∫ ∫
Γ Γ

+−=
1 2

21
2121212 ,,,

4
1,, αααααα
π

αα ddezzyx yxiQKu , (7) 

or in cylindrical coordinates  

( ) ( ) ( ) ( )

( )
∫ ∫

+Γ

−−=
π

γ

ϕγα γααγαγα
π

ϕ
2

0

cos
2 ,,,

4
1,, ddezzr riQKu ,  (8) 

where cosx r ϕ= , siny r ϕ= , zz = , 2 2r x y= + , 1 cosα α γ= , 2 sinα α γ=  and 2 2
1 2α α α= + . 

Here [ ]πγ 2,0∈  and [ ]πϕ 2,0∈  are assumed to be real, ( )1 2, , γ+Γ Γ Γ  denote the integration 
contours, which partially deviate from the real axis while bypassing the real poles of the 
Green’s functions in accordance with the principle of limiting absorption [22]. According to 
this principle, the integration contour +Γ  bypasses positive real poles of the matrix K from 
below in case without backward waves (see Fig. 12). 
 In this work a computation of the displacements in an anisotropic plate caused by a 
circular PZT-actuator of radius 0r  using a semi-analytical procedure is present. The action of 
a circular source can be represented as follows  

( )0 0 cosxz r rτ τ δ ϕ= − , ( )0 0 sinyz r rτ τ δ ϕ= − , 0zσ =  for z=0.  (9) 
 The application of the double Fourier transform leads to 

( ) ( )1 0 0 1 0, 2 cosQ i r J rα γ π τ α γ= ,          

( ) ( )2 0 0 1 0, 2 sinQ i r J rα γ π τ α γ= , (10) 

( )3 , 0Q α γ = , 

where ( )1 0J r α  is the Bessel function of the first kind. Surface displacements (8) are 
computed using the integral approach based on the Fourier transform after finding the solution 
of the problem in Fourier domain [8]. This requires the computation of the inverse Fourier 
transform, which means the computation of the two-dimensional improper contour integral 
and consecutive evaluation of the integral with respect to the frequency ω.  
 

 
Fig. 12. Integration contour 
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The computation of the double integral (8) over wavenumbers causes such difficulties 
as integral singularity near real poles of Green’s matrix, strong oscillations of the integrand 
and significant time expenses. The following sequence of double integrals can be considered: 

( ) ( ) ( ) ( )

( )
∫ ∫

+Γ

−−=
π

γ

ϕγα γααγαγα
π

ϕ
2

0

cos
2 ,,,

4
1,,

nR

n
ddezzr ri

R QKu ,  (11) 

where ++ Γ→Γ
nR , ∞→n . The sequence (11) converges to the initial 2D-integral, i.e. 0>∀ε , 

z,,ϕω∀ , 0>∀r , :0>∃n  

( ) ( ) 3,2,1,,,,, , =<− jzruzru
nRjj εϕϕ . (12) 

Thus instead of the improper double integral (8) the double integral over the bounded domain 
(11) can be considered, i.e. for a given value ε such R = Rn exists that 

( ) ( )zrzr R ,,,, ϕϕ uu ≈ , (13) 
and (11) is satisfied. An example of a contour +ΓR  in the case when all the real poles except 
the only one irregular pole ( )γ1k  are regular, is present in Fig.13.  

 
Fig. 13. Finite integration contour +Γ

nR   
 

Here ( ) 2/Im γnckd =  is the value of the deviation of the integration contour from the 

real axis into the complex plane, nck  is the complex pole nearest to the real axis, 

( )γm
m

kM max= , mk  are real poles, and the value R is taken so that RM ≤< αRe . For the 

evaluation of the 2D-wavenumber integral (8) as an iterated integral (11), the integration with 
adaptive quadratures [23] is applied in this work. 
 
6. Comparison of surface displacements for FE- and semi-analytical models 
An example of the calculation of displacement fields for the CFRP-panel of the thickness 
h=1 mm and material properties described in Section 3, is illustrated below. The harmonic 
wave propagation is excited by a load (9), distributed in a circle of radius R=2.5 mm at 
vibration frequencies f=10 kHz and f=40 kHz. The real and imaginary amplitudes of  
z-displacements are evaluated in direction °= 0γ  using the semi-analytical and the  
FE-approaches. The results obtained for f=10 kHz are present in Fig. 14, and Fig. 15 
corresponds to the vibration frequency f=40 kHz. It is obvious that both approaches give 
comparable results. The slight difference in the ampitudes is visible near the excitation 
source, whereas the results obtained in a far field agree well for both considered approaches. 
The best results agreement corresponds to the lower vibration frequency (Fig. 14). It should 
be noted that the higher frequency (Fig. 15) needs a sufficient computational cost due to the 
FE-mesh refinement and the consequently significant time costs, since the axial-symmetry 
model cannot be applied for an anistropic plate and the 3D-model is requiered. Thereby the 
required computation time for the FE-model increases with increasing frequency, whereas the 
semi-analytical approach works equally fast for any properties of a host-structure and at any 
vibration frequency.  
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Fig. 14. Surface z-displacement of anisotropic plate at °= 0γ  and f=10 kHz 

 
Fig. 15. Surface z-displacement of anisotropic plate at °= 0γ  and f=40 kHz 

7. Conclusions 
In this paper, an effect of an adhesive layer between an infinite 3D-layer and a piezoelectric 
actuator is analysed. Vibrations of the two host structures made of isotropic material and of 
carbon fibre plate excited by a circular piezoelectric actuator were investigated. A significant 
effect of the bonding layer on the resulting contact shear stresses was shown. A thicker 
adhesive layer produces the dumped load transfer between the PZT-element and the host 
structure. In the case when the bonding layer thickness is equal to zero, shear stresses 
concentrate near the end points of the contact area. It was shown that both r- and z- surface 
displacements are not strongly influenced by the thickness of the adhesive layer especially far 
from the contact zone. At the same time, the angle γ  effects the distribution of the 
displacement fields in case of a composite plate. It is obvious that the r-components of 
displacements along the composite fibres take approximately ten times higher amplitudes than 
the displacements across the fibres, and approximately five times higher values for  
z-displacements. 

Two approaches are used to simulate the excitation of the host structure: finite-element 
method and the semi-analytical approach based on the use of the Fourier transform. The 
resulting displacement fields, caused by a circular surface load, are compared for both 
approaches for anisotropic host structure at different vibration frequencies. Both applied 
methods showed a good agreement especially in a far field. The analysis of the obtained wave 
fields showed that both approaches can be effectively used for isotropic and composite 
structures at lower frequencies. For a growing vibration frequency, the FE-model of 
anisotropic plate needs a significant FE-mesh refinement and leads to considerable calculation 
times. It can be concluded that at higher frequencies the semi-analytical approach is 
preferable especially in case of composite host structures. 
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Abstract. An inverse thermoelasticity problem of identification of inhomogeneous 
prestressed state of an infinitely long hollow cylinder with a coating is formulated. The 
characteristics of cylinder's material are described by piecewise continuous functions. A direct 
thermoelasticity problem is solved on the basis of the shooting method and inversion of 
solutions based on the Durbin method after applying the Laplace transform. The nonlinear 
inverse problem is solved by constructing an iterative process, at each stage of which the 
operator equations of the first kind are solved. The most informative time intervals for gaining 
the additional information are determined. The influence of prestress level, coupling 
parameter and coating thickness on the results of prestress reconstruciton is analyzed. 
Keywords: thermoelasticity, prestress, coating, cylinder, identification, inverse problem 
 
 
1. Introduction 
Protection of structural elements (like turbine blades, combustion chambers, piping systems 
and nozzle guide vanes), operating under conditions of combined thermomechanical loading, 
is usually provided by applying a thermal protective coating on their surfaces [1]. The main 
characteristic of thermal protective coatings is low thermal conductivity coefficient, due to 
which the temperature on the metal substrate surface is reduced down to 100-300°C. The 
production of materials with thermal protective coatings is a complex technological process. 
Due to the multi-stage technological operations, inhomogeneous residual stresses often occur 
in the final product and can lead to coating delamination.  

The first results of investigations of dynamic thermoelasticity problems in the presence 
of homogeneous prestresses were given in [2]. For rigorous description of thermomechanical 
processes in prestressed bodies, it was necessary to involve an apparatus of nonlinear 
thermoelasticity. However, for a wide range of problems for prestressed thermoelastic bodies 
a simplified linearized theory is widely used [3], which based on the A.N. Guz model [4]. 

Since the main structural elements are often not available for direct observation and 
control, there is a need to develop a non-destructive method of identification of the 
prestressed state. Because of the considerable interest in the problem of prestressed state 
identification, the number of publications on this issue is steadily growing [5-11]. However, 
most diagnostic methods are aimed at investigating homogeneous prestressed state. 
Mathematically inhomogeneous prestressed state is manifested in the dependence of the 
differential thermoelasticity operators coefficients on the coordinates. The determination of 
the inhomogeneous prestressed state is only possible by use of the apparatus of coefficient 
inverse problems (CIP) of thermoelasticity [12,13] and requires some additional information. 
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The research in the field of thermoelasticity CIP is mainly limited by slightly inhomogeneous 
materials [14]. 

Two types of mechanics inverse problems statements are widespread in practical 
applications. For the first type the additional information is assumed to be known at internal 
points of a body at some moment of time; for the second type the additional information is 
known only on the part of the boundary on certain time interval. 

If additional information is only known on the body's boundary, the inverse problem is 
essentially nonlinear. As a rule, the solution of CIP is reduced to the solution of the 
corresponding extremal problems by use of gradient methods [13,15]. The use of gradient 
methods for minimization requires significant computation time and has a number of other 
drawbacks. As an alternative to gradient methods, an approach based on constructing an 
iterative process, assuming solving a linearized operator equation of the first kind at each 
iteration, has been used in recent years [16]. It should be noted that the problems of 
reconstructing material characteristics and inhomogeneous prestressed states in elastic and 
thermoelastic bodies were solved in [17-21]. However, an issue of identifying prestresses in 
bodies with coatings remained unexplored in these studies. 

In this paper we present the equations of thermoelasticity for a prestressed cylinder 
based on the approach proposed in [12]. The coated cylinder is modeled as a thermoelastic 
cylinder with thermomechanical characteristics that are described by piecewise continuous 
functions of radial coordinate. After applying the Laplace transform, the direct problem of 
thermoelasticity is solved on the basis of the shooting method and inversion of transformants 
based on the Durbin method. In the inverse problem, on the basis of the algorithm developed 
in [12], we restore the functions with a first-kind discontinuity point on the interface of the 
coating with the cylinder. The analysis of the effect of the prestress level, the coupling 
parameter and the coating thickness on the results of the reconstruction of inhomogeneous 
prestresses is made. The developed approach allows recovering arbitrary functions 
characterizing prestressed states of cylinders. 
    
2. Problem of identification of the inhomogeneous prestressed state of a thermoelastic 
cylinder 
Consider an infinitely long hollow thermoelastic cylinder with an inner surface r a= . On the 
outer surface of the cylinder r b=  there is a coating of a thickness h . The coated cylinder is 
subjected to a prestressed state which is characterized by the components of the prestress 
tensor 0

rrσ  and 0
ϕϕσ , which are related to each other by the equilibrium equation 

0 00

0rrrrd
dr r

ϕϕσ −σσ
+ = . The inner surface of the cylinder is thermally insulated and free of 

mechanical stresses. The uniformly distributed mechanical 0p  and thermal load 0q  act on the 
outer surface of the coated cylinder ( r b h= + ). The cylinder's material is characterized by the 
density sρ , the Lame coefficients sλ  and sµ , the thermal conductivity coefficient sk , the 
specific heat capacity sc , the thermal stress coefficient sγ , and the prestress 0s

rrσ  and 0s
ϕϕσ  (s-

substrate); the coating's material is described by the characteristics cρ , cλ , cµ , ck , cc , cγ , 
0c
rrσ  and 0c

ϕϕσ  and (c-coating). Consider the material characteristics of the cylinder-coating 
system in the form of piecewise continuous functions of the form: 

[ ]
[ ]

( ), при , ;
( )

( ), при ,
s

c

F r r a b
F r

F r r b b h
 ∈=  ∈ +

,                         (1) 
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where ( )F r conditionally denotes any of the material parameters ( )rρ , ( )rλ , ( )rµ , ( )k r , 
( )c r , 0 ( )rr rσ , 0 ( )rϕϕσ . We denote any of the material characteristics of the cylinder by sF , and 

any of the coating ones by cF . 
Similarly, we introduce the notation for physical fields: 

[ ]
[ ]

( , ), при , ;
( , )

( , ), при ,

s

c

Q r t r a b
Q r t

Q r t r b b h
 ∈=  ∈ +

.          (2) 

Here, ( , )Q r t  is any of the functions describing the thermo-elastic process: ( , )ru r t  - 
radial displacement, ( , )r tθ  - temperature increment, ( , )rrT r t , ( , )T r tϕϕ  - components of the 
Piola incremental stress tensor. 
 In accordance with the model proposed by A.N. Guz [4], the equations of coupled 
thermoelasticity for a prestressed cylinder under conditions of plane deformation  
( ( , )r ru u r t= , 0uϕ = , zu const= ) have the following form [12]: 

2

2
rrrr rT TT u

r r t
ϕϕ−∂ ∂

+ = ρ
∂ ∂

,                                 (3) 

0 2

0
1 1( ( ) ) ( ) ( )(1 )( )

2
rr r ru uk r r c r T r

r r r t r t r t
σ ∂ ∂∂ ∂θ ∂θ

= + γ + +
∂ ∂ ∂ λ + µ ∂ ∂ ∂

,           (4) 

γθ−
∂
∂

σ+λ+
∂
∂

µ+λ=
r

u
r

u
r

uT r
rr

rr
rr

0)2( ,           (5) 

γθ−σ+µ+λ+
∂
∂

λ= ϕϕϕϕ r
u

r
u

r
uT rrr 0)2( ,       (6) 

( , ) 0a t
r
∂θ

=
∂

, 0( ) ( , )k b h b h t q
r
∂θ

− + + =
∂

,                (7) 

( , ) 0rrT a t = , 0( , )rrT b h t p+ = ,          (8) 

( ,0) ( ,0) ( ,0) 0r
r

ur u r r
t

∂
θ = = =

∂
.                       (9) 

Similarly, we can write the thermoelasticity initial-boundary problem for the case when 
the coating is set on the inner side of the cylinder. 

At the interface boundary between the coating and the cylinder r b= , by virtue of 
continuity, the following coupling conditions for radial stresses, temperature and heat flow 
must be met: 

( , ) ( , )s c
r ru b t u b t= , ( , ) ( , )s c

rr rrT b t T b t= ,  

( , ) ( , )s cb t b tθ = θ , ( ) ( , ) ( ) ( , )
s c

s ck b b t k b b t
r r

∂θ ∂θ
=

∂ ∂
.                       (10) 

Let us introduce dimensionless parameters and variables into (3)-(10): 

0h b h a= + − , 
0

r az
h
−

= , 0
0

az
h

= , 1
0

hh
h

= , 11H h= − , 
0

2( )s z λ + µ
=

µ
, 

0

( )( ) rz λ
λ =

µ
, 

0

( )( ) k rk z
k

= , 
0

( )( ) c rc z
c

= , 
0

( )( ) rz γ
γ =

γ
, 

0

( )( ) rz ρ
ρ =

ρ
, 0

0

µ
ν =

ρ
, 0

1
ht =
ν

, 
2
0 0

2
0

h ct
k

= , 
2

t
t

t = , 

0

0

( , )W z γ θ
t =

µ
,  

0

( , ) ruU z
h

t = , 
0

( , ) rr
r

TzΩ t =
µ

, 
0

( , )
T

z ϕϕ
ϕΩ t =

µ
, 

0
0

0

( ) rr
r z σ

Ω =
µ

,  
0

0

0

( )z ϕϕ
ϕ

σ
Ω =

µ
, 
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2
0 0

0
0 0

T
c

γ
δ =

µ
, 1

2

t
t

ε = , 0

0

pp∗ =
µ

, 0 0

0 0

qhq
k

∗ γ
=

µ
, 0

0

1 ( )
b h

a

r dr
h

+

µ = µ∫ , 0
0

1 ( )
b h

a

k k r dr
h

+

= ∫ , 

0
0

1 ( )
b h

a

c c r dr
h

+

= ∫ , 0
0

1 ( )
b h

a

r dr
h

+

γ = γ∫ , 0
0

1 ( )
b h

a

r dr
h

+

ρ = ρ∫ , 0
0

1 ( )
b h

a

r dr
h

+

λ = λ∫ . 

After the transformation of (3)-(10) into dimensionless form, taking into account the 
conjugation conditions , the initial-boundary problem,  takes the form: 

2
2

2
0

rr U
z z z

ϕΩ −Ω∂Ω ∂
+ = ε ρ

∂ + ∂t
,              (11) 

0

0

( )r r
Us U W
z z z

∂ λ
Ω = +Ω + − γ

∂ +
,             (12) 

0
0

0
0

( ( ) )r
r

dU Us z z W
z dz z zϕ

Ω∂
Ω = λ + +Ω + + − γ

∂ +
,             (13) 

0 2

0
0 0

1 1( ( ) ) (1 )( )rW W U Uk z z c
z z z z s z z z

Ω∂ ∂ ∂ ∂ ∂
+ = + δγ + +

+ ∂ ∂ ∂t ∂ ∂t + ∂t
,     (14) 

(0, ) 0W
z

∂
t =

∂
, (1) (1, )Wk q

z
∗∂

− t =
∂

,             (15) 

(0, ) 0rΩ t = , (1, )r p∗Ω t = ,           (16) 

( ,0) ( ,0) ( ,0) 0UW z U z z∂
= = =

∂t
,             (17) 

( , ) ( , )S CU H U Ht = t , ( , ) ( , )s c
r rH HΩ t = Ω t ,  

( , ) ( , )s cW H W Ht = t , ( ) ( , ) ( ) ( , )
s c

s c
W Wk H H k H H
z z

∂ ∂
t = t

∂ ∂
.        (18) 

The direct problem of thermoelasticity consists in determining the functions ( , )U z t , 
( , )W z t  from (11)-(18) for known thermomechanical characteristics ( )s z , ( )zλ , ( )k z , ( )c z , 

( )zγ , ( )zρ  and prestresses 0 ( )r zΩ ,  0 ( )zϕΩ . 
For arbitrary laws of variation of thermomechanical characteristics and prestresses, the 

problem (11)-(18), after applying the Laplace transform, can be solved only numerically. 
Proceeding in a similar way to [12], in order to solve the obtained system of differential 
equations in transforms, we use the shooting method modified for the case of piecewise 
continuous functions. To find the actual space of solutions, we used the Durbin method [22]. 
 In the inverse problem, it is required to determine the functions 0 ( )r zΩ , 0 ( )zϕΩ  from 
(11)-(18) with known thermomechanical characteristics ( )s z , ( )zλ , ( )k z , ( )c z , ( )zγ , ( )zρ  
for some additional information. 
 a) Temperature data 

1(1, ) ( )W ft = t , 1 1[ , ]a bt∈ .                                                   (19) 
 b) Displacement data 

2(1, ) ( )U ft = t , 2 2[ , ]a bt∈ ,                             (20) 
measured on the outer surface of the cylinder with the coating 1z =  on time intervals 1 1[ , ]a b  
and 2 2[ , ]a b  that are informative in terms of identifying and close to the reference point. 
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 With the known 0 ( )r zΩ , the prestresses 0 ( )zϕΩ  can be easily found from the equilibrium 

equation
0 00

0

0rrd
dz z z

ϕΩ −ΩΩ
+ =

+
. 

The inverse problem (11)-(20) is a nonlinear problem that can be solved on the basis of 
an iterative process, as in [12]. It should be noted that problems of reconstruction of 
thermomechanical characteristics and prestresses characterized by continuous functions were 
solved on the basis of such approach. In this paper we restore functions that have a point of 
discontinuity of the first kind on the interface between the coating and the cylinder on the 
basis of the algorithm developed in [12]. 

 
3. A scheme for solving the inverse problem 
Consider a procedure for restoring the prestress 0 ( )r zΩ  of a cylinder-coating system. The 
function 0 ( )r zΩ , similarly to [12,19], is represented in the form 0 ( ) ( )r z g zΩ = β , where 

0

[ , ]

0

max rr
r a b h∈ +

σ
β =

µ
 is the prestress level, ( )g z  is the law of inhomogeneity distribution which must 

be restored. 
The iterative process of restoring a piecewise continuous function ( )g z  consists of two 

stages. 
At the first stage, the initial approximation is determined in the form of a piecewise 

constant function based on minimization of the residual functional. In case of the additional 
information (19), the residual functional has the form: 

1

1

1 1( ( ) (1, ))
b

a

J f W d= t − t t∫ ,                                           (21) 

and in case of the additional information (20), it will be represented as 
2

2

2 2( ( ) (1, ))
b

a

J f U d= t − t t∫ .                              (22) 

Using the initial approximation (0) ( )g z , the corresponding displacement (0) ( , )U z t  and 
temperature (0) ( , )W z t  are found from the solution of the direct problem (11)-(18). 

In the second step, the corrections are found from the solution of the Fredholm integral 
equations of the first kind.  

Thus, in the case of thermal loading ( 0p∗ = , 1q∗ = ), to find the correction ( 1)ng −δ , it is 
necessary to solve the following equation: 
1

( 1)
1

0

( , ) ( )ng R z dz G−δ t = t∫ ,     1 1[ , ]a bt∈ .                    (23) 

In the case of mechanical loading ( 1p∗ = , 0q∗ = ), it is necessary to solve the equation: 
1

( 1)
0 2

0

( , ) ( )ng R z dz P−δ δ t = t∫ , 2 2[ , ]a bt∈ .                        (24) 

Here, the kernels and the right-hand sides of equations (23), (24) have the form: 
2 ( 1) ( 1)

( 1)
1 1 1 1 1

1 0 10

1( , ) ( ( , ) ( , )) ( , )
n n

nU UR z z z W z d
z z z

t − −
−∂ ∂

t = t + t t − t t
∂ ∂t + ∂t∫ , 
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( 1)( 1) ( 1)
( 1) ( 1)1

2 1 1 1 1 1
00

( , )( , ) ( ( , )( ( , ) ( , )) ( , ))
nn n

n nU zU UR z z z U z U z d
z z z z

t −− −
− −t∂ ∂

t = t t − t − t − t + t − t t
∂ ∂ +∫

( 1)
1 1 1 1 1

0

( ) ( )( ( ) (1, ))nG q f W d
t

∗ −t = t − t t − t t∫ , ( 1)
1 2 1 1 1

0

( ) ( )( ( ) (1, ))nP p f U d
t

∗ −t = t − t t − t t∫ . 

The equations (23), (24) for the determination of corrections represent the Fredholm 
equations of the first kind with completely continuous operators; for their inversion we used 
the A.N. Tikhonov regularization method [23]. 

After finding the corrections, we obtain the corrected functions 
( ) ( 1) ( 1)( ) ( )n n ng g z g z− −= + δ  that give an approximate solution of the inverse problem (11)-(20) 

when the exit conditions are satisfied. 
The following inequalities serve as the exit conditions: 

1J ≤ η ,                                    (25) 

2J ≤ η .                               (26) 
 

4. Results of computational experiments  
In the present work, the internal radius of the cylinder was assumed to be equal 0.5a =  cm; 
the external one was assumed 1b =  cm, the coating thickness in various computational 
experiments varied within 0.088 0.214h< <  (cm), which in dimensionless form correspond 
to the interval 10.15 0.3h< < . A copper was used as a cylinder material and 2 3Al O  as a 
coating, as it has a low thermal conductivity. 

Following the above scheme, computational restoration experiments were conducted. 
The exit from the iterative process in all the experiments was done according to the conditions 
(25) or (26) for 410−η = . 

As it is well known, the results of solving an inverse problem strongly depend on the 
choice of the most informative time periods for retrieving additional information. The most 
informative are the time intervals close to the reference point, in which the additional 
information changes most strongly. In thermoelastic processes, due to the energy dissipation, 
the temperature and displacements come to a steady state over time. Therefore, measurements 
of the additional information in this mode are not very informative. The time required to reach 
such a mode depends both on the loading method and on the thermomechanical 
characteristics of the coating and cylinder' 

s materials. In the course of analyzing the additional information, the most informative 
time intervals were revealed both for the thermal and in the mechanical methods of loading. It 
was found out that the measurement of temperature is the most informative on the interval 

1 1[ , ] [0,6]a b =  at 4 observation points inside it, and measurement of displacement on the 
interval 2 2[ , ] [0,1.2]a b =  is the most informative at 6 observation points inside it. 

When solving inverse problems, it is important to investigate the sensitivity of the input 
information. Calculations showed that the changes in additional information, i.e. temperature 
and displacement, measured on the outer surface of the cylinder, are greatly influenced only 
by prestresses with 48 10−β ≥ ⋅ . In subsequent calculations it was accepted 310−β = . 

Following the above scheme, we carried out computational experiments to restore the 
function ( )g z . The figures below show the results of reconstruction of the dimensionless 
function; while the solid line depicts the graph of the original function, the dots show the 
restored one. 

Firstly, computational experiments were performed with the thermal method of loading 
( 0p∗ = , 1q∗ = ). The results of the function ( )g z  reconstruction for the 2 3 /Al O Cu  system 
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turned out to be unsatisfactory – the reconstruction error at some points exceeded 20%. That 
was found out to be caused by the small thermomechanical coupling parameter of these 
materials – 0 0.03δ = . At the same time, with a large coupling parameter 0 0.4δ = , which is 
true only to a small number of materials, the reconstruction error did not exceed 7%, and no 
more than 14 iterations were required to fulfill the exit condition (25). 

Figures 1-2 show the result of restoring ( )g z  with the coupling parameter 0 0.4δ = . 

Figure 1 presents the result of reconstruction of 1

1, 0 ;
( )

1.25cos( ), 1
z H

g z
z H z

≤ ≤
=  < ≤

( 0.7H = ) in 

the case when the outer surface of the cylinder is coated. Figure 2 shows the result of 

restoration of 2

1, 0 ;
( )

0.56 , 1z

z z H
g z

e H z−

+ ≤ ≤
=  + < ≤

 ( 0.3H = ) in case when the inner surface of 

the cylinder is coated.  
From Figs. 1,2, it can be seen that the largest reconstruction error (7%) occurred in the 

vicinity of the interface between the coating and the cylinder at H z H− < < +ξ ξ  ( 0.06ξ = ), 
which is caused by the features of the computational scheme.  

Then experiments were carried out to reconstruct the function ( )g z  under the 
mechanical loading method ( 1p∗ = , 0q∗ = ). In this case, the reconstruction error decreased 
significantly and did not exceed 9%. Also, no more than 12 iterations were required to fulfill 
the exit condition (26). 

In Figs 3,4 we present the result of 3( )g z  recovery, which has the form of an increasing 
function 30.15 3z+  for the coating, and a constant equal to 0.15  for the cylinder. The 
influence of the relative thickness 1 0.3h =  (Fig. 3), 1 0.15h =  (Fig. 4) of the coating on the 
results of reconstruction was investigated. From Figs. 3,4 it follows that the reconstruction 
error increases significantly with the decrease of 1h . For 1 0.06h ≤  the reconstruction of ( )g z  
becomes impossible due to a large error. 

 

  
Fig. 1. The result of recovery of 1( )g z ; thermal loading type 
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Fig. 2. The result of reconstruction of 2 ( )g z ; thermal loading type   

 
In Figs. 5,6 we present the results of ( )g z  recovery for the case when the coating is 

deposited on the inner surface of the cylinder. Figure 5 shows the result of the reconstruction 

of the piecewise continuous functions 4

0.5ln(0.1 2 ), 0 0.3;
( )

0.1, 0.3 1
z z

g z
z

− + ≤ ≤
=  < ≤

. In Fig. 6 we 

show the result of the restoration of the piecewise constant function

5

0.2, 0 0.3;
( )

1, 0.3 1
z

g z
z

≤ ≤
=  < ≤

. The maximum reconstruction error is observed in the vicinity of 

the coating-cylinder interface 0.24 0.36z< <  and does not exceed 6%. 
 

 
Fig. 3. The result of restoration of 3( )g z  with a coating thickness equal to 1 0.3h = ; 

mechanical loading type  
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Fig. 4. The result of restoration of 3( )g z  with a coating thickness equal to 1 0.15h = ; 

mechanical loading type 
 

 
 

Fig. 5. The result of restoration of 4 ( )g z ; mechanical loading type 
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Fig. 6. The result of restoration of 5 ( )g z ; mechanical loading type 

 
5. Conclusions 
The method for determining inhomogeneous prestressed state of an infinitely long hollow 
thermoelastic coated cylinder is presented. The solution of the inverse problem is constructed 
on the basis of an iterative process, at each step of which the corrections are determined by 
solving the Fredholm integral equations of the first kind. The computational experiments of 
reconstruction of the inhomogeneous prestressed state of the coated cylinder are carried out. It 
is found out that the maximum reconstruction error occurs in the vicinity of the coating-
cylinder connection. The reconstruction results for the thermal cylinder loading depend on the 
coupling parameter value. With a small coupling parameter, a large error arises in the 
prestressed state reconstruction. For any loading type, the results of reconstruction of the 
prestressed state depend on the coating thickness. With a decrease in the coating thickness, 
the reconstruction error considerably increases. 
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Abstract. An applied theory of cylindrical bending vibrations of a bimorph plate is 
developed, which takes into account the nonlinear distribution of the electric potential in 
piezoelectric layers. Finite-element analysis of this problem showed that such distribution 
arises when solving the problems of finding the resonant frequencies and modes of vibration 
or in the case of forced oscillations during their mechanical excitation, when the electric 
potentials on the electrodes are zero. The quadratic distribution of the electric potential 
adopted in the work showed good consistency of the results with finite-element calculations 
for natural oscillations and steady-state oscillations for a given potential difference when the 
electric potential distribution is close to linear.  
Keywords: plate, cylindrical bending, electro elasticity, nonuniform potential distribution 
 
 
1. Introduction 
It is known that piezoelectric materials are widely used as actuators, sensors and generators in 
the engineering and aerospace industry for the monitoring of structures, monitoring forms, 
active suppression of parasitic vibrations, noise reduction, etc. Such a wide apply is achieved 
due to its good electromechanical properties, flexibility in the design process, ease of 
production and high efficiency transformation, as electric energy into mechanical energy, and 
in the opposite direction. When using piezoelectric materials as actuators, deformations can 
be controlled by changing the magnitude of the applied electrical potential. In sensors, the 
measurement of deformation occurs due to the measurement of the induced potential. In the 
field of energy storage with the help of piezoelectric materials there is a transformation of free 
mechanical energy present in the structures into electrical energy and its subsequent 
transformation into low-power devices suitable for power supply. A detailed review is given 
in [1-3]. 

Typical actuators, sensors and generators, working on a bend, represent a multilayer 
structure consisting of several layers with different mechanical and electrical properties. The 
traditional design, consisting of two piezoelectric layers glued to the substrate or to each  
other – is called a bimorph. More complex multilayer structures are already referred to 
functionally graded materials. 
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Various mathematical models were proposed for modeling layered structures working 
as a sensor, actuator and generator. Thus, in the early works [4, 5] were presented analytical 
solutions three-dimensional equations of the theory of electroelasticity in static cylindrical 
bending and free vibrations. Nevertheless, the derivation and obtaining analytical solutions of 
such equations in the case of arbitrary geometry is a complex problem. Another approach is 
the use of models with induced deformation to simulate the response of the actuator, which 
were used in [6, 7]. But there the electric potential was not considered as a variable describing 
the state. That, in turn, did not allow to obtain related electromechanical responses, but only 
allowed to simulate the response of the actuator. Finite element models have been proposed in 
many papers, for example in [8-12]. Nevertheless, they also have their drawbacks. For 
example, the need for large computational power when using three-dimensional elements in 
problems where the thickness of one layer is much smaller than the other dimensions of the 
structure. 

When modeling piezoelectric structures, the hypothesis of the linear distribution of the 
electric potential over the thickness is widely used. This means that the induced potential is 
considered. This is useful for modeling actuators [13] and piezoelectric generators [14]. 
However, in some materials with polarization in thickness, when an electric field is applied, 
shear strains and stresses may occur [12]. In addition, shear stresses and deformations occur 
in multilayer piezoelectric composites [15]. In this connection, taking into account the 
nonlinear part of the potential is of some interest. 

The paper [16] considered a sandwich model of the third order. The authors have shown 
that such a model gives an additional contribution to the stiffness due to the quadratic 
deformation of the shear and the cubic term of the electric potential. This fact was confirmed 
by higher natural frequencies. A number of papers [17, 18] are devoted to the development of 
a related refined layer-by-layer theory for finite element analysis of multilayer functionally 
graded piezoelectric materials. The authors used both quadratic and cubic electric potential 
and took into account the longitudinal potential distribution. This allowed to take into account 
the shear stresses and strains. Forced and free oscillations with good convergence with 
analytical solutions and commercial FE packages were considered. However, no graphs of the 
longitudinal distribution of potential were presented. In [19], a refined bound global-local 
theory for finite element analysis of thick piezoelectric composites operating on the shear 
mode was presented. The authors used a quadratic potential distribution over the thickness. 
Applied theories of oscillations of multilayer piezoelectric plates, taking into account the 
specific distribution of the electrical potential along the thickness of the structure, were 
developed in [20,21]. In [22] an applied theory of oscillations of piezoelectric transducers 
with inhomogeneous polarization was developed. 

A brief review showed that the use of the nonlinear distribution of the electric potential, 
along with the longitudinal distribution is of some interest in the problems of calculation of 
multilayer actuators, as it allows more accurate modeling of shear stresses and strains arising 
in such structures. Nevertheless, the behavior of the nonlinear electric potential in the vicinity 
of resonances is not sufficiently studied. In this connection, we have developed an applied 
theory of cylindrical bending of bimorph piezoelectric structures, taking into account the 
quadratic distribution of the potential thickness along with its longitudinal change. 

 
2. Formulation of the problem 
In this paper, the plane problem of the steady bending vibrations of a plate having an infinite 
width in the direction 2x  is considered. The plate consists of three layers. The outer two 
layers are two identical layers of piezoactive material polarized in the direction of the axis 3x . 
Between them is a purely elastic layer. We assume that all the functions considered are 
independent of the variable 2x . We choose the origin of coordinates on the middle plane. 
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Fig. 1. The plate under study 

 
Assume that the piezoelectric layers are deposited on the electrodes on both sides 

3 ( / 2 )x H h= ± +  and 3 / 2x H= ±  (bold lines in Fig 1.). The external and internal electrodes 
are interconnected, respectively. The plate oscillations are excited by the distributed harmonic 
load ip  with circular frequency ω . 

The oscillations of the plate are described by the following equations: 
2

, , 0,,ij j i i i iu p Dσ ρω =+ =  (1) 
where ijσ  - components of the stress tensor; ρ  is the density of the material; iu  are the 
components of the displacement vector; iD  are the components of the electric induction 
vector. We assume that the side surface of the plate is stress-free: 11 13 0σ σ= =  for 1x a= ± . 
There are no external loads 13 33 0σ σ= =  on the faces 3 ( / 2 )x H h= ± +  of the plate. The 
external medium is air, so 1 0D =  for 1x a= ± . 

In this case, the constitutive relations for electroelastic medium polarized in the 
direction of the axis 3x  are of the form: 
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where E
ijc  are the elastic moduli measured with a constant electric field, ije  are the strain 

tensor components, ije  is the piezoelectric constant, ϕ  is the electric potential, and S
ij  is the 

permittivity measured at constant deformations. 
For a purely elastic inner layer, the constitutive relations have the following form: 
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Further, to construct an applied theory of oscillations, we adopt the Kirchhoff 
hypotheses. In accordance with them, the distribution of displacements along the thickness 
has the following form 

1 1 3 3 ,1

13 3 1

( , ) ,
( , ) ( ),

u x x x w
u x x w x

= −
=  (4) 

where 1( )w x  is the deflection function of the middle surface of the plate. 
In addition, the hypotheses assumed suggest that the normal stress is equal 33 0σ =  

everywhere in the plate region. Using this condition, we exclude the deformation 33e  from the 
constitutive relations for the electric (2) and elastic (3) media: 
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Expressions for 13 13, ˆσ σ  and 1D  remain unchanged. 
We assume that the electric potential for the upper piezoelectric layer has the following 

distribution: 
2

3 3 3 33
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2 4 2( ) 1 ( ) 1 ( ) 1 .( , ) x V x V x
h h h
x x x x xx

h
x

h
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=
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Here, for the convenience of the description, the relative coordinate 
3 3 ( / 2 / 2)x x H h= − +  is introduced. In the lower layer we assume an analogous distribution 

for 3 3 ( / 2 / 2)x x H h= + + . 
Using the electric potential in the form (7) allows to take into account the electric 

boundary conditions on 3 ( / 2 )x H h= ± +  and 3 / 2x H= ± , as well as the value in the middle 
of the piezoactive layers 3 ( / 2 / 2)x H h= ± + . In the framework of the problem under study, 
let us consider the following case: 
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Here 1( )xΦ  is the unknown distribution function of the potential in the middle of the 
piezoactive layer in the direction of the 1x  axis. 

Next, we use the variational equation for the case of steady oscillations, which 
generalizes the Hamilton principle in the theory of electroelasticity. For the case of plane 
deformation in the absence of surface loads and surface charges, the variational equation has 
the form: 

2
3 1 3 1 3 1 0,

a h a h a h

a h a h a h

ii i idx u dx dd dH x u dxux p xd ρω d d
− − − − − −

− + =∫ ∫ ∫ ∫ ∫ ∫


 (9) 

where i iH U DE= −


 is the electric enthalpy whose variation is equal to ij ij i iDH Ed σ de d−=


. 
Taking into account the accepted hypotheses (4), the enthalpy variation takes the 

following form: 
11 11 1 1 3 3.DH EDEd σ de d d= − −



 (10) 
We assume that the components of the vector of distributed load are {0, }Tp=p . We 

vary (10) and substitute it in (9). After integration over the thickness, we equate the 
coefficients for independent variations of wd  and d Φ . Thus, we obtain a system of 
differential equations 
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Equating the coefficients of independent variations of the nonintegral terms to zero, we 
obtain the boundary conditions: 
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3. Numerical experiment 
Using the obtained model, we investigate a plate made of piezoceramics PZT-4 fixed with 
hinges at points 1x a= ± . The inner layer is made of the same material, but does not have 
piezoactive properties. In view of the foregoing, the basic physical and geometric parameters 
of the model were given in the table. 
 
Table 1. Geometrical parameters and physical properties 
Parameter Value  Dimension 
Linear dimensions 3102H −= × , 3105h −= × , 0.1a = , m 
Density 37.5 10ρ ρ= = ×  kg/m3 
Modules of 
elasticity 

10
1111 13.9 10Eс c= = × , 10

1313 7.43 10Eс c= = × , 
10

3333 11.5 10Eс c= = ×  
GPa 

Piezoelectric 
modules 

15 12.7e = , 31 5.2e = − , 33 15.1e = , C/m2 

Permittivity 10
11 64. 06 1S −= × , 10

33 56. 02 1S −= ×  F/m 
 

We will compare the results of the proposed model with the results of the finite element 
(FE) analysis of a similar problem in the FE package ACELAN [23]. 

At the first stage, we find the first two modes of oscillation, under the condition 
1 3 0V V= = : 

 
Table 2. Resonance frequencies 
Mode of oscillation Applied theory (Hz) FE (Hz) Error (%) 
First  473.8 481.1 1.51 
Second 1895.3 1881.8 0.71 
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Comparison of the results between applied theory and FE modelling showed a small 
spread between the results obtained 

Next, consider the oscillations of the plate at a frequency of 1890 Hz, with the condition 
1 3 0V V= =  and 1p = . 

 

 
Fig. 2. Deflection of the plate obtained on the basis of applied theory (plot in the upper part of 

figure) and FE method 
 
Figure 2 demonstrates a good agreement between applied theory and finite element 

calculation. 
 

 
Fig. 3. Electrical potential distribution though the thickness for the middle of the plate, 

obtained on the basis of the applied theory (plot in the lower part of figure), and for the whole 
plate, obtained by the FE method 

 
The analysis of Fig. 3 demonstrates the nonlinear character of the distribution of the 

electrical potential along the thickness and length of the piezoactive layer, as well as the 
similarity of the results of applied theory and finite element analysis. 

Figure 4 illustrates the distribution of the electrical potential along the length and 
thickness of the upper layer. Near the plate fixing points, local maxima of the electric 
potential values are observed, and in the middle - a minimum. 
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Fig. 4. Electrical potential distribution for the upper piezoactive layer, obtained on the basis 

of applied theory 
 

Next, consider the case when the electric potential is 7.65V = − V on internal electrodes, 
and the potential on external electrodes is 0V = . The oscillations are excited by the action of 
a distributed force with an amplitude of 1000 N and a frequency of 1890 Hz. 

 

 
Fig. 5. Distribution of the electrical potential along the length in the middle of the upper 

piezoactive layer, obtained on the basis of the applied theory (plot in the lower part of figure), 
and for the entire plate, obtained by the FE method 

 
It can be seen from Fig. 5 that the values of distribution the electric potential, obtained 

on the basis of applied theory, are rather close to those obtained on the basis of finite element 
analysis. In addition, the distribution has a nonlinear form. 

Figure 6 shows the distribution of the electrical potential along the length and thickness 
of the upper piezoactive layer. 

Analysis of Fig. 5 and 6 allows us to conclude that in the case when an electric potential 
different from zero is specified on one of the electrodes, the form of the electric potential 
distribution along the thickness is close to linear. However, the distribution of the electrical 
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potential along the length of the piezoceramic layer is nonlinear, with a difference of 22% in 
the middle of the plate. 

 

 
Fig. 6. Distribution of electrical potential for the upper piezoactive layer, obtained on the 

basis of applied theory 
 
4. Conclusions 
An applied theory of oscillations of a bimorph plate is developed, which takes into account 
the nonlinear distribution of the electric potential in piezoelectric layers. Such a distribution 
arises when solving the problems of finding the resonant frequencies and modes of vibration 
or in the case of forced oscillations during their mechanical excitation, when the electric 
potentials on the electrodes are zero. The quadratic distribution of the electric potential 
adopted in the work showed good consistency of the results with finite-element calculations 
for natural oscillations and steady-state oscillations for a given potential difference when the 
electric potential distribution is close to linear 
 
Acknowledgements. The publication was prepared in the framework of the implementation of 
the state assignment of the SSC RAS, project AAAA-A16-116012610052-3 and the projects of 
RFBR 16-58-52013 MNT-a, 18-38-00912 mol_a. 
 
References 
[1] Gaudenzi P. Smart structures: physical behavior, mathematical modeling and 
applications. New York: Wiley; 2009. 
[2] Chopra I. Review of state of art of smart structures and integrated systems. AIAA J. 
2002;40(11): 2145–2187. 
[3] Chebanenko VA, Akopyan VA, Parinov IA. Piezoelectric Generators and Energy 
Harvesters: Modern State of the Art. In: Parinov IA. (ed.) Piezoelectrics and Nanomaterials: 
Fundamentals, Developments and Applications. New York: Nova Science Publishers; 2015. 
p.243-277. 
[4] Ray MCH, Rao KM, Samanta B. Exact solution for static analysis of an intelligent 
structure under cylindrical bending. Comput. Struct. 1993;47(6): 1031–1042. 
[5] Heyliger PR, Brooks SB. Exact free vibration of piezoelectric laminates in cylindrical 
bending. Int. J. Solids Struct. 1995;32: 2945–2960. 
[6] Sung CK, Chen TF, Chen SG. Piezoelectric modal sensor/actuator design for 
monitoring/generating flexural and torsional vibrations of cylindrical shells. J. Sound Vib. 
1996;118: 48–55. 

72 A.N. Soloviev, V.A. Chebanenko, I.A. Parinov, P.A. Oganesyan



[7] Saravanos DA, Heyliger PR. Mechanics and computational models for laminated 
piezoelectric beams, plates, and shells. Appl. Mech. Rev. 1999;52(10): 305–320. 
[8] Allik H, Hughes TJR. Finite element method for piezoelectric vibration. Int. J. Numer. 
Methods Eng. 1970;2: 151–157. 
[9] Benjeddou A. Advances in piezoelectric finite element modeling of adaptive structural 
elements: a survey. Computers & Structures. 2000;76(1-3): 347-363. 
[10] Sheikh AH, Topdar P, Halder S. An appropriate FE model for through thickness 
variation of displacement and potential in thin/moderately thick smart laminates. Compos. 
Struct. 2001;51: 401–409. 
[11] Kogl M, Bucalem ML. Analysis of smart laminates using piezoelectric MITC plate and 
shell elements. Comput. Struct. 2005;83: 1153–1163. 
[12] Benjeddou A, Trindade MA, Ohayon RA. A unified beam finite element model for 
extension and shear piezoelectric actuation mechanisms. J. Intell. Mater. Syst. Struct. 1997;8: 
1012-1025. 
[13] Maurini C, Pouget J, Dell'Isola F. Extension of the Euler–Bernoulli model of 
piezoelectric laminates to include 3D effects via a mixed approach. Computers & structures. 
2006;84(22-23): 1438-1458. 
[14] Soloviev AN, Chebanenko VA, Parinov IA. Mathematical Modelling of Piezoelectric 
Generators on the Base of the Kantorovich Method. In Altenbach H, Carrera E, Kulikov G. 
(eds.) Analysis and Modelling of Advanced Structures and Smart Systems. Heidelberg: 
Springer; 2018. p.227-258.  
[15] Kapuria S, Kumari P, Nath JK. Efficient modeling of smart piezoelectric composite 
laminates: a review. Acta Mechanica. 2010;214(1-2): 31-48. 
[16] Trindade MA, Benjeddou A. Refined sandwich model for the vibration of beams with 
embedded shear piezoelectric actuators and sensors. Computers & Structures. 2008;86(9): 
859-869. 
[17] Beheshti-Aval SB, Lezgy-Nazargah M. Coupled refined layerwise theory for dynamic 
free and forced response of piezoelectric laminated composite and sandwich beams. 
Meccanica. 2013;48(6): 1479-1500. 
[18] Lezgy-Nazargah M, Vidal P, Polit O. An efficient finite element model for static and 
dynamic analyses of functionally graded piezoelectric beams. Composite Structures. 
2013;104: 71-84. 
[19] Beheshti-Aval SB, Shahvaghar-Asl S, Lezgy-Nazargah M, Noori M. A finite element 
model based on coupled refined high-order global-local theory for static analysis of 
electromechanical embedded shear-mode piezoelectric sandwich composite beams with 
various widths. Thin-Walled Structures. 2013;72: 139-163. 
[20] Vatul'yan AO, Rynkova AA. Flexural vibrations of a piezoelectric bimorph with a cut 
internal electrode. Journal of Applied Mechanics and Technical Physics. 2001;42(1): 164-
168.  
[21] Vatul'yan AO, Getman IP, Lapitskaya NB. Flexure of a piezoelectric bimorphic plate. 
Soviet applied mechanics. 1991;27(10): 1016-1019. 
[22] Soloviev AN, Oganesyan PA, Lupeiko TG, Kirillova EV, Chang SH, Yang CD. 
Modeling of non-uniform polarization for multi-layered piezoelectric transducer for energy 
harvesting devices. In: Parinov IA. (ed.) Advanced Materials. Heidelberg: Springer; 2016. 
p.651-658.  
[23] Nasedkin AV, Solov'yev AN. New schemes for the finite-element dynamic analysis of 
piezoelectric devices. Journal of Applied Mathematics and Mechanics. 2002;66(3): 481-490. 

Applied theory of bending vibrations of a piezoelectric bimorph with a quadratic electric potential distribution 73



 

 

MATHEMATICAL 3D MODELS OF IRREVERSIBLE POLARIZATION 

PROCESSES OF A FERROELECTRICS AND FERROELASTICS 

POLYCRYSTAL  
A.S. Skaliukh* 

Southern Federal University, Rostov-on-Don, Russia 

*e-mail: a.s.skaliukh@gmail.com 
 
 
Abstract. A review of three-dimensional mathematical models describing the irreversible 
processes of polarization of polycrystalline ferroelectrics is given. Experimental works and 
most frequently used models for describing hysteresis properties are considered. These 
include well-known phenomenological and micromechanical models. Some of them allow 
describing the nonlinear response under the action of electrical and mechanical loads. For 
each of the models, physical and mathematical features, basic formulas and calculating 
algorithms are presented. The main advantages and disadvantages of each of the presented 
models are noted. Large and small loops of dielectric and deformation hysteresis are shown. 
A conclusion is drawn about the unresolved problems in the field of modeling of 
polycrystalline ferroelectrics – ferroelastics. The list of works on the review topic is given. 
Keywords: mathematical models, ferroelectrics, ferroelastics, hysteresis loops, 
phenomenological models, micromechanical models 

 
 

1. Introduction 
Since the discovery of the phenomenon of ferroelectricity by Valašek in 1921, almost a 
century has passed, but the practical significance of this discovery is so great that it is not 
possible to talk about the completeness of research in this field at the moment. Many 
ferroelectric materials have been discovered, their structures have been studied, ferroelectric 
ceramic technologies have been developed, ferroelectrics-relaxors have been discovered, the 
technologies for creating porous ceramics and composite elements with piezoelectric and 
magnetic properties have been developed, but the questions of mathematical modeling of non-
linear response to electric fields and mechanical stresses remain relevant, and are far from 
their completion. Technologies of microminiaturization of working elements and thin-film 
structures put forward new requirements in the field of mathematical modeling of volumetric 
properties of materials. Indeed, small forces, as well as a small potential difference in such 
elements, can lead to large mechanical stresses and electric fields that can change the structure 
of the material due to partial or complete depolarization of the element. And if in the simplest 
cases it was sufficient to use one-dimensional models that explain the nonlinear hysteresis 
response of uniaxial (longitudinal) effects, now this is clearly not enough. Models are needed 
that describe both the longitudinal and transverse response under all possible influences. 

The main focus of this review is on polycrystalline ferroelectric materials or ceramics, 
which are active materials and which, by virtue of their internal structure, have the ability to 
convert mechanical energy into electrical energy, and vice versa. By affecting the sample with 
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an electric field or mechanical stress, we observe a response both in the form of electric 
displacement and in the form of deformation [1]. 

At small external influences, deformations caused by them and electric displacements 
are small. Such processes are called reversible. Their modeling is reduced to the construction 
of constitutive relations in the form of linear algebraic relations connecting external and 
internal parameters like Hooke's generalized law. In other words, the mathematical model is 
described by linear algebraic operators, in which the elements of tensors of elastic, 
piezoelectric and dielectric constants are found experimentally. The calculation of the 
physical characteristics of the transducers, in which the piezoceramic elements are polarized 
before saturation, is performed within the framework of these linear models. They are 
sufficiently studied and include the equations of motion, the equations of electrostatics, 
geometric relationships and constitutive relationships; to which the initial and boundary 
conditions are added. In the simplest cases, the equations can be solved analytically, for more 
complex problems it is convenient to use numerical methods, for example, the finite element 
method. 

The situation changes dramatically as soon as the external loads reach thresholds, and 
their intensity continues to increase. In this case, irreversible processes start with nonlinear 
response. And besides with increasing loads, we have someone nonlinear equation, while for 
decreasing ones we have other. The constitutive relations become not only non-linear but non-
single valued. In mathematical terms, they are described by operator relations of hysteresis 
type. In addition to intense external loads, other parameters, in particular temperature, also 
affect the irreversibility of the process. For cooling or heat processes, when a temperature 
changes near a threshold value, called the Curie temperature, a solid phase transition occurs 
from a low symmetry phase to a high symmetry phase or vice versa. However, in this review 
we present models of irreversible processes of polarization and depolarization by an electric 
field and mechanical stresses under isothermal processes. Irreversible processes associated 
with relaxation properties, with the influence of temperature, with the influence of the size of 
the ferroelectric granules, the dynamics of processes and other features will not be considered 
here. The main circle of questions will be connected with the analysis of existing 
mathematical models describing the response of the material to external influences of high 
intensity for the isothermal process. In other words, the principles of constructing the 
constitutive relations for irreversible processes of deformation and polarization will be 
considered, their analysis carried out, and some conclusions formulated. 

It is interesting to note that many irreversible processes have a similar response: the 
relationships between external and internal parameters are mathematically described by 
similar relationships. In plastic media, the stresses cause elastic and residual strains; in 
ferromagnetism, the magnetic field leads to induced and remnant magnetization; in 
ferroelectrics, the electric field generates induced and residual polarization, etc. For cyclic 
processes, the response is described by hysteresis relationships, as shown in Fig. 1.  
 

 
Fig. 1. Hysteresis: a - plastically; b - magnetically; c – dielectrically 

  
Therefore, it happens that the mathematical models developed for someone processes 

are often used to describe another processes. The closer the observed phenomena in the 
physical plane, the more accurately the mathematical apparatus works. 
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Modeling of processes of polarization and depolarization, i.e. the construction of 
hysteresis-type operators plays an important role in the use of numerical methods for 
calculating the physical characteristics of the working elements of devices [2]. In particular, in 
the finite element method, such operators are the constitutive relations closing the system of 
equations obtained from the laws of continuum mechanics. An important role in modeling is 
played by experimental data. 
 
2. The main experimental data characterizing the response of the material 
The criterion for the correctness and adequacy of the work of any model is a good 
coincidence of the predicted phenomena with experimental data. A qualitative experiment is a 
very complex study, so most of them reflect only certain properties with simple effects. The 
most significant experiments in static tests are those that reflect the complex response of a 
material due to the action of an electric field and mechanical stresses. Basically, these are the 
works where the properties of ferroelectric ceramics of the perovskite type are investigated: 
for example, BaTiO3, or a ceramics containing lead: PZT, PLZT 8/65/35. Interesting results 
on the response of PLZT 8/65/35 in the complex effect of electric and mechanical fields [3] 
are shown in Fig. 2. 
 

  

  
Fig. 2. Full loops of dielectric and deformation type "butterfly" hysteresis for different values 

of compressive stresses: A - MPa0=σ ; B - MPa6−=σ ; C - MPa30−=σ ;  
D - MPa60−=σ  

 
Large loops of dielectric and deformation hysteresis in uniaxial tests and fixed 

compressive stresses for both lead and lead-free ceramics give similar results [4 – 8] and are 
shown in Figs. 3, 4.  

Conclusion: the loops of the dielectric and deformation hysteresis essentially depend on 
the intensity of the operating fields. Uniaxial mechanical compressive stresses along the 
electric field axis affect the ability of domains to rotate. The more intense the mechanical 
compressive stresses along the field, the less domains the electric field can turn along the line 
of its action. 

As a rule, the mentioned above types of ceramic are the full ferroelectrics-ferroelastics. 
This means that the strain response to mechanical stresses is also non-linear. The distinctive 
ferroelastic properties of such materials [6, 8] can be seen in Figs. 5, 6. 
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Fig. 3. The effect of compressive stresses   Fig. 4. The effect of compressive 
on the loop of dielectric hysteresis   mechanical stresses on the strain 

hysteresis of the butterfly type 
 

  
Fig. 5. Small loop 3333 εσ ↔ .   Fig. 6. Small loop 1133 εσ ↔ . 

 
Conclusion: for purely mechanical effects, the solid-solid phase transition takes place, 

the material from isotropic becomes anisotropic, the elastic moduli of the material (tangents to 
the curves) are changed, and residual deformations appeared that satisfy the condition of 
incompressibility of material. The last statement can be easily verified if we compare the 
values of longitudinal and transverse strains. 

Dynamic tests, as a rule, are carried out for harmonic impacts. For example, the cyclic 
effects of an electric field and mechanical stresses can take place both in phase and in anti- 
phase. The dielectric and deformation loops of such tests [9] are shown in Figs. 7, 8. 

 

 
Fig. 7. Dielectric hysteresis for transverse compressive stresses: a – in phase; b – anti-phase 
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Fig. 8. Strain hysteresis for transverse compressive stresses: a - in phase; b – anti-phase 

 
Conclusion: dielectric and deformation responses at transverse compressive stresses in 

the phase lead to a decrease in the horizontal slope and a decrease in the area of the loop. 
Dielectric and deformation responses at transverse compressive stresses in anti-phase lead to 
an increase in the horizontal slope and increase in the area of the loop. 

Along with large loops, small loops of dielectric and deformation hysteresis are often 
investigated [9]. Such loops of the dielectric and strain hysteresis due to the action of the 
electric field are shown in Figs. 9, 10. Small loops of strain hysteresis due to the action of 
mechanical stresses are shown in Figs. 11, 12. Moreover, Fig. 18 reflects the expansion-
contraction process, and Fig. 19 – pure compression followed by an increase in intensity. 

 

 
Fig. 9. Dielectric response; small cycles; 

electric field load 

 
Fig. 10. Strain response; small cycles; electric 

field load 
 

 
Fig. 11. Dependence of stresses on strains at 

small cycles with change of sign of strain 

 
Fig. 12. Dependence of stresses on strains for 

small cycles without changing the sign of 
strain 

 
Conclusion: according to small hysteresis loops, one can judge the changing elastic, 

dielectric and piezoelectric modules of the material. 
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Summing up, we can say that the main task of mathematical modeling of irreversible 
processes is the construction of hysteresis operators taking into account the changing 
anisotropy of material properties. 
 
3. The simplest one-dimensional models 
The most common one-dimensional models were numerically investigated in [2]. In the same 
place, algorithms are described and the results of calculations in the form of plots of dielectric 
and strain hysteresis loops are presented. Here we briefly mention the basic mathematical 
principles of models. 

The Rayleigh model. This model describes hysteresis by simple parabolic functions. 
The Rayleigh model [10] was one of the first, in which hysteresis dependences for the 
magnetization processes of iron are described. In order to apply it to the polarization 
processes of polycrystalline ferroelectrics, the magnetic field must be replaced by an electric 
field, and the magnetization by polarization. Mathematically, the branches of the dielectric 
hysteresis are described by parabolic relationships, as shown in Fig. 13: 
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where 2
max/Eps=a , sp is the spontaneous polarization, maxE  is the maximum value of the 

electric field. 
 

 
Fig. 13. The Rayleigh model 

 
Obviously, such dependence only approximately describes the hysteresis. 
Evolutionary models. This model describes hysteresis phenomena with the help of 

evolutionary laws leading to hereditary operators. It was developed on the assumption that 
macroscopic electrical properties are described by a system of electric dipoles, the magnitude 
and orientation of which can be changed by external loads, and the material in the 
macroscopic plan is uniform. Dipole dynamics is regulated by an atomic lattice, for which 
typical times of electronic response are less than 10-11 seconds. In [11] it is assumed that the 
dipole moment µ  depends on strain S , absolute temperature θ , electric field E  and the 
number of switching dipoles N  in the form of a functional dependence ),,,(ˆ NES θµµ = . 
And since the process of domain switching has a time scale of the order of 10-8 to 10-5 
seconds, it is considered that the parameter N  obeys the evolutionary law. Mechanical stress 
T  and electrical displacement D  can be represented by time-independent relationships: 

),,,();,,,();,,,( ** NEShNNESDDNESTT θθθ ===  . 
Further assumptions are related to the type of introduced functions. In the case when 

they can be taken as linear, we obtain a hereditary theory of ferroelectricity: 
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The creep functions entering here are not written out due to the cumbersome nature. 
To determine the physical properties of polarized ceramic PZT 65/35, in one-

dimensional case [12], the temperature influence is neglected and, under certain conditions, 
instead of operator relations of the hereditary theory, linear relations are used containing 
additional terms in elastic, piezoelectric and dielectric modules. A connection was established 
between the velocities of elastic waves with elastic modules for polarized and unpolarized 
states, and was added experimentally founded value of the dielectric constant. After that, all 
parameters are determined. Similar studies can be found in [13–17]. 

Models of the theory of plasticity. These models qualitatively describe the polarizing 
effects; they are based on the similarity of the phenomena plasticity and polarization and were 
constructed using rheological models. The analogy of mechanical and electrical quantities is 
stated on the base of similar phenomena description: the generalized coordinate – the electric 
charge; generalized speed – current; coefficient of elastic compliance – capacity; the 
generalized force – the electromotive force. In the transition to continuous media, forces are 
replaced by mechanical stresses, displacements by strains, etc. As a result, one can write the 
following correspondence: E↔σ , P↔ε , where E  is the electric field; P  is the 
polarization or electrical displacement; σ  is the mechanical stress; ε  is the deformation. The 
elastic element of Hooke is associated with a condenser, the element of Saint-Venant dry 
friction is a bipolar zener diode (Fig. 14). 

    
Fig. 14. Condenser and bipolar zener diode       Fig. 15. Connection of elements: a – in series; 

                                                                           b – in parallel 
 

In the theory of plasticity, rheological formulas for elastic and plastic deformations are 
conveniently described by differential inclusions [18]. Therefore, it is natural to extend this 
apparatus to the theory of polarization. Then for the condenser and zener diode it is 
convenient to use the expressions: 

)0,()(;1
00 constrcPrSEP

c
E ee −>∈=  , 

where the indices "e" and "0" indicate the induced and residual components, respectively, and 
)(vS  is a sets function determined by the rule: 
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The generalization of the model is associated with various compounds of the elements, 
for example, in series (Fig. 15 a), or in parallel (Fig. 15 b). In the first case, we obtain a 
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differential inclusion that defines the "play" operator. In the second case, we obtain a 
differential inclusion, which defines the operator "stop" [19,20]. Next, we can determine the 
Prager polarization models by adding capacitors to the chains considered, as shown in Fig. 16. 

 

 
Fig. 16. Polarizing models of Prager: a – capacitor in parallel; b – capacitor in series 

 
Without dwelling on a detailed description of the Prager model, we note only the second 

case, shown in Fig. 16 b, which is described by the rheological formula [2]: 
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Without dwelling on a detailed description of the Prager model, we note only the second 
case, shown in Fig. 16 b, which is described by the rheological formula [2]: 

 

    
Fig. 17. Generalized model of Prager         Fig. 18. Hysteron 
 

Varying the parameters of the model, it is possible to substantially change the shape of 
the hysteresis loop. The main drawback of this model is that with its help it is difficult to 
describe the saturation state. 

The Preisach model. This model uses the rheological model "hysteron" [21,22], which 
describes the switching of a 180° domain with an increasing and decreasing electric field 
exceeding the coercive value. In fact, "hysteron" is a generalization of the sets function to the 
processes of switching a simple 180° domain. The model was proposed in 1935 by 
F. Preisach [23]. In the simulation of polarization, a set of 180° domains is introduced and the 
inhomogeneity of the structure is taken into account, according to which there is a large 
scatter of domains along coercive and internal fields. The switching of each domain is 
described by a rectangular hysteresis loop with its coercive ( cE ) and internal ( iE ) fields 
(Fig. 18). 

 

    
Fig. 19. Diagram 

Preisach of 
depolarized ceramics 

Fig. 20. Diagram 
Preisach at 0>dE  

 

Fig. 21. Diagram 
Preisach at 0<dE  

 

Fig. 22. Relay 
operator 
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The presence of a huge number of domains in ceramics allows us to talk about their 
probability distribution, with a probability density function ),( yxµ  defined on the plane 
{ }∞>∞≤ yx ,|| : 

∫∫
≥

=
0

1),(
x

dxdyyxµ ,  ),( ci EyEx == . 

For each state in the half-plane there is a boundary separating the domains of two 
opposite directions. For an unpolarized state, it is the abscissa (Fig. 19). When an electric 
field of one or another sign is applied these boundary moves due to the involvement of new 
hysterons in the switching process (Fig. 20). If the electric field changes the direction of 
growth, then the direction of movement of the boundary also changes (Fig. 21). 

The distribution function in the locality of coercive fields has a pronounced peak, which 
allows us to approximate it using known distributions, with subsequent determination of the 
parameters entering into it. There are also distribution functions in the form of polynomials in 
intense and coercive fields [24 – 27]. 

For a mathematical representation, we introduce the concept of an elementary dipole 
hysteresis operator (Fig. 22), or the relay operator [20] }1,1{}1,1{],[: 0 +−→+−×ToCβaγ , 
which is a rate independent one. The parameters a  and β  for the relay operator and the 
parameters x  and y  for the hysteron are related by linear relations: xyxy +=−= βa ; , 
so βaγγ ˆ, =+− yxxy . The irreversible polarization is determined by the integral 

∫∫∫
≥

=
0

* ))(ˆ(),()(
x

s dxdytEyxptP βaγµ , 

where *
sp  is the maximum polarization value achievable in the process of ceramic 

polarization by a homogeneous electric field. It is noteworthy that if we choose a uniform 
distribution function 
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where ∆S is the region on the half-plane of the variables x  and y , indicated in Fig. 19 by a 
triangle with hysterons, then by simple calculations of the integrals we easily find hysteresis 
dependences of the Rayleigh method. 

The various shapes of the dielectric hysteresis loops, calculated using the Preisach 
model, can be found in [2]. The shape and slope of the loops depend strongly on the Gaussian 
distribution parameters. So for the case 
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where 2
21

6
max 102;/102 ⋅==⋅= σσmVE  (the dimensions of 21 ,σσ  coincide with the 

dimensions of yx, ), one can investigate the influence of the parameter 1a  (dimensionality  
x ). Assuming successively 6

1
6

1
6

1
6

11 107,105,102,101,0 ⋅=⋅=⋅=⋅== aaaaa , we obtain 
the loops shown in Fig. 23. 

The Preisach model has become widespread not only in the description of magnetic and 
ferroelectric hysteresis, but it is intensively used in calculating the damping coefficients of 
many dynamical systems [28–52], including taking into account the dipole switching 
dynamics [53–60]. 
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Fig. 23. Preisach model: the effect of increasing the parameter 1a  on the shape of the 

hysteresis loop 
 

4. Three-dimensional models of polarization  
Some three-dimensional models are a simple generalization of one-dimensional models to the 
3D-case. These include evolutionary models, plasticity models and the Preysach model. But 
there are also those that differ fundamentally from those presented earlier. Some of them were 
described in [2], the other part will be presented below. 

Evolutionary model. This model [61] describes hysteresis phenomena with the help of 
evolutionary laws leading to hereditary operators. In contrast to one-dimensional models, here 
the dipole moment is a vector quantity and is divided into instantaneous and transient parts: 

tμμμ i += . The instant part depends functionally on strain, absolute temperature and electric 
field ),,( ESμμ ii θ= , and the transition part is related to these parameters and to the vector 
N  characterizing the number of domains by the evolutionary law. The vector parameter N  
also satisfies the evolutionary law: 

),,,(),,,,( NESfNNESfμ Nμt i
θθ == 

 . 
The constitutive relations for the stress tensor and the electric displacement vector are 

written in the form of functional relationships: 
),,,();,,,( NESDDNESTT ** θθ == . 

The totality of these equations represents a general evolutionary model. The subsequent 
simplifications are related to the fact that only the isothermal process is considered, instead of 
the vector N , only its projection to the axis of the electric field direction is considered, the 
evolutionary law for the transition part of the dipole moment is divided into two parts 
separately for strain and the electric field. Then the constitutive relations can be written in the 
form of a system of linear equations for the components of the corresponding tensors and 
vectors. In this case elastic, piezoelectric and dielectric constants for polarized ceramics get 
additional terms, but to avoid cumbersome expressions, they are not given here. 

Another approach, based on the analogy between elastic and viscoelastic materials, was 
proposed in [62]. It is an extension of the Tiersten nonlinear response model [63] to the case 
of time dependence, for which the constitutive relations are written in the form of 
viscoelasticity operators. 

Models of the theory of plasticity. Because of the similarity of the processes of 
polarization and plasticity, plasticity models are often used in describing irreversible 
processes of polarization and deformation, although they are phenomenological and are not 
related to the microstructure of the material. The polarization vector and the strain tensor 
consist of an induced (elastic) and a residual (plastic) part 0e PPP += , 0e εεε += . The 
induced components are related to mechanical stresses and electric field by linear relations, 
generalized to the three-dimensional case: 

EPεκσPεdPEPεdσPεSε 0000e00
T

00e ⋅+=⋅−= ),(:),(;),(:),( . 
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The physical characteristics κdS ,,  depend on the residual parameters. To determine the 
residual parts, a generalization is carried out from one-dimensional theory to three-
dimensional by means of sets functions in the following way. For one hysteron in the one-
dimensional case, the boundary },{ cc EEEE +=−=  defines an interval within which 

),( cc EEE +−∈  there is no switching, and only after its attainment it is possible occurring the 
switching. In the three-dimensional case, the electric field is a vector quantity 

},,{ 321 EEE=E . The boundary of the segment is turning into the sphere 
022

3
2
2

2
1 =−++≡ cEEEEf , 

at achieving which a switch can occur. This description is well suited for single crystals when 
the field varies along one of the crystallographic axes. However, for polycrystalline 
ferroelectrics, with increase of the electric field, more and more domains are included in the 
switching process. To describe this phenomenon, a theory of plasticity with isotropic 
hardening is used. The surface of polarization changes its dimensions due to the introduction 
of a function of some parameter, remaining convex. If the increment of the field leads to the 
movement of the depicting point inside the surface or along a tangent to it, then there is no 
switching. But if the increment of the field leads to the motion of the depicting point along the 
normal to the surface, then the switching will occur and, as a consequence, the residual 
polarization changes. In the one-dimensional theory, a differential inclusion connecting the 
electric field and the rate of residual polarization was used to determine the rate of residual 
polarization. In the three-dimensional case, instead, an associated law is formulated, 
according to which the increment of the residual polarization is directed along the normal to 

the surface )(2 321 kji
E

P0 EEEdfdd ++=
∂
∂

= λλ . From here EdPd 2/0=λ , where 

|||,|0 EP0 == EddP . The increment 00 dPP =∆  can be determined from a relationship 
)(0 EgP =  that is easily obtained from experimental data. Really, if },0,0{ E=E , and the 

hysteresis function )(EP ϕ=  is gotten, then from 0PPP e += , and EPe κ= , we easily obtain 
EEEgP κϕ −≡= )()(0 . For quasi-static processes, a sequence of values of the electric field 

is chosen )(:}{ 0 mm
M
mm tEEE == , whence )()( 1,0 −−= mmm EgEgdP . The presented scheme was 

realized in [64] in a slightly different interpretation of the unknown and determining 
parameters in [65]. 

In order to take into account the anisotropic hardening associated with changes in the 
physical characteristics of the material, plasticity models with both isotropic and kinematic 
hardening are used [66, 67]. The surface of polarization is modified 

0)()()( max0
2 =−−⋅−≡ PEf c

BB EEEE  , 
where 0

B PE a=  is the back field, )( 0PEc  is the hardening field. The parameter a  is a 
material characteristic which will be determined in the future, and the function )( 0PEc  is 
determined by experimentally. The increment of the residual polarization is determined by the 

associated law: 
E

P0 ∂
∂

=
fdd λ , but the coefficient entering here is found by differentiating the 

equation of the polarization surface, and can be represented as 
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The first term in the denominator is responsible for the kinematic hardening, and the 
second term is for isotropic hardening. 
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In order to take into account the anisotropic hardening associated with changes in the 
physical characteristics of the material, both mechanical stresses, strains and polarization 
surface are constructed taking into account not only electrical but also mechanical parameters. 
The expressions for such a surface include the modified values of the electric field and 
mechanical stresses, and the surface itself is displaced in space [2, 68]: 
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The constants µηγ ,,  entering here must ensure the convexity of the loading function. 
The parameters βa ,  are the functions of the intensity of the plastic deformation tensor and 
the residual polarization vector. Some authors use empirical formulas for their description, 
choosing parameters to satisfy the experimental data [68 – 73]. The increment of the residual 

parameters is determined by means of an associated law: 
σ

ε
E

P 00 ˆ
,ˆ ∂

∂
=

∂
∂

=
fddfdd λλ  with 

the same coefficient. This coefficient is determined after differentiating the equation of the 
polarization surface, but because of the bulky of the formulas, it is not given here. If we take 
in the previous expression 0,0, == µγ , we obtain an expression for the loading 
function [70]. An example of loops of dielectric and deformation type "butterfly" hysteresis 
calculated from the described model from [70] for a certain set of parameters is given in 
Fig. 24. 

The authors of [74] proposed to consider the related problems of polarization and 
deformation by introducing unconnected two loading functions for the electrical and 
mechanical parts with the subsequent determination of the two coefficients entering into the 
associated laws. It was noted in [75 – 80] that, in contrast to plasticity phenomena, where 
dislocations move for a long time, it is necessary to take into account the saturation state i.e. 
the state when all domains were switched and the switching process stopped. Therefore, it 
was suggested to consider four functions, two of which are loading surfaces, and the other 
two are criteria for the saturation state: 

||).||32(||||32),(

),(ˆ||||23),,(

),,(ˆ||||),(

,||||)(

P
0

f
0

f
00

0
f
0

f
00

000

00

εεεP

PE,εσεPE,σ

PE,σPPE,σ

PEPE,

devdevdevh

devcdevf

Ph

Ecf

sat
f

c
ff

sat
P

c
PP

−−=

−−≡

−=

−−≡

ε

σ
 

 

 
Fig. 24. a – ED ↔  hysteresis loop; b – E↔ε  butterfly loop 

 
It is assumed that 0εdev  is the deviator of residual strain tensor, and the residual strain 

consists of two parts: P
0

f
00 εεε += . The first term corresponds to the strain due to the action of 
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the electric field, and the second term is the strain from the action of mechanical stresses. 
Associated laws lead to the appearance of four constants, which are found from the equations 

0,0,0,0 ==== ffPP dhdfdhdf , but because of the cumbersomeness here are not given. 
An example of hysteresis curves of the dielectric and deformation type "butterfly" 

hysteresis according to [77] can be seen in Fig. 25. 
 

 
Fig. 25. a – ED ↔  hysteresis loop; b – E↔ε  butterfly loop 

 
Note that for the generally accepted plasticity models, empirically selected functions 
)( 0PEc  and others are provided in the calculation of the output of the hysteresis loop to the 

saturation state. The use of four functions to describe polarization processes lead to the fact 
that with increasing loads some conditions are replaced by others, and as a consequence, the 
smoothness of the loops is violated, sharply pronounced angles can appear on the hysteresis 
curves.  

The Preisach model. Generalized Vector Preisach models have developed significantly 
for magnetization processes, while for polarization processes they are almost not used. The 
foundations of a simple generalization of the scalar model to the three-dimensional case are 
laid down in the works of I.D. Mayergoyz [82 – 85], and the main mathematical aspects are 
presented in [86]. The vector hysteresis model of Preisach is designed as a superposition of 
scalar models that are continuously distributed along all possible directions, and can be 
mathematically represented as: 

ϕθθβaγϕθβaν
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θef , 

where )(tf  is the vector output value; ϕθe  is the unit vector along the direction defined by the 
spherical coordinates ϕθ , ; )(, tu ϕθ  is the projection of the input vector on the direction ϕθe ; 

βaγ̂  is the hysteresis operator described in Section 3. For magnetic (ferroelectric) 
applications, we have )(tu  as the strength of the magnetic (electric) field; )(tf  is the residual 
magnetization (polarization) vector. The main idea of the method is that the total 
magnetization over all planes passing through the vectors of the magnetic field and the chosen 
direction is counted, and in each switching plane only 180° domains are approximated. It 
should be noted that for ferroelectric phenomena this model cannot be perceived by a simple 
analogy between electric and magnetic phenomena, because in ferroelectrics the position of 
domains is regulated by crystallographic axes. And if the rotation of the magnetization vector 
is possible for any position of the magnetic field, then for ferroelectrics there is no such 
possibility. 

Models of plastic deformation of crystals (micromechanical models). The 
description of the model and the results of calculations can be found in [87–98]. Assuming 
that in the ferroelectric crystal the strain tensor and the polarization vector can be decomposed 
as a sum of linear (reversible) ee Pε ,  and residual (analogous to plastic) 00 P,ε components: 
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0e0e PPPεεε +=+= , , and, taking into account that 0e PPED ++≡ 0ε , one can write down 
the determining equations of the linear piezoelectric response in the form: 
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0
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PEκσdD
εEdσSε

+⋅+=

+⋅+=
 

Here σE κdSEσ ,,,,  are the stress tensor, the electric field strength vector, the elastic 
modulus tensor of the crystal, the tensor of the piezoelectric modules of the crystal, and the 
dielectric constants tensor of the crystal, respectively. In a tetragonal single crystal, six 
spontaneous polarization orientations are realized (along the positive and negative directions 
of the three crystallographic axes) therefore in the absence of external loads, the residual 
components are zero. When external loads are applied ( Eσ, ), different domain switches are 
possible, with the possible implementation of 3D switching systems. 

The residual deformation and polarization can be written as the sum of the contributions 
of individual domains: 
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where Ic  is the concentration (volume fraction) of the I domain in a single crystal that 

satisfies the constraints: 1,10
6
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The change in the concentration of the single I - domain of a single crystal is expressed 
in terms of the rate of switching from a state with an orientation I  to a state with orientation 
J : 

∑
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=
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aa fAc I
I

 , 

where 1=aIA , if I - domain is the recipient a  of the switching system ( IJ →:a ); 
1−=aIA , if I - domain is a donor a  switching system ( JI →:a ); 0=aIA  in other cases. 

The rates of residual strains and polarization can be represented as 
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where )(
2
1

aaaaa snnsμ +=  is the Schmid orientation tensor; as  is a unit vector in the 

direction of the polarization change; an  is a unit vector associated with the axes of the cell; 

aaγ P,  are material constants. 

To determine the kinematic variables af  that play a fundamental role in describing the 
switching processes, the conditions of thermodynamic constraints are introduced a priori. 
Using the expression for the dissipation power 
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and taking into account all previous relationships, the driving force is calculated aG : 
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After this, the evolution equations for finding the kinematic variables af  are taken in 
the form: 
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but in such a way the condition of non-negativity of dissipation is satisfied 0≥δ . Here 
0,0,0,0,0 0 >>>>> CmnBGc

aa  are material constants that determine the shape of the 
hysteresis curves; )(adonor

Ic  is the concentration of the I - domain (the donor a  switching 
system). 

To describe the scleronomic behavior, one should choose 1>>n , as usual, when 
analyzing the plasticity of crystals. The introduction of the last factor in the evolution 
equation allows us to describe the saturation effect and to satisfy the inequalities imposed on 
the volume fraction of domains. Assuming the uniformity of the mechanical stresses and the 
electric field at any time )(),( tt Eσ , it is possible to determine the driving forces aG  for any 
switching system, and then directly the kinematic variables af . This model includes 7 
parameters 0,,,,,, CmnBGP c

aa
aaγ , which must be chosen from the condition of 

coincidence of calculated and experimental data. 
In [99] generalizations were obtained, in the case when effects of the influence of grain 

boundaries of a polycrystalline material are taken into account. 
For the transition from single crystals to polycrystals, the considered plasticity model of 

crystals must be supplemented by elements that take into account the mutual influence of the 
single crystals on each other. To this end, a finite-element (FE) approach was realized in 
[100] for a representative volume of a polycrystalline material. The set of single crystals for 
which the previously considered model is valid was described by a system of finite elements. 
Thus, the interaction of single crystals in the process of loading was accomplished by the 
interaction of one finite element with another, which is the base of the FE method. Such an 
approach does not take into account the influence of the grain boundaries, but allows us to 
operate with a huge number of domains taking account of their mutual influence on each 
other during switching process. This made it possible to describe in detail both the mutual 
influence of the crystallites on each other and take into account the micro-stresses under 
inhomogeneous and cyclic loading, and to find the reduced modules of polarized ceramics. 

To evaluate the results of the described model, large dielectric hysteresis loops are 
given in Fig. 26 and Fig. 27, respectively, from [87] and [100]. 
 

   
Fig. 26. Dielectric hysteresis loop of   Fig. 27. Dielectric hysteresis loop of 

single crystal                 polycrystal 
 

Although a somewhat simplified model is presented in [87], it all the same belongs to 
this class of models, since it operates with the concentration of domains in the crystal. 
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Comparing these figures, one can draw an important conclusion: in Fig. 26 the loops have 
almost vertical walls, which are always observed in the polarization of ferroelectric crystals; 
in Fig. 27 the lateral walls of the loops have a pronounced slope and a smooth transition to the 
saturation curves, which is inherent in polycrystalline materials. 

Model of orientational switching. In this model, a representative volume is 
considered, which includes a set of domains oriented in space in an arbitrary manner [101]. 
Not only 180°, but also 90° switching are considered, and the residual polarization vector and 
the residual strain tensor are determined by simple averaging: 
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The orientation of each domain is characterized by crystallographic axes cba ,,  
(Fig. 28). Let the vector of tenseness of the applied electric field is E . We denote the plane, 
passing through the origin (the point of reduction) perpendicularity to the axis c  of the 
domain, as B , and the plane, passing through the vectors c  and E , as A . 
 

 
Fig. 28. Determination of angles in the model of orientational switching 

 
The line of intersection of these planes will be a straight line OK . Let us denote kγ  is 

the smallest of the angles between E  and the line of intersection of the planes. From the four 
possible directions of the vector a  we choose the one at which it makes the angle closest to 
the field. We introduce the following angles: cγ  is the angle between the direction of the field 
and c -axis; aγ  is the angle between the vector a  and the field E ; ω  is the angle between  
a -axis and the line of intersection OK . It is obvious that the introduced angles are within 

2/;4/0;0 pγωpωpγ ≤≤≤≤≤≤ ac  
Let cacc EE ,  are the coercive fields of 180° and 90° switching, respectively. The main 

conditions are switching (rotations) of domains, which are written in the form of a system of 
inequalities of 180° rotations: 
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For 90° rotations, we have 1
coscos

≥−
cc

c

ca

a

E
E

E
E γγ

, if the domain axis c  is in the upper 

part of the sphere and 0
coscos

;cos ≥−≥
cc

c

ca

a
caa E

E
E

E
EE

γγ
γ , if the domain axis c  is in the 

lower part of the sphere. 

Mathematical 3D models of irreversible polarization processes of a ferroelectrics and ferroelastics polycrystal 89



Dielectric hysteresis loops are constructed for quasi-static processes, i.e. for a sequence 
of equilibrium states }{ iE . For this purpose, the process of loading by an electric field 

)(tEE =  is replaced by a sequence of its values )(:}{ iii tEEEE =∈ . For each state 

iEE = , the domain switching conditions are checked, after which the residual polarization 
and the residual deformation are calculated. Then we have determined the arrangement of the 
spontaneous polarization vectors for a given vector E , we find the resultant polarization and 
strain. The dielectric hysteresis loop calculated from this model [2] can be seen in Fig. 29. 
Taking into account some point as a bringing point, we can assign to each vector of 
spontaneous polarization a unit vector. The distributions of the spontaneous polarization 
vectors before and after polarization are shown in Fig. 30. 
 

   
      Fig. 29. Hysteresis loop by model of        Fig. 30. Distribution of axes before 
        orientational switching            and after polarization 

 
For the calculations, the following values of the parameters included in the model were 

adopted: mVEmVEmVEN cacc /106;/103;/102;1273248 6
max

66 ⋅=⋅=⋅== , where N  
is the number of spontaneous polarization vectors, cacc EE ,  are the coercive fields of 180° 
and 90° switching, maxE  is the maximum value of the electric field. It should be noted that this 
model allows us to determine the magnitude of the cone angle a  in which the directions of 
the spontaneous polarization vectors are distributed after the removal of the electric field. 
With the specifying above numerical values of the parameters, we obtained: 

sss pPpPpP 81.0;1079.0;1018.0;129 03
5

02
4

01
0 =⋅−=⋅−== −−a . 

At physical terms, this model closely adjoins the physics of the phenomenon of 
polarization of polycrystalline ferroelectrics, but since it does not take into account the mutual 
influence of domains on each other, it has a "rectangular" loop like at single crystal. 

Model of energy switching. This model also considers the representative volume, 
which includes a set of domains oriented in space in an arbitrary manner [2] and similar to the 
previous averaging method, the residual polarization vector is determined. The main 
difference infers in the description of the domain orientation and in the formulation of the 
domain switching criterion. For ferroelectrics of the perovskite type, the axes of the local 
system cb,a,  are coaxial with the axes of the crystallographic system, as shown in Fig. 31 
and with respect to a fixed system 321 xxOx  are determined by means of three angles ωψϕ ,, . 
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Fig. 31. Assignment the angles of the local  Fig. 32. Possible positions of spontaneous 

coordinate system  vector. Polarization and 
deformation of a unit cell 

 
Electric fields and mechanical stresses of high intensity cause a process of domain 

switching that are compatible with the crystallographic axes of the ferroelectrics, as shown in 
Fig. 32. With increasing external loads, the energy of each domain varies, but cannot exceed 
threshold values; switching occurs. If the domain is switched, then only to a position where its 
energy is minimal, and the switching moment occurs when the difference between the 
energies of the current state and the state with minimum energy exceeds the threshold value 
[1, 102, 103]. These conditions form the base of the criterion of energy switching: 

cU≥+−⋅+⋅− σεσεEpEp min
SS

min
SS :: . 

Here E  is the electric field vector; σ  is the tensor of mechanical stresses; cU  is the 
threshold value of energy. 

Dielectric hysteresis loops are also constructed for quasistatic processes. Calculations 
showed that the form of the loop of dielectric hysteresis exactly coincides with the previous 
case; therefore, it is not given here. This is to be expected, since only domain switching 
conditions have changed. 

Nevertheless, the energy model of switching has got its application after the appropriate 
generalization, which consists in taking into account the mutual influence of domains on each 
other. In [104, 105] it was done by applying the finite element method. The representative 
volume was divided into a lot of sub regions, taken for domains, and coinciding with finite 
elements. In each domain, the direction of the crystallographic axes was chosen by the 
random number sensor, and the direction of spontaneous polarization was set (for 
ferroelastics, the location of the spontaneous strain tensor was chosen). In a quasistatic 
process, the energy conditions are checked for each state in each finite element. If they are 
fulfilled, the domain is switched. After checking all the elements, the transition to the next 
state is made. The iterative process continues to the last state, which corresponds to the end of 
the load-unload process. The influence of domains on each other is realized by the mutual 
influence of finite elements on each other by the mechanical and electric fields. In [104,105] 
the energy criterion is presented somewhat in a different form, but the mathematical meaning 
of this has not changed. The results of calculations by the model [105] using the FE method 
can be seen in Fig. 33, where presented the large dielectric and strain loops of hysteresis. 
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Fig. 33. FE model with an energy switching criterion 

 
The Giles-Atherton model. The model is based on the so-called "limit" (or 

anhysteretic) curve, derived analytically on the base of Weiss theory and Boltzmann statistics 
[106 – 113]. If there were no mechanisms for locking (or pinning) the domain walls in the 
ferroelectric, then after the removal of the electric field the polarization would be zero. This 
situation is observed in polar liquids, but in polycrystalline ferroelectrics there is a very 
different mechanism for switching domains. Nevertheless, the basic idea of modeling the 
polarization process is borrowed from there. 

From the mathematical viewpoint, the limiting dependence can be explained and 
obtained by the methods of mechanics of a multilevel continuum. Let a transition be made 
from the unpolarized state at zero electric field to the current state with 0≠E . At the first 
stage, the micro-level is considered, for which it is supposed that the rotation of domains 
obeys statistical laws, therefore for a given electric field it is possible to find the distribution 
of all domains of representative volume. Then averaging is performed (the transition to the 
macro-level is carried out) and for a representative volume the polarization is obtained. Let 
assign to each vector of the electric field strength the resulting polarization vector. Since the 
correspondence is constructed for each transition from the unpolarized state to the current 
state, we obtain a single-valued dependence, which determines the "limiting" (maximum 
possible) polarization for a given electric field vector. The implementation of this approach 
was carried out by Tamm I.E. [106], and briefly it is as follows. Let the unit volume of the 
dielectric contains N  domains with a constant density of the electric moment sp . Let for 
each vector of spontaneous polarization one established in compliance the collinear unit 
vector with beginning in some adducing point in space. The resulting polarization vector is 
found by determining the area of the unit sphere onto which the ends of the unit vectors exit. 
In an unpolarized state, all unit vectors are distributed uniformly over the entire surface, so 
that the resultant polarization is zero. 

At the micro-level according to Weiss theory, it is considered that the field of forces 
acting on the dielectric domain is reduced to the sum of the electric field E  and some 
"molecular field" proportional to the polarization of the representative volume: 

0PEE a+=ef , where a  is a certain constant that accepts for ferroelectrics large values  in 
comparison with conventional dielectrics. 

The fraction of the energy density of a domain that is similar to a dipole depends on the 
direction of its polarization vector and is expressed by the formula: ef

sU Ep ⋅−= . 
According to the theorem of statistical mechanics, the Boltzmann theorem, under the 

conditions of thermodynamic equilibrium, the law of distribution of domains in the presence 
of a conservative force field (in this case the electrostatic field) differs from the law of their 
distribution in the absence of this field by a factor )/exp( *TkU− , where U  is the density of 
the potential energy of the dipole in the electric field under consideration, T  is the absolute 
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temperature, 16
* 1038.1 −⋅=k  erg/deg is a Boltzmann constant. Therefore, the averaging 

operation yields the maximum possible polarization: 
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Further actions are carried out at the macro-level for characteristics of a representative 
volume. As usual, the total polarization consists of two parts: reversible (induced) eP , and 
irreversible (residual) 0P : 

0e PPP += . 
The reversible part is a state parameter, and it can be defined as some part of the 

difference from the maximum and residual parts of the polarization: 
)P(PP 0e −= ∞с , 

where с  is still an indeterminate factor. The irreversible part of the polarization is the 
parameter of the process. To determine it, we estimate the energy necessary for breaking the 
mechanisms pinning the walls of the domain; calculate the work of the electric field in the 
ideal (limiting) case and count the work of the electric field in the real process of polarization. 
Further, the energy balance is derived, which can be formulated as follows: the real losses in 
the process of polarization are formed from losses in the ideal (limiting) case and the energy 
costs required to break the mechanisms of pinning the walls of the domains. This immediately 
yields the equation in the differentials for the residual polarization vector: 

|| ef
0

0 E
P

PP
d
d

k=−∞ , 

where k  is a positive constant to be determined. In a quasi-static process, the increment of the 
residual polarization vector is found numerically for each equilibrium state, after which the 
total polarization is determined. As a numerical approach the method of Runge-Kutta of the 
4th-order gives good results [2]. You can also use the method of successive approximations 
with an invariable starting point. The latter circumstance is important, because at the same 
value of the electric field, the increment of the residual polarization vector depends on the 
direction of the process: as the field increases, we have one monotonic curve, while 
decreasing, another. When the electric field varies according to the harmonic law, we obtain 
dielectric hysteresis loops. 

The model includes at oneself the 5 parameters: kacps ,,,,a , which are selected from 
the condition of coincidence of calculated and experimental data. In [2], in the one-
dimensional case, a lot of numerical experiments were carried out and the effect of the model 
parameters on the loop shape was investigated. It is shown that the coefficient a  is 
responsible for the amplitude of the loop, the coefficient a  for its slope, the coefficient k  for 
the loop area, the coefficient c  for the flatness of the loop. Varying the values  of the 
coefficients, one can achieve not only a qualitative but also a quantitative coincidence with 
the experimental data. For illustration, Fig. 34 shows the effect of the coefficient value on the 
form of dielectric loops. As the coefficient increases, the slope of the loop increases and its 
area increases. 
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                            (a)                              (b)                              (c) 
 

 
Fig. 34. Giles-Atherton model: (a) mVk /101.5 5⋅= ; (b) mVk /101.1 6⋅= ;  

(c) mVk /101.2 6⋅=  
 

This model describes well the large hysteresis loops. 
It was shown in [2,114] that the Giles-Atherton model can be generalized to the case of 

ferroelastics. In [114,115], changes were made to the Giles-Atherton model so to obtain not 
only large but also small hysteresis loops well coordinated with practice. Without dwelling on 
the subtleties of the additions, we present only the results of small loops of the dielectric and 
strain hysteresis in Figs. 35, 36. They agree well with the experimental data shown in  
Figs. 9, 12, not only qualitatively, but also quantitatively. 

 

   
Fig. 35. Small loops EP ↔      Fig. 36. Small loops σε ↔  
 

In [116,117] one is made a comparison between the Preisach and Giles-Atherton 
methods, including for the case where models include mechanical stresses.  

The considered model of Giles-Atherton by its nature refers to micromechanical 
models. It uses statistical laws and approaches of a two-level continuum. 

 
5. Discussions 
Each of the presented models performs the basic function related to the description of 
hysteresis dependencies. However, each of them is based on different prerequisites. 
Therefore, the results of the work of a particular model differ from the corresponding 
experimental data. Let us evaluate the positive and negative aspects of the models considered. 

Phenomenological models: they are models in which functional nonlinearities are 
formulated for a representative volume. They include the Rayleigh model, evolutionary 
models and models of the theory of plasticity.  

In the Rayleigh model, the nonlinear dependence between the electric field and 
polarization only approximately describes the dielectric hysteresis, and only for small and 
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medium values of electric field intensity. In evolutionary models, irreversible parameters 
were introduced in implicit form, for the disclosure of which evolutionary laws were used. 
Constitutive equations are obtained in the form of integral relations of the theory of 
viscoelasticity. The creep functions included in the integral relations are constructed for linear 
functions entering into the evolution equations, the formulation of increasing and falling 
hysteresis branches being based on inequalities in the functions describing the load and the 
response of the material. In the models of the theory of plasticity, the main role is played by 
the surface of polarization (loading), which includes itself a set of input parameters that make 
it possible to substantially change the shape of the hysteresis loop. Usually, these parameters 
are chosen so that the results of numerical calculations coincided with the experimental data, 
as accurately as possible. 

Micromechanical models: they are models in which a two-level medium is used to 
construct the constitutive relationships in a representative volume. Initially the micro-level is 
considered at the first stage, where threshold loads are taken into account, leading to 
irreversibility of the proceeding process. Then, in the second stage, by means of averaging, 
the residual parameters are determined and the constitutive relations for the representative 
volume are built. The Preisach model, as well as the models plasticity of crystals, energy 
switching and Giles-Atherton all of them are included in the range of micromechanical 
models. For each of them, first, at the micro-level, the domain switching conditions are 
considered, and remaining parameters of the representative volume are found by averaging. In 
these models, a domain structure is considered in one or another extent. 

The Preisach model operates with only 180° domains, and the hysteresis behavior of the 
functions is based on this. In mathematical terms, the approximation of a real loop is 
accomplished by elementary rectangular hysteresis loops. The model is intended only for 
finding the residual polarization, and does not operate with the induced part. In addition, this 
model does not include mechanical stresses, which significantly reduces its practical 
application in three-dimensional cases. 

The remaining models consider more complete systems of domains. In the models of 
orientation and energy switching for each domain, a local coordinate system is introduced and 
the switching conditions are determined, which allows one to move step by step in the 
direction of irreversibility of the process and obtain an additive picture of the development of 
the residual parameters. 

According to the model of orientational switching, the following conclusions can be 
drawn. In its essence, it is closer to the physics of the phenomenon of polarization of 
polycrystalline ferroelectrics, but does not take into account the influence of neighboring 
domains on each other during the polarization process. Because of this, the loop acquires 
angular shapes and is not suitable for describing the differential properties of the material. On 
the other hand, it allows us to find a solution of the angle in which the directions of all the 
spontaneous polarization vectors are located after reaching the saturation polarization. 
Another drawback of the model is that it does not include mechanical stresses, which does not 
allow it to investigate ferroelastic phenomena. 

The energy model of switching by physical essence takes into account the physical 
phenomena of polarization of polycrystalline ferroelectrics, but also does not take into 
account the effect of neighboring domains on each other during the switching process. The 
dielectric hysteresis loop has angular shapes. In addition, this model operates only with the 
residual parameters of polarization and deformation and does not include induced 
components. However, it has an undeniable advantage, because it includes mechanical 
stresses, which makes it possible to describe ferroelectric and ferroelastic phenomena. 
Essential progress in terms of generalization of the model was achieved after applying the 
finite element method. As soon as each domain was matched with the final element, the effect 
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of the domains on each other was taken into account. This made it possible to obtain good 
results with satisfactory loops of dielectric and strain hysteresis. 

In the Giles-Atherton model, statistical methods are used instead of switching criteria. 
Analytical expressions were obtained for determining the maximum possible polarization in 
the form of surface integrals in which the density of the domain distribution is described by 
functions of exponential type. The integrands were obtained on the base of the energy 
rotations of the domains as a function of the intensity of the electric field. In this model, the 
induced component is introduced along with the residual polarization, and the mutual 
influence of the domains on each other is taken into account twice. Firstly, by means Weiss 
field, and secondly, for the averaged characteristics in a representative volume, when been 
take into account the energy costs for breaking the mechanisms pinning the walls of the 
domain and calculating the work of the electric field in the ideal and real process of 
polarization. The model contains a set of 5 parameters, by appointing which it is possible to 
obtain a good coincidence of large hysteresis loops with experimental data. The drawbacks of 
the model include a very coarse approximation in the description of domain rotations in 
ferroelectrics, where this process is replaced by the process of rotation of dipoles as in polar 
liquids in the construction of limiting polarization. This immediately affects when trying to 
build small hysteresis loops, where the results of calculations lead to large discrepancies. It is 
noted that the modeling of ferroelastics can be carried out by Giles-Atherton methods if the 
electric field will be replaced by mechanical stress and a polarization by the strain. The main 
difference between the Giles-Atherton model and the models considered earlier is that it uses 
the density function of the domain distribution in the form of analytical integral relations. 

 
6. Conclusions 
In summary, three-dimensional theories are divided into phenomenological theories, in which 
the constitutive relationships are formulated without involving the microstructure of the 
material, and micromechanical, where such a structure and domain switching processes are 
taken into account. At first glance it seems that the more accurate the model relies on the 
physics of the phenomenon, the more accurate the results of its work, however and the 
phenomenological models give results sufficient to describe irreversible processes. As 
numerical experiments show, models that include many domains give good results in 
describing quantitative relationships. How to rule, for it need to select only a few parameters, 
in contrast to the phenomenological, where it is sometimes necessary to introduce empirical 
laws. It should be noted that at the moment the universal mathematical model of polarization 
and deformation of polycrystalline ferroelectric materials has not yet been developed. None of 
the models considered gives completely identical results with experimental data 
simultaneously for both large and small hysteresis loops. Some authors prefer one model, and 
others prefer another, it all depends on the purpose of the study. We can say that there are 
many unsolved problems that have practical significance. Unresolved problems include the 
following tasks: 
(i) small loops of dielectric and strain hysteresis are not fully investigated; 
(ii) in the generally accepted models, all possible effects from the action of each of the 
components of the stress tensor and the electric field vector are not fully reflected when they 
are simultaneously acted upon the represented volume; 
(iii) there are no studies on how the anisotropy of the material changes with the simultaneous 
action of an electric field and mechanical stresses, when the direction of the electric field 
vector does not coincide with any of the principal directions of the stress tensor; 
(iv) for quasistatic processes there are no models in which it would be possible to look at the 
picture of the passage of a domain switching wave along the volume of a ferroelectric; 
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(v) there are practically no studies related to the analysis of similarities and differences in the 
existing models of Preisach, Rayleigh, Giles-Atherton, plasticity of materials; 
(vi) in fact there is no mathematical analysis of the influence of the model parameters on the 
final result; 
(vii) the methods for selecting the model parameters are poorly represented and there is no 
formulation of the minimum set of parameters; 
(viii) very poorly represented models in which the analytical functions of the density of the 
distribution of domains would be used, with the subsequent description of hysteresis 
operators. 
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Abstract. A boundary-element scheme for analyzing initial boundary-value problems of 3-D 
porelasticity is considered. The scheme is based on a time-step method of numerically 
inverting Laplace transform. According to the method, a solution in time is calculated using 
quadrature formulas, based on complex values of the function in specific points. The choice 
of the points is determined by Lobatto method being one of Runge-Kutta methods. A 
possibility of using two- and three-stage Lobatto methods is considered. Using as an example 
the problem about a force, acting upon end of a prismatic poroelastic body, the effect of time-
step on the dynamic responses of the forces is studied. The present results are compared with 
the results obtained on the nodes of Radau method. 
Keywords: boundary element method, Runge-Kutta method, poroelasticity, transient 
dynamic analysis, wave propagation 

 
 

1. Introduction 
Studying wave propagation in poroelastic bodies subjected to dynamic loading is important in 
many engineering applications. The results of such studies are used to develop methods of 
non-destructive check, in soil structure analysis and earthquake seismology. Very often, an 
analytical solution to wave propagation problems is only possible in some special cases and 
for particular kinds of boundary conditions, so that numerical approximation methods such as 
the boundary element method (BEM) have been used. The BEM is especially suitable for 
wave propagation problems since it requires the formulation of the problem only along the 
boundary and produces highly accurate solutions. 

In BEM-modeling of dynamic processes, three main approaches can be conventionally 
discerned: solving in time domain [1], solving in Laplace or Fourier transforms with the 
subsequent inversion of the transforms [2], and the dual reciprocity approach [3]. The 
numerical accuracy of the time-domain BEM with time-stepping discretization is strongly 
influenced by the time step size. In particular, the time-marching process becomes 
numerically unstable when using collocation methods, where the time step size is smaller than 
the element size. To overcome this difficulty, a number of stabilization techniques were 
developed [4, 5]. However, the time-domain approach cannot be used to solve wave 
propagation problems for poroelastic media due to the absence of fundamental solutions in 
time. Methods working in the frequency domain also have their limitations, as they require 
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efficient numerical techniques for inverse transforms and are applicable only to problems for 
which the correspondence principle is valid. 

In 1988, Lubich [6,7] introduced the convolution quadrature method (CQM) to 
discretize the convolution integral. It gained significant interest as a technique (CQ-BEM) for 
applying the BEM to time-dependent problems where classical time-step schemes suffer from 
instability and numerical damping [8 – 10]. Later, it was shown in several studies that the CQ-
BEM based on implicit Runge–Kutta method provides better accuracy than that based on the 
linear multistep method [11–15]. Moreover, Banjai and Sauter reformulated CQ-BEM 
approach to solve decoupled problems in Laplace domain that works as a transformation 
method [16]. Retaining the numerical stability properties of the original method, this approach 
has the time step size as the only parameter determined by the physical parameters of the 
problem. The applicability of the reformulated CQ-BEM to solution of poroelastic problems 
was demonstrated by Schanz, but only using the linear multistep method [17]. 

This study presents a modification of such a time-step scheme on the nodes of Runge-
Kutta methods, exemplified by 2- and 3-stage Lobatto method. The time-step BEM scheme is 
based on the stepped method for numerically inverting Laplace transforms. This method is 
similar in its formulation to the CQM, but in contrast to it is based on the theorem of 
operational calculus for integrating in time-domain. The application of the scheme to 
problems of wave propagation in partially saturated media is considered. 
 
2. Governing differential equations 
To describe a poroelastic continuum, Biot's mathematical model of a material is used, in 
which (the material) a solid phase, representing a form-generating skeleton, carrying the main 
stress load, and two fluid phases – water and air filling the pore system, are discerned. All the 
three phases are assumed compressible. Temperature variations are neglected. Moreover, 
porosity ϕ  and saturation degree of the material fS  are defined as: 

, fvoid
f

void

VV S
V V

ϕ = = , (1) 

where voidV  is the volume of interconnected pores in the specimen, V  is the total volume of 
the material, fV  is the volume of the filler, and it is assumed that f a=  for air and f w=  for 
water. Consider a case where the pores are completely filled: 

1a wS S+ = . (2) 
The bulk density is defined as 

(1 ) s w w a aS Sρ ϕ ρ ϕ ρ ϕ ρ= − + + , (3) 
where the densities of the solid, water and air is denoted by sρ , wρ aρ , respectively. 

In order to describe mechanical behavior of the partially saturated porous medium, the 
effective stress principle is used, which was introduced by Terzaghi [18]. The corresponding 
defining relations in terms of stress are expressed similarly to that adopted for fully saturated 
conditions [19, 20]: 

( )ij ij a a w w ijS p S pσ σ a δ′ = + − , (4) 
where ijσ ′ is the effective stress, ijσ  is the total stress, ap  denotes the pore air pressure, wp  is 
the pore water pressure, a  is a Biot constant. The coefficient a  is described by the 
relationship: 

1
s

K
K

a = − , (5) 
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where K  is the bulk modulus of the solid skeleton and sK  is the bulk modulus of the solid 
grains. 

The solid skeleton is assumed elastic isotropic. Due to this fact, the effective stress 
tensor is given by 

2 2
3ij kk ij ijK G Gσ ε δ ε ′ = − + 

 
, (6) 

where G denotes the shear modulus, ijε  denotes the strain tensor. The components of strain 
tensor ijε  of a solid and displacements iu  are mutually coupled by the geometric relations: 

( ), ,
1
2ij i j j iu uε = + . (7) 

To construct equations of motion, defining equations must be combined with the related 
balance equations of momentum and balance equations of mass for each of the phases (for 
details see [21]). Using a Laplace transform makes it possible to write down the dynamic 
equations of a poroelastic medium in the form of a boundary-value problem for unknown 
displacement functions of the elastic skeleton ˆiu  and the pore pressures of the fillers ˆ wp  and 
ˆ ap : 

1 2 3 4

5 6 7

8 9 10

ˆˆ
ˆˆ
ˆˆ

iij i j i i i
w w

j
a a

j

FB B B B u
B B B p I
B B B p I

δ  − + ∂ ∂ ∂ ∂       ∂ = −         ∂ −     

, (8) 

here 
2 2

1 ( )w w a aB G S S sρ β ρ γ ρ= ∇ − − − , 2 3
GB K= + , 3 ( ) wB Sa β= − − , (9) 

4 ( ) aB Sa γ= − − , 5 ( ) wB S sa β= − − , 2
6

w
ww w w u

w w

SB S S S S s
K s

βϕζ
ρ

 
= − + − + ∇ 

 
, (10) 

( )7 aa w uB S S S sζ= − + , ( )8 aB S sa γ= − − ( )9 ww a uB S S S sζ= − + , (11) 

2
10

a
aa a a u

a a

SB S S S S s
K s

γϕζ
ρ

 
= − + − + ∇ 

 
, (12) 

where wK  and aK  are bulk moduli of the fluid, îF , ˆwI , ˆaI  are bulk body forces. Symbol "^" 
denotes Laplace transform with complex variable s. 

The following abbreviations: 

sK
a ϕζ −

= , ( )ww w w rwS S S Sϑ= − − , ( )aa a w rwS S S Sϑ= + − , (13) 

1

( )ra rw w rw
u d

ra rw

S S S SS
p S S

ϑ
ϑϑ
+

 − −
= −  − 

, (14) 

are introduced, where rwS  is the residual wetting fluid saturation and raS  is the non-wetting 
fluid entry saturation. The symbol dp  is the non-wetting fluid entry pressure, ϑ  is the pore 
size distribution index. For most rocks, ϑ  falls between 0.4 and 4. The symbols β  and γ  are 
Laplace parameter dependent variables and expressed as 

w w

w w w

s
S s
κ ϕρβ

ϕ κ ρ
=

+
, a a

a a a

s
S s
κ ϕργ

ϕ κ ρ
=

+
, (15) 
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where wκ  and aκ  the phase permeability of the wetting and the non-wetting fluid are given by 
/w rw wK kκ η=  and /a ra aK kκ η= , respectively. rwK  and rwK  denotes the relative fluid phase 

permeability, k  denotes the intrinsic fluid permeability, wη  and aη  are viscosity of the fluid. 
To evaluate relative phase permeability the following equations are used: 

(2 3 )/
rw eK S ϑ ϑ+= , ( )2 (2 )/(1 ) 1ra e eK S S ϑ ϑ+= − − , (16) 

where eS  denotes the effective wetting fluid saturation degree given by 

w rw
e

ra rw

S SS
S S

−
=

−
. (17) 

 
3. Laplace transform inversion 
The stepped method for numerically inverting Laplace transforms is described in this section 
in brief. This method is close in its formulation to the CQM, but, in contrast to it, is based on 
the operational calculus of integrating original ( )f s  of representation ˆ ( )f s . In general, the 
integral 

0

( ) ( )
t

y t f dt t= ∫  (18) 

is approximated as follows [22]: 
1

1
(0) 0, ( ) , 1,...

n
T t

k
k

y y n t n N− ∆

=

= ∆ = =∑b A ω , (19) 

where N is the number of equal time steps. In this expression, the quadrature weights t
k
∆ω  are 

determined using Laplace representation ˆ ( )f s  and the Runge-Kutta method. The quadrature 
weights can be expressed by Cauchy integral form and approximated by using a trapezoidal 
rule with the number of steps L as follows: 

21 i

0

( ) ( )ˆ
n L nlt L

n
l

R z zf e
L t t

πψ ψ− − −∆

=

 =  ∆ ∆ 
∑ω , 

2 il
Lz Re
π

= , (20) 

1 1 1( ) Tz zψ − − −= −A A 1b A , (21) 
where ( )zψ  is characteristic function of the Runge-Kutta method and (1,1,...,1)T=1 . The 
parameter R can be calculated by 

LR ε= , (22) 
where ε  is the error of the numerical calculation of Equation (20). 

The approximation used in deriving formulas (20), (21) is based on using the m-stage 
Runge-Kutta method written down using Butcher’s table: 

|
T

с A
b

, m m×∈A  , , m∈b c  . (23) 

A correct formulation of a time-step scheme requires that the method be A-stable and  
L-stable. In the assumption of 1 (0,...,0,1)T − =b A , the method is automatically L-stable. It is 
also important to note that the quadrature weights t

k
∆ω  and the characteristic function ( )zψ  

are m-order matrices. 
In the present study, Lobatto (Lobatto IIIC) and Radau (Radau IIA) schemes were 

chosen as a particular example of the Runge-Kutta schemes meeting the formulated 
conditions. 
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4. BEM formulation and numerical procedure 
The boundary-element technique is based on the use of a regularized BIE direct approach 
[23]: 

( )( , , ) ( , ) ( , ) ( , ) ( , , ) ( , ) , , ,s s s d s s d
Γ Γ

− Γ = Γ ∈Γ Γ = ∂Ω∫ ∫0T x y u х T x y u y U x y t x x y , (24) 

where ( , , )sU x y  and ( , , )sT x y  are matrices of fundamental and singular solutions, 
respectively [24], ( , )0T x y  contains isolated singularities, x is the integration point, y is the 
observation point, u  is the generalized displacement vector, t  is the generalized force vector. 

To solve Equation (24), the boundary surface Γ  is divided into generalized eight-node 
quadrangular elements; the coordinates of the points on the k element are determined from the 
relation: 

8

1
( ) ( ) k

m m
m

Nξ ξ
=

=∑x x , (25) 

where mN  are bilinear shape functions, 2
1 2( , ) [ 1,1]ξ ξ ξ= ∈ −  are local coordinates, k

mx  are 
global coordinates of nodes [25]. 

Generalized boundary functions of the first kind are approximated bi-linearly, and 
generalized boundary functions of the second kind are assumed constant over the element: 

4

1
( ) ( ) ,k

l l
l

Rξ ξ
=

=∑u u ( ) ,kξ =t t  (26) 

where ( )lR ξ  are the  bilinear shape functions, k
lu  and kt  are the values of generalized 

functions in the nodes of the k-th element. 
The discrete representation of BIE (24) is constructed at the interpolation nodes of 

unknown boundary functions (collocation points) and has the following matrix form: 
[ ]{ } [ ]{ }∆ = ∆G T F U . (27) 

Matrices ∆G  and ∆F  contain integrals of the components of matrices ( , , )sU x y and
( , , )sT x y , multiplied by the form functions. The choice of the numerical integration scheme 

for computing the integral depends on its type. When a collocation point lies on integration 
element, the procedure for revealing the feature is performed. To improve the accuracy of 
integration on an element that does not contain a collocation point, in addition to the Gauss 
integration formulas, a hierarchical integration algorithm is applied, wherein the element is 
subdivided until the specified accuracy is achieved. 
 
5. Numerical results 
The 3D poroelastic column loaded by a Heaviside function is investigated as example to study 
the behavior of transformation method. The width of the column is b = 1 m, the height  
h = 3m. The column has zero displacements on one end and the normal force 2

3 1 /t N m= −  
on the other end is prescribed. A boundary-element discretization consisting of 896 
quadrangular elements is used in the computations. The sketch of problem is shown in Fig. 1. 
The parameters of the partially saturated porous material correspond to those of sandstone: 

0.23ϕ = , 32650 /s kg mρ = , 3997 /w kg mρ = , 31.01 /a kg mρ = , 91,02 10K Pa= × , 
91.44 10G Pa= × , 103.5 10sK Pa= × , 92.25 10wK Pa= × , 51.1 10aK Pa= × , 12 22.5 10k m−= × , 
3 21.0 10 /w N s mm −= × ⋅ , 5 21.8 10 /a N s mm −= × ⋅ .  
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Fig. 1. Geometry and boundary conditions of a partially saturated poroelastic column 
 

The boundary-element solutions obtained using different methods of the Runge-Kutta 
family are compared for the values of forces 3t  in the rigidly fixed part of the column. 
Jumping change of the forces makes it possible to compare the results in the conditions of 
additional difficulties of approximation. The boundary-element solutions are also compared 
with a one-dimensional numerical-analytical solution. Time step t∆  is taken to be 0.00005 s 
for the 2-stage methods, and 0.0002 s for the 3-stage ones. The total number of complex-
valued points required for computing a solution is assumed constant for all the methods. The 
diagrams of forces are present in Figs. 2 – 5. 

 

 
Fig. 2. Force solution 3t  at the fixed end versus time for the 2- and 3-stage Radau IIA method 

 

 
Fig. 3. Force solution 3t  at the fixed end versus time for the 2- and 3-stage Lobatto IIIC 

method 
 

2
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b
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Fig. 4. Force solution 3t  at the fixed end versus time for the 2-stage Lobatto IIIC method 

compared to the solution for the 2-stage Radau IIA method 
 

 
Fig. 5. Force solution 3t  at the fixed end versus time for the 3-stage Lobatto IIIC method 

compared to the solution for the 3-stage Radau IIA method 
 

It is evident in Figs. 2, 3 that the boundary-element solutions obtained at the nodes of 
the Lobatto and Radau methods are close to the numerical-analytical solution of the one-
dimensional problem. The 2- and 3-stage Radau methods in problems of boundary-element 
modeling of the dynamics of fully saturated poroelastic bodies are compared in [12] for the 
values of flow. The present study corroborates the conclusions made in [12] and makes it 
possible to extend them to include the case of using 2- and 3-stage Lobatto methods in 
problems of boundary-element modeling of the dynamics of partially saturated poroelastic 
bodies. In particular, it can be observed (Figs. 2, 3) that the forces computed using the 3-stage 
versions of the both Runge-Kutta methods have smaller perturbation amplitude at the jump 
points. Moreover, the propagation interval of the oscillations is also smaller than the range in 
the case of using the 2-stage versions. Though in the first case, a long time step is used due to 
the sensibility of the 3-stage methods to small steps, the force curve is quite smooth. Separate 
comparison of the 2-stage methods reveals that Radau method yields forces of considerably 
smaller perturbation amplitude in the jump points and of considerably smaller propagation 
interval (Fig. 4). In this case, minor oscillations of the forces over the entire time interval are 
also observed, testifying to the closeness of the time step chosen to its maximal value. At the 
same time, the forces obtained using the 2-stage Lobatto method do not show any oscillations 
of this kind. Similar effects, but less pronounced, are observed, when comparing the 3-stage 
methods (Fig. 5). Based on the conducted investigations, it can be asserted that the use of  
3-stage methods of the Runge-Kutta family proves more preferable in the case of step change 
of the solution. 
 
 
6. Conclusion 

The time-step boundary-element scheme on the nodes of the Lobatto method in problems of 3-D dynamic poroelasticity 109



A boundary-element scheme on the nodes of 2- and 3-stage Lobatto methods for analyzing 
dynamic problems of partially saturated poroelastic bodies is present. A mathematical model 
of a partially saturated poroelastic medium is given. Results of the numerical analyses are 
present, which corroborate the conclusions of other authors concerning the combined use of 
BEM and methods of the Runge-Kutta family. The conclusions are extended to include the 
use 2- and 3-stage Lobatto methods in problems of boundary-element modeling of the 
dynamics of partially saturated poroelastic bodies. 
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Abstract. Ternary rare earth metal alloys (viz. GdInZn, GdTlZn and GdInCd) play a key role 
in a large range of current research areas, in particular those devoted to heavy fermions, 
valence fluctuations, magneto-strictive materials, permanent-magnet materials, spin glasses 
and random anisotropy systems. Thus, to understand the relevant complex behavior of 
Gd/M/M¹, M=In, Tl; M¹ = Zn, Cd compounds (viz. GdInZn, GdInCd and GdTlZn), in the 
present research article, we have been carried out the theoretical investigations on electronic, 
magnetic and thermodynamic characteristics of Gd/M/M¹ type compounds in the hexagonal 
P63/mmc phase using density functional theory (DFT).  
Keywords: structural properties, electronic structure, magnetic properties, thermodynamic 
properties 
 
 
1. Introduction      
F-block rare earth (RE) elements show unusual magnetic behaviour when they make alloys 
with "d" orbital transition metals (M) and other metallic atoms (M1). The materials which 
have high spin polarization at room temperature are highly advantageous because of their 
broad technological applications in the area of spintronics and permanent magnets. They play 
a key role in a large range of current research areas, in particular those devoted to heavy 
fermions, valence fluctuations, magneto-strictive materials, permanent-magnet materials, spin 
glasses and random anisotropy systems [1-3].  

Gd/M/M¹, M=In, Tl; M¹ = Zn, Cd (viz. GdInZn, GdInCd and GdTlZn) are the 1:1:1 
stoichiometry systems that may be used in the field of spintronics and magnetic devices. So 
far, Gd is known as a heavy fermion rare earth atom consisting of 4f unpaired electrons. The 
study of 4f-states in the ternary rare earth intermetallics is extremely useful tool in reference 
to electronic and magnetic study. Gd/M/M¹ compounds form CaIn2 type crystal structure with 
space group P63/mmc (194) with Wyckoff positions Gd (0, 0, 0); In or Tl (1/3, 2/3, 1/4) and 
Zn or Cd (1/3, 2/3, 3/4) [4].   

A very little literature is available on these alloys.  The magnetic and structural properties 
of Gd/M/M¹, M=In, Tl; M¹ = Zn, Cd (viz. GdInZn, GdInCd and GdTlZn) intermetallics have 
been synthesized and analyzed by Morin et al, Mazzone et al and Rossi et al [5-8]. Literature 
review shows that only a little amount of structural and magnetic studies [5-8] have been 
made on these compounds and no spin polarized electronic, magnetic and thermodynamic 
studies have been reported on these intermetallic compounds. Thus, motivation for the present 
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work is to examine and give more explanation on (i) spin polarized electronic spectra (ii) 
magnetic structure and (iii) thermodynamic behavior.  
 
2. Computational approach 
In the present computational approach, density functional theory (DFT) [9,10] using Perdew, 
Burke and Ernzerhof generalized gradient approximation for exchange and correlation (PBE-
GGA) [11] have been used to carried out the electronic, magnetic and thermodynamic 
calculations of Gd/M/M¹ (M=In, Tl; M¹ = Zn, Cd) type compounds. The cutoff energy for the 
present calculations was chosen as -6.0 Ry and 18 х 18 х 9 k points have been used to 
calculate the total and partial density of states. For SCF calculations, the charge has been 
chosen less than 0.0001 ec. The Muffin Tin sphere radius (RMT) is the smallest atomic sphere 
radius in a unit cell. Its value must be small provided no core charge should be leaked out. If 
charge leaks out then RMT is increased such that no charge leaks out. Smaller value of RMT 
needs more plane waves and calculations become more expansive. The RMT values in our 
case were chosen as 2.50 for each atom in case of GdInZn. In case of GdInCd, RMT values 
were used as 2.50 for Gd and 2.43 for In and Zn whereas in case of GdTlZn RMT values were 
used as 2.50 for Gd, 2.48 for Tl and 2.36 for Cd. These values of RMT were found to be 
satisfactory for the calculations. The Fermi energies were found to be 0.4307 eV, 0.4338 eV 
and 0.4722 eV for GdInZn, GdInCd and GdTlZn (see Table 1) respectively. 

Magnetic moment is a crucial quantity which gives the magnetic strength and 
orientation of magnetization. The magnetic moment here is calculated by spin polarized 
calculations using DFT under PBE-GGA [11] exchange correlation. Spintronics has been 
promising area to the researchers since last two decades to fabricate the advanced electronic 
devices based on spin. Thus, to make more significant our magnetic/spin polarized 
calculations, we have also calculated the electron spin polarization (P) which plays a key role 
in making new spin dependent electronic devices. It is a dimensionless quantity given [12] by 

)(EN+)(EN
)(EN)(EN=P

FF

FF

↓↑
↓−↑ , (1) 

where, )(EN F↑  and )(EN F↓  are the density of states for majority and minority spin 
channel at the Fermi level.  

The thermodynamic properties of a bulk material are correlated by electronic structure, 
atomic vibrations and nature of bonding between the atoms. In the present research paper 
thermodynamic properties are determined by Quasi-harmonic Debye model [13, 14].  

In quasi-harmonic Debye model the imbalance condition Gibbs function G* (V; P, T) is 
given by 

T)(θθ(V)A+PV+E(V)=T)P,(V;G Vib∗ . (2) 
Here E(V) is the total energy per unit cell of GdInZn, GdInCd and GdTlZn, PV denotes 

the constant hydrostatic pressure, θ(V) is the Debye temperature, and Avib is the vibration term 
which can be expressed using Debye model of the phonon density of states as [13, 14] 















−− −

T
θD)e(+

T
θnkT=T)(θθA Tθ

vib
/13ln

8
9 . (3) 

Here, n is the number of atoms per formula unit, D(θ/T) is the Debye integral. For an 
isotropic solid, θ can be expressed as [13, 14] 

[ ]
M
Bf(σ(nπV

k
=θ s

D
3/12/16 . (4) 

Here, M is the molecular weight per unit cell. The function, f (σ) and adiabatic bulk 
modulus, Bs (which is nearly equal to the static compressibility) are given by 
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The imbalance Gibbs function as a function of (V; P, T) is minimized with respect to 
volume V: 

0=
V

T)P,(V;G
TP,







∂
∗∂ . (7) 

If we solve the above equation with respect to volume V, one can obtain the thermal 
equation of state (EOS) V (P, T) and specific heats, (CV, Cp) and thermal expansion 
coefficient, α can be determined by the following expressions: 
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v ; (10) 

αγT)+(C=C vp 1 . (11) 
Here γ represents the Grüneisen parameter, expressed as 

Vd
θ(V)d=γ

ln
ln

− . (12) 

 
3. Results and discussion  

Structural properties. The known values of energy, (V)E0  and volume, 0V  (which are 
determined by optimization method) in equilibrium state are used to determine the structural 
parameters viz. lattice parameters (a0, c0), bulk modulus, 0B and its first order pressure 

derivative, 'B0  by using Birch-Murnaghan's equation of state expressed by equation (13) [15]. 














−






+






 −

−′′+=

′

11
)1(

)(
0

00
0

00

00
0

B

total V
V

V
VB

BB

VBVEE . (13) 

The energy versus volume curves determined by optimization for  
Gd/M/M¹ (M=In, Tl; M¹ = Zn, Cd) are shown in Figs. 1(a-c). Figs. 1(a-c) reveal that 
Gd/M/M¹ compounds are well stable with minimum energy values (E0) ≈ -75840.011293 eV, 
-133462.437043 eV and -91039.549934 eV corresponding to equilibrium volume  
(V0) ≈ 942.1371 a.u^3, 968.4446 and 1036.7237 a.u^3 (see Table 1) for GdInZn, GdTlZn and 
GdInCd respectively. The calculated lattice parameters (a0, c0), bulk modulus, B0 and its first 
order pressure derivative, 'B0  are shown in Table 2. The calculated values of a0 and c0 show 
close agreement with available experimental values [8]. Bulk modulus (B0) has inverse 
relation with compressibility i.e. larger the value of bulk modulus, smaller will be 
compressibility. Here, in our case, it can be seen from Table 2 
that (Bo) GdInZn > (Bo) GdTlZn > (Bo) GdInCd. It indicates that compressibility decreases from 
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GdInCd → GdTlZn → GdInZn, indicating that GdInCd is more compressible than GdTlZn 
and GdInZn.  
 
Table 1. Fermi energy, EF (eV), Minimum energy, Emin, (Ryd), unit cell volume, V0 (a. u. ^3) 
in equilibrium condition (at 0K) for GdInZn, GdInCd and GdTlZn using PBE-GGA 
 GdInZn GdInCd GdTlZn 
EF   0.4307 0.43385 0.4729 
Emin -75840.011293 -91039.549935 -133462.437043 
V0 942.13 1036.72 968.44 
 
Spin polarized electronic and magnetic properties. The results on spin polarized electronic 
properties have been expressed in terms of energy band structure and total, partial density of 
states for spin up (up) and spin down (dn) states. The calculated electron dispersion curves for 
GdInZn, GdTlZn and GdInCd for spin up and spin dn channel along the high symmetry 
directions Г, M, K and A in the Brillouin zone are shown in Figs. 2 (a-f). These Figures 
indicate that most of the valence bands lie from -7.0 eV to 0.0 eV (where Fermi level, EF is 
considered at origin) in GdInZn, -11.0 eV to 0.0 eV in GdTlZn and –9.0 eV to 0.0 eV in 
GdInCd. Figs. 2 (a-f) depict that the bands which are existed in GdTlZn at about -11.0 eV are 
disappear in GdInZn and GdInCd because Tl and In have the electronic configuration  
[Xe] 4f145d106s26p and [Kr] 4d105S2 (i. e. these bands at about -11.0 eV in GdTlZn are due to 
dominance of Tl-f bands and In does not contain f valance bands). Furthermore, these electron 
dispersion curves of GdInZn, GdTlZn and GdInCd for spin up and spin dn channel reveal no 
bandgap as valance bands and conduction bands are crossing the Fermi level, signifying that 
GdInZn, GdTlZn and GdInCd have metallic character. This metallic character in all three 
compounds is caused by bonding of p orbitals of In (or Tl) and Zn. Also, there exist denser 
bands in spin dn channel at about 0.2 eV above the Fermi level which are available for 
conduction in all three compounds. These bands are caused by mainly Gd-f orbitals. The total 
density of states (TDOS) and partial density of states (PDOS) plots for GdInZn, GdTlZn and 
GdInCd are shown in Figs. 3-5 (a-i). It is clear from Figs. 3 (a) and 5 (a) that in case of 
GdInZn and GdInCd, there are mainly two peaks for spin up channel at around -7.0 eV and 
-5.0 eV below the Fermi level whereas spin dn channel have also two peaks at around -7.0 eV 
below Fermi level and 0.20 eV above the Fermi level. 
 
Table 2. Lattice parameters, a0, c0 (Å), Bulk modulus, B0 (GPa), Pressure derivative of bulk 
modulus, B0

ꞌ (GPa) equilibrium condition (at 0K) for GdInZn, GdInCd and GdTlZn using 
PBE-GGA 
Compounds a0 c0 B0 B0

ꞌ 
GdInZn 4.301 7.408 65.76 5.30 
Expt. [8] 4.596 7.602 - - 
GdTlZn 4.691 7.721 60.72 5.13 
Expt. [8] 4.778 7.813 - - 
GdInCd 4.583 7.803 45.74 4.13 
Expt. [8] 4.810 7.826 - - 
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Fig. 1. Total energy as a function of unit cell volume for (a) GdInZn (b) GdTlZn and  
(c) GdInCd with PBE-GGA approximation 
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Fig. 2. Spin polarized electron dispersion curves along high symmetry directions in the 
Brillouin zone for (a) GdInZn_up (b) GdInZn_dn (c) GdTlZn_up (d) GdTlZn_dn  

(e) GdInCd_up (f) GdInCd_dn 
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Fig. 3. Calculated total and partial density of states for (a) GdInZn -Total  
(b) Gd-Total and In-Total (c) Zn-Total (d) Gd-s and Gd-p orbital  

(e) Gd-d orbital and Gd-f orbital (f) In-s and In-p orbital (g) In-d orbital and In-f orbital  
(h) Zn-s orbital and Zn-p orbital (i) Zn-d and Zn-f orbital 

 
 
 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  D
O

S(
St

at
es

/e
V

-C
el

l) 

  d 

  c 

  b 

  a 

  e 

  i 

  h 

  g 

  f 

                             Energy (eV)                                                                                            Energy (eV) 
 

118 Aman Kumar, Rahul Guatam, Satish Chand, Anuj Kumar, R.P. Singh



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Calculated total and partial density of states for (a) GdTlZn -Total  
(b) Gd-Total and Tl-Total (c) Zn-Total (d) Gd-s and Gd-p orbital  

(e) Gd-d orbital and Gd-f orbital (f) Tl-s and Tl-p orbital (g) Tl-d orbital and Tl-f orbital  
(h) Zn-s orbital and Zn-p orbital (i) Zn-d and Zn-f orbital 
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Fig. 5. Calculated total and partial density of states for (a) GdInCd -Total  
(b) Gd-Total and In-Total (c) Cd-Total (d) Gd-s and Gd-p orbital  

(e) Gd-d orbital and Gd-f orbital (f) In-s and In-p orbital (g) In-d orbital and In-f orbital  
(h) Cd-s orbital and Cd-p orbital (i) Cd-d and Cd-f orbital. 

 
Figure 4(a) depicts TDOS for GdTlZn and show that there are three peaks for spin up 

channel at around -11.0 eV, -7.0 eV and -5.0 eV below the Fermi level whereas spin dn 
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channel have also three peaks at around -11.0 eV, -7.0 eV below Fermi level and 0.2 eV 
above the Fermi level. In GdTlZn, the extra peak at around -11.0 eV is mainly caused by 
hybridization of Gd-p and Tl-d states.  

In case of GdInZn, the peak at around -7.0 eV is mainly due to Zn-d states along with 
strong hybridization of Zn-s and In-s states as well as hybridization of In-p and Zn-p states for 
both the spin up and spin dn channel. The sharp peak at around -5.0 eV is caused by mainly 
Gd-f spin up channel with small contribution of Zn-s states. In case of GdTlZn, the peak at 
around -7.0 eV is mainly due to Zn-d states with small contribution of Tl-s states for both the 
spin up and spin dn channel. The sharp peak at around -5.0 eV is caused by mainly Gd-f spin 
up channel with small contribution of Zn-s states. In case of GdInCd, the peak at around 
-7.0 eV is mainly due to Cd-d states along with small contribution of In-s and In-d states for 
both the spin up and spin dn channel. The sharp peak at around -5.0 eV is caused by mainly 
Gd-f states with small contribution of Cd-s and In-s states. The sharp peak at about 0.2 eV 
above the Fermi level for all three compounds is contributed by Gd-f states which are 
available for conduction. 

The calculated total magnetic moments for GdInZn, GdTlZn and GdInCd compounds 
along with the magnetic moment on individual atom and in the interstitial region have been 
displayed in Table 3. The values of calculated total magnetic moment of the GdInZn, GdTlZn 
and GdInCd compounds were found to be 7.66 µB /f. u., 7.72 µB /f. u. and 7.51 µB /f. u.  
(or µ = 14.67 µB / cell, µ = 14.75 µB / cell and µ = 14.47µB / cell for GdInZn, GdTlZn and 
GdInCd). However, experimental values of magnetic moment of GdInZn, GdTlZn and 
GdInCd are not available in the literature only theoretical value of total magnetic moment for 
the unit cell for GdTlZn (µ = 14.70 µB / cell) [16] is available which is in close agreement 
with our calculated value of magnetic moment (µ = 14.47 µB / cell). Table 3 depicts that  
Gd3+ ions has dominant character in total magnetic moment of GdInZn, GdTlZn and GdInCd 
in which "f" orbital electrons of Gd atom are mainly accountable for the total magnetic 
moment.   

The value of electron spin polarization (P) at the Fermi energy (EF) for a material is 
calculated by equation (1). The value of "P" characterizes the magnetic materials. Zero value 
of "P" defines the paramagnetic materials (because in the paramagnetic materials occupancy 
of spin up and spin down states is equal) whereas value P < 1, ensures the ferromagnetic 
material [12]. In our cases, the calculated values of electron spin polarization P were found to 
be nearly equal to -0.47, -0.45 and -0.43 (-47%, -45%, -43%), for GdInZn, GdTlZn and 
GdInCd respectively as values of )(EN F↑  are 1.4 eV, 1.1 eV and 1.2 eV and )(EN F↓  are 
3.0 eV, 3.1 eV and 3.2 eV for GdInZn, GdTlZn and GdInCd respectively at the Fermi level. 
These values of P < 1, employing all the three compounds are ferromagnetic materials. The 
negative sign of P indicates the dominancy of minority spin channel.  

Thermodynamic properties. The quasi-harmonic Debye model has been used to 
investigate the temperature and pressure dependent thermodynamic properties of GdInZn, 
GdTlZn and GdInCd. The effect of temperature has been studied in a wide temperature range 
0-600K for GdInZn, GdTlZn and GdInCd, whereas pressure effect has been studied in 
pressure range 0-15GPa at different temperatures (at 0K, 300K and 600K). Temperature 
dependent variations in bulk modulus, B Debye temperature, θD Specific heat at constant 
volume, CV thermal expansion coefficient, α and entropy, S for GdInZn, GdTlZn and GdInCd 
are shown in Figs. 6-8. 
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Table 3. Calculated spin magnetic moments (µB) of GdInZn, GdInCd and GdTlZn using  
PBE-GGA 
 GdInZn GdInCd GdTlZn 
Interstitial region 0.6637 0.7403 0.5546 
Gd 7.0194 7.0023 6.9833 
In (or Tl) -0.0067 -0.0069 -0.0080 
Zn (or Cd) -0.0132 -0.0071 -0.0140 
Total   7.6632 7.7286 7.5159 
Calculated by VASP [16] - - 14.383 

 
Figures 6(a-c) show the variation of bulk modulus with temperature. These figures 

depict that bulk modulus, B decreases with increasing the temperature. Bulk modulus, B is 
inversely proportional to compressibility. Thus, Figs. 6(a-c) show that all the three 
compounds (GdInZn, GdTlZn and GdInCd) become more and more compressible with 
increasing the temperature i.e. all the three compounds become flexible with increasing the 
temperature.  Debye temperature is a thermodynamic parameter derived from elastic 
properties of the materials. It provides some detailed information of a solid material viz. 
specific heat, melting temperature etc. Figures 6(d-f) display the variation of Debye 
temperature with temperature and depict that Debye temperature (θD) remains nearly constant 
upto T ≈ 50K and then decreases at slow rate with increasing the temperature for all three 
compounds. The variation in θD is nearly same as that of bulk modulus [see Figs. 6(a-c) and 6 
(d-f)], reflects that Debye temperature is directly proportional to the bulk modulus (i. e. 
elasticity of a material). Furthermore, it can be seen from Figs. 6 (d-f) that θD of GdInZn is 
higher than GdInCd and GdTlZn, indicating GdInZn is stiffer than GdInCd and GdTlZn (as 
stiff material has high Debye temperature). 
Grüneisen parameter γ describes the anharmonicity under vibrational motion of crystal 
lattices. Figs. 7(a-c) show the variation of the Grüneisen parameter with temperature, depict 
that the Grüneisen parameter increases with temperature. γ is a function of volume in quasi-
harmonic Debye model which depends upon lattice parameters (see equation 12). As 
temperature increases, the lattice dimensions and hence volume expand with temperature. In 
expansion process, the atoms of the crystal get large space to vibrate whereas in compression 
they get small space for vibration. Therefore, the value of γ and hence crystal anharmonicity 
increases with the temperature. Specific heat, Cv is an important key which provide essentials 
insight into the vibrational properties as well as microscopic structure of a crystal. The 
temperature dependent behavior of the calculated heat capacity at constant volume (CV) is 
shown in Figs. 7(d-f). It is obvious that CV follows the Debye model relationship (CV ∝ T3 
law) up to T ≈ 300 K and then (beyond T > 300K) Cv approaches to Dulong-Petit limit (i. e. a 
constant value).  

Figures 8(a-c) show the variation of thermal expansion coefficient, α as a function of 
temperature. The thermal expansion coefficient increases with increasing the temperature 
sharply as temperature approaches to 300K. Beyond the temperature T > 300K, the effect of 
temperature on α becomes less pronounced. Microscopically, entropy (S) is a form of energy 
produced by the disorder of a system under variational motion of the atoms. The variation of 
entropy, S with temperature for all three compounds has been shown in Figs. 8 (d-f).  
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Figures 8(d-f) show that S is zero at 0 K and as temperature increases, the entropy increases 
rapidly due to increasing the vibrational contribution.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 6. Temperature induced variation in Bulk modulus, B for (a) GdInZn (b) GdTlZn and  
(c) GdInCd. Temperature induced variation in Debye temperature, θD for (d) GdInZn (e) 

GdTlZn and (f) GdInCd 
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Fig. 7. Temperature induced variation in Grüneisen parameter, γ for (a) GdInZn (b) GdTlZn 
and (c) GdInCd. Temperature induced variation in specific heat, CV for (d) GdInZn (e) 

GdTlZn and (f) GdInCd 
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Fig.8. Temperature induced variation in thermal expansion coefficient, α for (a) GdInZn  
(b) GdTlZn and (c) GdInCd. Temperature induced variation in enthalpy, S for (d) GdInZn (e) 

GdTlZn and (f) GdInCd 
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Fig. 9. Pressure induced variation in Bulk modulus, B for (a) GdInZn (b) GdTlZn and (c) 
GdInCd. Pressure induced variation in Debye temperature, θD for (d) GdInZn (e) GdTlZn and 

(f) GdInCd 
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Fig. 10. Pressure induced variation in Grüneisen parameter, γ for (a) GdInZn (b) GdTlZn and 
(c) GdInCd. Pressure induced variation in specific heat, CV for (d) GdInZn (e) GdTlZn and (f) 

GdInCd 
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Fig.11. Pressure induced variation in thermal expansion coefficient, α for (a) GdInZn (b) 
GdTlZn and (c) GdInCd. Pressure induced variation in enthalpy, S for (d) GdInZn (e) GdTlZn 

and (f) GdInCd. 
 

Figures 9-11 show the variation in B, θD, γ, CV, α and S with pressure for GdInZn, 
GdTlZn and GdInCd. Figs. 9(a-c) describe the variation in bulk modulus (B) with pressure. 
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Variation in bulk modulus with pressure shows that B increases with pressure, indicating that 
compressibility and hence flexibility of all three compounds decreases with pressure because 
bulk modulus is inversely proportional to compressibility and hence flexibility. Figures 9(d-f) 
illustrate the pressure dependent variation in Debye temperature (θD), depict that θD increases 
with pressure at different temperature. As θD is the measure of elasticity, thus, elasticity of all 
the three compounds increases with pressure. It is noticeable from Figs. 9 (a-c) and 9(d-f) that 
as temperature increases from 0K→300K→600K, the bulk modulus and Debye temperature 
decreases corresponding to each value of pressure. It shows that as temperature increases 
from 0K→300K→600K, the flexibility and stiffness decreases at each value of pressure. 

It is clear from Figs. 10 (a-c), that Grüneisen parameter decreases with pressure, 
demonstrating that anharmonicity decreases with pressure at each value of temperature. 
Figures 10 (d-f) display the variation of CV with pressure at different temperatures. It is clear 
from these Figs. that CV decreases at faster rate at low temperatures (at T = 300K) while CV 
decreases at smaller rate at higher temperatures (atT = 600K).  

Figures 11(a-c) (variation in α with pressure) depict that for a given temperature, α 
decreases significantly with the increasing pressure. From Figs. 11(d-f), it is observed that S 
decreases with pressure. It is caused by decreasing the lattice dimensions and hence 
contraction of volume with increasing the pressure, results smaller space for vibrational 
contribution to energy (i. e. atoms are less spread out and hence entropy decreases). 
 
4. Conclusions 
In the present research article electronic, magnetic and thermodynamic properties of Gd/M/M¹ 
(M=In, Tl; M¹ = Zn, Cd) compounds have been investigated using DFT. The obtained 
structural parameters are in good agreement with the experimental/theoretical data available 
in literature. The bands structure shows the metallic character of Gd/M/M¹ 
(M=In, Tl; M¹ = Zn, Cd). Total magnetic moment has been investigated from spin polarized 
calculations; indicate the dominant contribution of Gd3+ ions (mainly Gd-f orbital electrons) 
in the total magnetic moment. Electron spin polarization calculations show that these 
compounds are ferromagnetic with dominance of minority spin channel. 

Temperature and pressure dependent thermodynamic calculations show interesting 
features on bulk modulus, B Debye temperature, θD specific heat, CV thermal expansion 
coefficient, α and entropy, S for Gd/M/M¹ (M=In, Tl; M¹ = Zn, Cd).  
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Abstract. Ferroelectric material is generally used in engineering fields for such purposes as 
sensors, microelectronics, etc. It also provides more advantages compared to ferromagnetic 
materials, especially those related to a memory storage. This is due to a stored memory 
produced from magnetic system only consists of 105 bits/cm2 whereas a memory from 
ferroelectric can be stored up to 108 bits/cm2. The objectives of this study were 1) to develop 
BST films on Pt (200) / SiO2 / Si (100) substrates and p-type Si (100) substrates using the 
chemical solution deposition (CSD) method and 2) to test and study ferroelectric properties, 
XRD and SEM / EDS structure of the film produced. The research method used was an 
experiment, starting with the making of BST thin films, then ferroelectric tests, SEM / EDAX 
tests and XRD tests. The results of ferroelectric test show that all samples have ferroelectric 
properties. Therefore, annealing temperature affected a remanent polarization value and the 
coercive area of the sample. Regarding a memory application, BST (BAxSR1-XTIO3)1 M 
sample with 900°C of annealing temperature is the best material to be used since they have a 
high remanent polarization and a low coercive field.  
Keywords: annealing, BST, ferroelectric, ferromagnetic 
 
 
1. Introduction 
Random Access Memory (RAM) functions as a temporary data storage that can be run 
randomly when the computer is activated. The material of data storage in RAM is primarily 
made from ferroelectric thin films. It changes an internal polarization by using a proper 
electric field and spontaneous polarization of the material which determines a quality of the 
materials. Some main ferroelectric thin film materials consist of BaSrTiO3, PbTiO3, 
Pb (ZrxTi1-X) O3, SrBaTaO3, Pb (Mg1/3Nb2/3) O3 and Ba4Ti3O12.  

Among those ferroelectric thin film materials mentioned above, BaxSr1-xTiO3 (BST) is 
widely used as RAM since it has a high dielectric constant and high charge storage 
capacity [1]. A ferroelectric RAM which has a polarization value of about 10 μC.cm-2 may 
produce a charge of 1014 electrons per cm-2 for a memory reading process [2]. 

This study focused on the thin BST film on Pt (200) / SiO2 / Si (100) substrates and  
p-type Si (100) substrates making through Chemical Solution Deposition (CSD) method 
which was then tested for ferroelectric, XRD, and SEM/EDS properties. In addition, BST was 
chosen because its manufacture can be simply done in a laboratory and in making it 
environmentally-friendly. 
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2. Methodology  
2.1 Materials  
The materials used in this study were barium acetate powder [Ba (CH3COO)2, 99%], 
strontium acetate powder [Sr (CH3COO)2, 99%], titanium isopropoxide [Ti(C12O4H28), 
99.999%], solvent 2- methoxyethanol [H3COCH2CH2OH, 99%], Pt (200) / SiO2 / Si (100) 
substrate and p-type Si (100) substrate. 
 
2.2 BST film making 

Creating BST solvent. BST Solvent was made by utilizing barium acetate  
[Ba (CH3COO)2, 99%] + titanium isopropoxide [Ti(C12O4H28), 99,999%] as precursor and  
2-methoxyethanol [H3COOCH2CH2OH, 99,9%] as solvents [3]. After all materials were 
mixed, the solvent was shaken for one hour. The produced solvent was then combined with 
acetic acid and then re-shuffled for 30 minutes. After that, it was heated to make all materials 
to be well-mixed. Finally, the solvent was filtered so that a more homogeneous solvent was 
obtained.  

Preparing the substrates. This study used Pt (200) / SiO2 / Si (100) and p-type  
Si (100) substrates. In producing the film, cleanliness of the substrate surface was an absolute 
requirement in order to produce it well and effectively.  

Pt (200) / SiO2 / Si (100) and p-type Si (100) substrates were washed by immersing 
them in methyl alcohol and then vibrating with ultra-sonic for about 5 minutes (until they 
were clean). After this process, it was dried by using nitrogen gas for 1 minute [4].  

Growing the film. A substrate was put on a spin coating reactor which has been affixed 
with insulation in the middle position, then it was dripped with one drop of precursor solvent 
and rotated by using a spin coating reactor with a rotating speed of 3000 rpm for 30 seconds. 
This process was done 5 times to obtain 5 layers on the substrate. After that, the substrate was 
taken by using tweezers and dried by placing it on the surface of the iron which has been 
heated for 1 hour at approximate temperature of 120°C.  

Annealing process. Annealing process was done by applying furnace Neberthem 
model Type 27. The substrates used were Pt (200)/SiO2/Si (100) and Si (100) type-p 
substrate. Annealing was proceeded at the temperatures of 900°C, 950°C and 1000°C.  

The annealing process was carried out gradually. The temperature of the furnace was 
regulated by increasing the temperature of 100°C per hour to the specified annealing 
temperature. Temperature detention was executed for 15 hours. Next, the cooling furnace was 
put into a room temperature. Regarding this, in general, the annealing process is presented 
in Fig. 1. 

Fig. 1. Annealing process 
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2.3 Characterization 
X-Ray diffraction. The XRD function is to determine the crystal system (cube, 

tetragonal, orthorhombic, rhombohedra, hexagonal, monocline, triclinic), resolve the quality 
of crystals (single crystal, poly crystal, amorphous), crystal symmetry, crystal defects, to 
reach crystal parameters (lattice parameters, distance between atoms, number of atoms per 
unit cell), identification of mixtures (e.g. in alloys) and chemical analysis. All observations 
are made from an angle of (2θ) 40° to 60° with an angle increasing to 0.02° every five 
seconds. 

Ferroelectric test. This ferroelectric test aims to regulate the ferroelectric properties of 
the film obtained. The results of this test revealed saturation polarization values (Ps), 
remanent polarization (Pr) and coercive field (Ec) from the film. A thin film was also 
transformed into a structure as shown in Fig 2. Besides, this study employed a Radiant 
Technological A Charge Ver. 2.2. tool.  
 

 

Fig. 2. Structure of Ferroelectric Test. (a) Ferroelectric test on Substrate Pt (200) /SiO2/ Si 
(100), (b) Ferroelectric on Substrate Si (100) type-p 

 
3. Results and discussion 
The sample produced in this study can be seen in Table 1. 

 
Table 1. Samples of the study 

Sample Name Substrate (s) Annealing Temperature (oC) 

BST 

Pt(200)/SiO2/Si(100)  
900 
950 
1000 

Si (100) type-p 
900 
950 
1000 

 
3.1. XRD test results  
In this study, the XRD test was conducted with a diffraction angle of (2θ) 20° up to 80° with 
an increment angle of 0.02°. The XRD test results are displayed in Fig. 3. 
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(a) 

 
(b) 

 
Fig. 3. XRD BST graphs for: (a) Pt (200)/SiO2/Si (100) Substrate and (b) Si (100) Type-p 

Substrate 
 

In Figure 3, it demonstrates the increment of annealing temperature casuing differences 
in the nature of the film. All samples grown on the Si (100) substrate have been damaged. In 
contrast, not all samples grown on substrate Pt (200) / SiO2 / Si (100) were broken. According 
to Adem (2003), platinum (Pt) is very well used as a bottom electrode for thin-film 
ferroelectric-dielectric devices because it has a high thermal conductivity (71.6 Wm-1K-1) and 
good stability in an oxygen atmosphere [5]. 

The higher the temperature of annealing is, to a certain extent, the better the quality of 
the ctrystal gets. However, too high annealing temperature may impair the crystal. It is 
indicated in BST samples raised on Pt (200) / SiO2 / Si (100) substrates, the samples were 
broken at higher annealing temperatures. 

Increasing chemical substances may also affect the sample. BST film layer is 
crystalizing when the annealing temperature is 1000°C mixed with Pt (200) / SiO2 / Si (100) 
substrate, while the same treatment to BFST thin film may also be distracted.  

Based on the calculation of lattice constants, it is stated that all samples are tetragonal, 
as presented in Table 2. 

 
Table 2. The calculation result of BST parameter lattice sample  

Types of Sample Lattice Parameter (Å) Crystal Shape  A C c/a 
BST-Pt-900 3,8469 4,1174 1,0703 tetragonal 
BST-Pt-1000 3,8472 4,1137 1,0693 tetragonal 
BST-Si-900 - - - damaged 
BST-Si-1000 - - -   damaged 

 
3.2. Ferroelectric test results 
The results demonstrate that all samples made, both BST 1 M and BFST 1 M 10%, were 
ferroelectric. It can be seen from the hysteresis curve formed from each sample. The treatment 
of differences in annealing temperature, increasing of chemical substances and subtracting 
differences also influenced the parameter values obtained from ferroelectric tests. In this 
study, ferroelectric tests were carried out by providing voltage variations from 5 V to 13 V. 

The hysteresis curve of BST 1 M film on Pt (200) / SiO2 / Si (100) substrates can be 
seen in Fig. 4. 
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(a) 

 
(b) 

 
(c) 

Fig. 4. Hysteresis curve of BST 1 M on Pt (200)/SiO2/Si (100) Substrate with annealing 
temperature 900°C (b) 950°C (c) 1000°C 
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Figure 4 shows that the greater the voltage applied, the curvier the shape will be. On the 
curve (a), the width of the curve displays the field strength (kV.cm-2) measured in the sample. 
This is because the voltage increment causes more orientation of parallel domains so that the 
strength of the terrain will increase [5]. 

In BST 1 M film samples with 950 and 1000°C annealing temperatures (see curves b 
and c in Fig. 4), the curves were no longer perfect. This indicates that the voltage given to the 
sample has passed the breakdown voltage which causes the sample to no longer be in a 
ferroelectric state but it has become paraelectric a situation where the sample has no longer 
spontaneous polarization [5]. 

Moreover, in Fig. 5, it can be identified that the BST hysteresis curve is varied by an 
external stress and annealing temperature. 

 

 
 

Fig. 5. Hysteresis curve BST 1 M on Pt (200)/SiO2/Si (100) Substrate to the varied Annealing 
temperature 

 
The variation of external voltage and temperature of annealing slightly affect sample 

saturation polarization. After saturation is achieved, the voltage does not increase to the 
saturation polarization value because in this situation, all domains have been oriented in the 
same direction [5]. After the saturation state, the greater external voltage will cause the 
sample to lose its ferroelectric properties. Besides polarization, the annealing temperature also 
affected the remanent polarization (Pr) and the coercive field strength (Ec). 

Regarding the remanent polarization (Pr) (see Fig. 5), the higher the annealing 
temperature, the lower the remanent polarization values can be obtained. The remanent 
polarization value is lower due to the smaller and standardized grain size [5]. 

For coercive field values (Ec), this result is in a good agreement with literature. 
According to Koutsaroff et al., the temperature of annealing leads to the grain size formed in 
the sample. As a result, the higher the temperature, the more grain size formed [6]. Under the 
size of the critical grain size, there is a transition from a multi-domain structure to a more 
stable mono-domain. Hence, re-orienting the domain in an external electric field becomes 
more difficult as it is increasing the coercive field [7]. In BST samples grown on  
Pt (200) / SiO2 / Si (100) substrates, the increment of annealing temperature influenced the 
grain size to be smaller (this can be seen from the XRD peak shape) and the sample coercive 
field decreased (see Fig. 5). 

The BST 1 M film hysteresis curve on p-type substrate Si (100) can be seen in the 
Figs. 6a, 6b, and 6c. 

136 A. Hamdani, M. Komaro, Irzaman



  

 

                                                                                               (a) 
 

 
(b) 

 
(c) 

 
Fig. 6. Hysteresis curve of BST 1 M on Si (100) type-p substrate to the annealing temperature 

(a) 900, (b) 950, and (c) 1000°C 
 

Figure 6 (a) displays the results of ferroelectric test showing that the greater the voltage 
applied, the more curved the shape of the figure- or commonly known as Ferroelectric. For 
curves (b) and (c) at external voltages of 12V, the curves formed were no longer perfect. 
Consequently, the sample did not act as ferroelectric but it became a paraelectric.  
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Figure 7 presents hysteresis curve of BST which is varied by annealing temperature. 
 

 
Fig. 7. Hysteresis curve BST 1 M on Si (100) Type-p Substrate to the varied annealing 

temperature 
 

In addition, variation of external voltage and temperature of annealing slightly affected 
a sample of saturation polarization. Once it was done, the addition of external voltage did not 
change the saturation polarization value since all domains had been oriented in the same 
direction [5]. 

In BST 1 M samples increased to p-type Si (100) substrate, annealing temperature 
increment caused the remanent polarization values and decreased a coercive field. This is due 
to the condition of the sample that had been damaged. 
 
3.3. An Analysis of SEM/EDS 
SEM / EDS analysis is required to determine the phases and chemical compositions. 
Observations from the results of SEM / EDS are presented in Fig. 8.  
 

 
Fig. 8. The results of EDS to BST (Anil 1000°C) on Pt Substrate 

 
From the SEM / EDAX BST data shown previously, Si (100) at annealing temperature 

of 1000°C, Ba, Sr and Ti elements were detected.The results of SEM / EDAX BST on 
Pt (200) at annealing temperature of 900°C, are displayed in Fig. 9.  
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Fig. 9. The results of SEM/EDAX BST on Pt (200) of annealing temperature 900°C 

 
Results of SEM / EDAX, BST data on Pt substrate (200) at annealing temperature of 

900°C, Ba, Sr and Ti elements were detected. Whereas if the annealing temperature of 
1000°C, Sr element is no longer detected as presented in Fig. 10.  

 

 
Fig. 10. The Results of SEM/EDAX BST on Pt (200) Substrate of annealing temperature 

1000°C 
 
4. Conclusion 
BST film has ferroelectric properties as shown from the hysteresis curve produced based on 
ferroelectric tests. The temperature of annealing has a dominant influence on the value of the 
coercive field and a remanent polarization. This is due to the fact that the higher the annealing 
temperature, the greater the grain size produced. However, too high annealing temperature 
may also affect the sample to suffer a damage as resulted in a decrease in the coercive field 
value and the remanent polarization of the sample. After saturation has been achieved, the 
greater external voltage will lose ferroelectric properties of the sample. Film samples grown 
on Pt (200) / SiO2 / Si (100) substrates, and increment of chemical material cause the coercive 
field value and breakdown voltage to increase. As for the p-type Si (100) substrate, the 
increment of chemical material is not clearly visible since the sample has been damaged. For 
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memory applications, BST 1 M samples with annealing temperature of 900°C are the best 
option because they have a high remanent polarization and a low coercive field. 
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Abstract. In this study, we synthesized a hydrogel from the extract of gracillaria (GR), poly-
(vinyl alcohol) (PVA), glutaraldehyde (GA), and carbon nanotube (CNT). To confirm the 
synthesis of hydrogel, several characterizations were done, including fourier transform infra 
red (FTIR) and scanning electron microscope (SEM). Analysis on the material performance 
under various parameters (such as swelling ratio and release behavior of potassium from 
hydrogel into aqueous media) was also carefully evaluated based on weight measurement and 
flame-photometry instrumentation. FTIR spectra showed that the interaction of hydrogel 
components (GR, PVA, GA, CNT and Kalium-related material) involved some functional 
groups such as C-O, C-N, C=O, C-H sp3 as well as O-H which predominantly occurred 
through hydrogen bonding. The swelling ratio of technical-grade PVA-based hydrogel was 
higher than that of pro-analytical-grade. The hydrogel showed a typical slow release behavior 
for potassium ion with the release rate is 8.89 ppm for first ten minutes and the release rate 
average is 0.0134 ppm/minutes for the normal phase. 
Keywords: hydrogel, gracilaria, poly-(vynil alcohol), CNT 
 
 
1. Introduction 
Due to its potentiality in wide range of application, especially for slow/controlled release 
components that are available in fertilizer, drug delivery, ion exchanger, and absorbent 
materials, hydrogel has been becoming an attractive material and being a great interest of 
many scientists [1,2]. The use of hydrogel as a medium for a slow/controlled release fertilizer 
is now getting popular, indicating that there is a positive trend on lifting up the possible 
applications in practical agriculture. Moreover, exploration of new possible resources for 
preparing hydrogel matrixes has evidently become a hot topic within two past decades.   

Among the main sources in developing a hydrogel for slow/control-release fertilizer 
holder, poly-(vinyl alcohol) (PVA) and gluteraldehyde (GA) are two main materials 
frequently used [3]. PVA is a synthetic polymer that is water soluble because of its hydroxyl 
groups.  PVA has a relatively simple chemical structure with a pendant hydroxyl group. PVA 
is also a non-toxic synthetic polymer and has been available in large scale commercial 
production. This material is also utilized in various industrial applications, such as fibers, 
films, hydrogels, and glues [4,5].   

For searching environmental compatibility, many scientists have been concerned on 
incorporating natural polymers into hydrogel matrix. Among many possible sources for 
natural polymer, red alga has become a major concern because of its alginate content. 
Alginate is an anionic linear polysaccharide composed of two saccharides. Alginate can be 
regarded as a binary copolymer composed of α-I-guluronic acid (G) and β-D-mannuronic (M) 
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that are covalently bonded through 1,4-glycosidic linkage and arranged into either 
homopolymeric block (MM and GG) or alternating block (MGMG) along the polymeric 
backbone [4-12].  

Accordingly, the polymer blend (PVA with alginate) can generate the polymeric 
materials, improving physical properties, lowering cost of basic polymer materials, 
simplifying the process ability in the film formation, and making the material biologically 
acceptable [3,10]. Both polymers are hydrophilic, making combination of PVA and alginate 
to bring positive impacts on improving chemical, physical, and mechanical properties [11,12].  

Other potential material that could be used to modified the properties of hydrogel- based 
controlled-release fertilizer is carbon nanotube (CNT). Carbon nanotubes are nano-scale 
carbon materials having unique mechanical and thermal properties, offering many advantages 
for application in various fields. In addition to the distinctive characteristics of CNT 
(i.e., superior surface area, high electrical conductivity, and low percolation properties when it 
is dispersed into polymer matrix), CNT has been selected as one of the excellent candidates of 
polymer filler [13]. The insertion of CNT into polymer matrix can improve physico-chemical 
properties of polymer [14]. 

Potassium, in its various forms, plays somewhat important roles in plant growth system. 
Comprehension of its release behavior into its vicinity may give many valuable insights in 
developing potassium-based fertilizer system. Release and sorption behavior of a chemical 
substance from a hydrogel into its vicinity and permeation of a chemical from one phase to 
another separated by a membrane are affected by several physical and chemical conditions of 
its environment. It was found that desorption of kalium from PVA-Borate hydrogel was 
favorable in the aqueous system. The polarity of solvent influences the kinetics of desorption 
[15]. In other works, it was concluded that the release behavior of a composite lignin-based 
hydrogel, called LBPAA, is sensitive to pH, temperature, and ionic strength [16].  

In this study, glacilaria sp and CNT were incorporated into PVA/gluteraldehyde 
polymer matrix, and its performance such as swelling power and its release behavior were 
examined. The study used potassium chloride as the working material release. 
 
2. Material and method 
2.1. Material 
Several materials were used: Gracillaria sp (taken from regional farmer), poly-(vinyl alcohol) 
pro analytical-grade (Mr 6000) (Merck, Germany), poly-(vinyl alcohol)  technical-grade 
(Brataco, Indonesia), glutaraldehyde (25% pro analytical-grade; Merck, Germany), methanol 
(96% pro analytical-grade; Merck, Germany), sulphuric acid (97%; pro analytical-grade; 
Merck, Germany), acetic acid (pro analytical-grade; Merck, Germany), graphene oxide 
(Japan), multiwall carbon nanotubes functionalized (Japan), and potassium chloride (KCl; pro 
analytical-grade; Merck, Germany). 

 
2.2. Method 

Preparation of Reactants. PVA solution was prepared by dissolving 20 mg of PVA in 
100 mL of deionized water, and stirred while heated at 90°C for about 3 hours. Crosslinker 
solution was prepared by mixing methanol (50%), acetic acid (10%), sulfuric acid (10%), and 
glutaraldehyde (1,25%) with a volume ratio 3:2:1:1, respectively. CNT dispersion was 
prepared by dissolving 1 mg of CNT into 100 mL of graphen oxide solution (1% w/v in 
deionized water). Then, the solution was sonicated for about 30 minutes. Gracillaria sp 
extract was prepared by macerating 40 g of dry-powdered gracillaria (100 mesh) in 200 mL 
of methanol solution (70%) for about 96 hours, and after while the macerated solution was 
separated from the residue. 

 

142 H. Hendrawan, F. Khoerunnisa, F.I. Ekawati, Y. Sonjaya



Preparation of hydrogel. The GR/PVA/GA/CNT hydrogel was prepared by mixing the 
extract of gracillaria, PVA solution, crosslinker solution, and CNT solution with a volume 
ratio of 2:2:2:1, respectively. The technique was as follow: a quantity of PVA solution, 
crosslinker solution, and CNT solution were successively poured into a quantity of extract of 
gracillaria sp, then stirred gently using magnetic stirrer at 50°C until it is homogenous. The 
homogenized solution was poured into a hydrogel mold (bar coating plate) and dried in an 
open air for about five days. The GR/PVA/GA hydrogel was prepared in the same method but 
it was prepared using a volume ratio of 1:1:1 for GR, PVA, and GA, respectively.  

Swelling Ratio. Swelling ratio parameter of the hydrogel was determined by soaking a 
quantity of dried hydrogel (the mass is exactly known as W0) into 25 mL of deionized water 
and allowed to swell at room temperature. After 10 minutes, the swollen hydrogel was 
separated from the rest of deionized water and drained by filtering using a 100-mesh of 
aluminum sieve, weighed, and noted as Wt. The swelling ratio of water (SR) was calculated 
using equation (1). 

100
)(

0

0 ×
−

=
W

WW
SR t , (1) 

where W0 is the weight of dried hydrogel, and Wt is the weight of the swollen hydrogel [17]. 
Release behavior examination. As much as 4 pieces of the GR/PVA/GA/CNT 

hydrogel with a specific dimension (1 cm × 1 cm × 0.04 cm) was soaked into 200 mL of KCl 
1.00 M solution for about 48 hours. Then, after they were dried for about 30 minutes, the 4 
pieces of mounted hydrogel is named as GR/PVA/GA/CNT-K. The rest of potassium ion in 
the solution was determined using the flame-photometer. To examine the desorption profile, 
the GR/PVA/GA/CNT-K was immersed into 200 mL of deionized water in a beaker glass and 
continuously stirred. In the certain time, 10 mL of the solution was taken. Then, 10 mL of 
deionized water was added to the rest of solution to maintain the total volume to be constant. 
The potassium content in the sampled solution was then determined using a flame-
photometer. 

 
2.3. Characterizations 
During this study we used a Fourier Transform Infra Red (FTIR; Shimadzu, Japan), Scanning 
Electron Spectroscope (SEM; JEOL JSM-6510LA, JEOL, Japan), Flame-photometer Corning 
410 (CIBA-Corning, Madrid, Spain). 
 
3. Results and Discussion 
3.1. Material structure and morphology 
The typical FTIR spectrum for GR/PVA/GA, GR/PVA/GA/CNT, and GR/PVA/GA/CNT-K 
were represented in Fig. 1. It could be noticed in Fig. 1 that the three spectra of hydrogel 
demonstrated the peaks at the same wavenumber, but they have different intensities, which 
means that the GR/PVA/GA hydrogel becomes the main part in all modified hydrogel. The 
addition of CNT and/or CNT-K into the GR/PVA/GA hydrogel did not generate any 
structural changes. It is most likely that CNT and/or CNT-K stick physically onto hydrogel 
framework. 
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Fig. 1. FTIR spectra of GR/PVA/GA (blue line), GR/PVA/GA/CNT (green line), and 

GR/PVA/GA/CNT-K (purple line) 
 

The FTIR spectra of GR/PVA/GA, GR/PVA/GA/CNT, and GR/PVA/GA/CNT-K have 
the absorption peaks at wavenumbers of 3400 cm-1 for O-H, 2800-2900 cm-1 for C-H 
stretching from C-H sp3, 1600 cm-1 for C=O specific from aldehyde [18], 1200 cm-1 for C-N, 
and 1100 cm-1 for C-O/C-O-C. There was a shifting of peak for OH at GR/PVA/GA/CNT, 
where the peaks for O-H at GR/PVA/GA/CNT is wider than that of GR/PVA/GA, supposedly 
caused by existence of intramolecular and intermolecular interaction (hydrogen bond) 
between O-H and CNT. Addition of CNT and/or CNT-K into GR/PVA/GA/CNT framework 
strengthen the intensity at the adsorption peaks of 3400 cm-1, 2900 cm-1, 1600 cm-1, and 1100 
cm-1, for O-H, C-H aldehyde, C=O, and C-O functional groups, respectively. This peaks are 
different from the types of carbon material [19]. 

Surface morphologes of GR/PVA/GA, GR/PVA/GA/CNT, and GR/PVA/GA/CNT-K 
were determined using the SEM as shown in Fig. 2. The images were taken at the cross 
sectional position with the angle 80 degrees. The SEM images in Fig. 2 show that the surfaces 
of GR/PVA/GA, GR/PVA/GA/CNT, and GR/PVA/GA/CNT-K are not smooth, but rather 
rough, for which the tension on the surfaces could provide active sites for adsorbing any 
charged particles. It is look likely that the level of surface roughness increased in the series of 
GR/PVA/GA, GR/PVA/GA/CNT, and GR/PVA/GA/CNT-K hydrogel. 
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Fig. 2. SEM images of hydrogel: (a) GR/PVA/GA (5000 times), (b) GR/PVA/GA/CNT 
(5000 times), and (c) GR/PVA/GA/CNT-K (1000 times) 

 
3.2. Material performances 
In this work, the performance study of hydrogel was focused on swelling ratio and release 
behavior parameters. 

Swelling Ratio. The typical feature of swelling ratio of GR/PVA/GA/CNT hydrogel 
based on the variation of PVA purity-grade were represented in Fig. 3. In this case, the 
GR/PVA/GA/CNT hydrogel where the PVA is in technical-grade is marked as 
GR/PVA/GA/CNT (TG), while the GR/PVA/GA/CNT hydrogel where the PVA is in pro 
analytical-grade is encoded as GR/PVA/GA/CNT (PAG).  

Fig. 3 represents the plot of swelling ratio versus immersion time of GR/PVA/GA/CNT 
hydrogel prepared using PVA with technical and pro analytical grades. The hydrogel prepared 
using PVA technical-grade has a higher swelling ratio compared to that of hydrogel prepared 
using PVA pro analytical-grade.  Utilization PVA technical-grade produced hydrogel with a 
high capacity in swelling ratio parameter, which may be caused by its high flexibility in 
absorbing water. The viscosity of PVA in technical-grade is lower than that in pro analytical-
grade, in which this is because the intermolecular interaction is easier to form [20]. 

 
 

Preparation and physico-chemical properties of gracilaria/PVA/GA/CNT-based hydrogel for slow/controlled... 145



 
 

Fig. 3. Swelling Ratio of various GR/PVA/GA/CNT hydrogel as function of time of 
immersion 

 
Furthermore, effect of addition of potassium ion on swelling ratio of GR/PVA/GA/CNT 

hydrogel is presented in Fig. 4. The addition of potassium ion into the GR/PVA/GA/CNT 
hydrogel matrix increases the swelling ratio of the hydrogel both for hydrogel prepared using 
PVA technical and pro analytical-grades. The graphical profile on the Fig. 4 shows that the 
presence of potassium ions increases the hydrogel accommodation capacity of water. 
Although the exact mechanism could not be determined yet, the ability of potassium ions to 
capture water seemingly plays an important role in achieving the conditions of increasing the 
hydrogel absorption capacity. The increases in the hydrogels flexibility are due to the 
presence of potassium ions. They can be inferred from the graph of swelling profiles of 
GR/PVA/GA/CNT-K (TG) and GR/PVA/GA/CNT-K (PAG) versus time, indicating that the 
hydrogels are still be able to make flexing at the time of immersion in long period (about 8 
days). 

 

 
 

Fig. 4. Profile of Swelling Ratio (SR) of GR/PVA/GA/CNT hydrogel with and without 
potassium ion [Note: (TG = use technical-grade PVA, PAG = use pro analytical-grade PVA)] 
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Potassium Release Behavior. The potassium release profile from the loaded hydrogel 
as a function of time is given in Fig. 5. The release behavior pattern potassium from hydrogel 
matrix into aqueous phase, as demonstrated in Fig. 5, shows that the overall time release 
could be divided into three time periods, i.e., the initial period (first five minutes), followed 
by transient period (between 5 and 10 minutes), and normal period. These periods were 
attained after 10 minutes of the desorption processes. The pattern of the releasing profile is 
quite similar to result found by other researcher for potassium chloride release [21,22]. The 
graph in the Fig. 5 shows that at the initial period, there was a sudden dissolution of 
potassium chloride into bulk. This fact could be inferred that at the initial period the 
potassium release was mainly occurred from the surfaces of hydrogel into bulk, which was 
most probably followed by the occurrence of solvent intrusion into the hydrogel. At the 
transient period, the release seemed to be the combination between surface release and the 
release of potassium from the inner part of gel into solvent, where the rate of inner desorption 
gradually increased as the surface release decreased. At the normal period, the releasing 
phenomenon may be expected only or mainly from the inner part of gel into solvent. The 
excessive potassium releases in the early period. Typically, the time period was from zero to 
five minutes, indicating that most of potassium chloride did not exhibit the inner part of the 
gel but adsorbed at the surfaces. This condition provoked the occurrence of catastrophic 
dissolution when the loaded hydrogel was immersed into solvent. Furthermore, if we take the 
10th minute of the initial time in the normal releasing phenomenon and the 80th minutes (as 
the longest limit of observation time), the average of release rate in the time period is 0.0134 
ppm per minute.  

 

 
 
Fig. 5. The total desorbed potassium chloride into aqueous phase during the dissolution 

processes 
 

It is interesting to look deeper on the release phenomenon after 10 minutes of the 
processes. The graph on the Fig. 5 demonstrates that there was an increase in the quantity of 
potassium released over the same time period. The increase in the release rate seems to be 
fairly regular. The increment of the releasing rate may be visualized in term of the value 
differences between the concentrations of KCl in the series of releasing time. The typical 
feature of the graph is presented as Fig. 6. With increasing time, there should be a decrease in 
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the concentration inside the gel. If the process was done within a period of 10 to 80 minutes, 
the amount of potassium released is very small compared to the initial concentration. Thus, 
the concentration inside the gel can be practically unchanged. At the period between 10 and 
40 minutes, the increase in release rate can be expected as a result of broadening the pores 
within the hydrogel, allowing material run less retarded from the hydrogel into the 
environment. The stagnant release rate, between 40 and 70 minutes, can be explained as the 
maximum expansion of gel volume, which was attained at the 40th minute of the gel 
immersion. Meanwhile, the sudden change in release rate after 70th minute of immersion 
could be due to physical deformation such as gel abrasion or torn. This assumption is also 
supported by the fact that the swelling ratio of hydrogel increases with the length of 
immersion time. 

 

 
 

Fig. 6. The increment of potassium chloride release in series of time at the normal period 
 
4. Conclusion 
We have successfully prepared a hydrogel based on glaciallias sp (GR), poly-(vinyl alcohol) 
(PVA), glutaraldehyde (GA), and carbon nanotube (CNT), which was called 
GR/PVA/GA/CNT hydrogel. The FTIR spectra showed that the interaction of hydrogel 
components involved some functional groups such as C-O, C-N, C=O, C-H sp3 and O-H 
which predominantly occurred through hydrogen bonding. Meanwhile, the SEM images 
indicated that the level of surface roughness increased in the series of GR/PVA/GA, 
GR/PVA/GA/CNT, and GR/PVA/GA/CNT-K hydrogel. The hydrogel prepared using PVA in 
technical-grade has a higher swelling ratio compared to that prepared using PVA in pro 
analytical-grade. The hydrogel showed a typical slow release behavior for potassium ion with 
the release rate is 8.89 ppm for first ten minutes and the release rate average is 0.0134 
ppm/minutes for the normal period. The release mechanism of potassium ions from hydrogel 
was supposed to begin from the hydrogel surface into bulk, followed by the intrusion of water 
into hydrogel matrix, which eventually exerted potassium ions from the inner part of 
hydrogel.  
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Abstract. The aim of this study was to evaluate the effect of different solvents in sonication 
process on the formation of graphene from the electrochemical exfoliation of graphite. In 
short, graphite rod was exfoliated by electrochemical process with ammonium sulfate as salt-
electrolyte. The exfoliated powder then sonicated under two different solvents, which are 
Dimethylformamide (DMF) and aqueous solution to form graphene. It was found that similar 
structure of graphene was obtained from both types of solvent. However, the amount of 
graphene produced was different due to the differences in graphene stability. Graphene is 
more stable in DMF solvents compared to the aqueous solution. The aqueous solution can 
allow the reversible reaction that can reform graphite oxide from graphene due to the 
existence of hydroxyl component in the aqueous solution. 
Keywords: graphene, graphite, electrochemical exfoliation, solvent, sonication 
 
 
1. Introduction 
Graphene is a two-dimensional block of carbon allotropes originating from every other 
dimension [1]. Further, this material has several distinctive properties, including extremely 
strength, high thermal, electrical conductivity, transparency, and flexibility [2]. Based on 
those excellence properties, this material has a high potential be applied in various 
applications, such as electronic devices, supercapacitors, batteries, composites, flexible 
transparent displays, sensors [2] and corrosion inhibitor [3]. 

There are two methods for synthesizing graphene, namely top-down and bottom-up 
methods [2]. Several methods in the top-down method are micromechanical cleavage, 
exfoliation of graphite oxide, electrochemical exfoliation, exfoliation of graphite intercalation 
compounds (GICs), solvent-based exfoliation, arc discharge, and unzipping carbon nanotubes. 
Bottom-up methods include epitaxial growth on silicon carbide, chemical vapor deposition, 
and miscellaneous methods. The processes using the top down method have more advantages 
compared with that using bottom up method. Specifically, the processes using the top down 
process allow for the obtainment of large size and unmodified graphene, inexpensive and 
scalable synthesis procedure, a single step functionalization and exfoliation, and the 
production of graphene with high electrical conductivity [4]. Among the top down process, 
the electrochemical exfoliation method is one of the most popular methods for the production 
of graphene because of its simplicity, short-time process, and potentiality in producing high 
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quality of grapheme [5]. An example of this technique was reported by Liu et al. [6] which 
produced graphene flakes using this method added with an ultrasound sonication process. The 
results showed that the final product synthesized by the sonication had largely bi-layer 
graphene flakes, in which the result is thinner in layers compared with the process without 
sonication. Although the reports in the synthesis of graphene using the electrochemical 
exfoliation are well-documented, there is no report on the investigation of solvent types on the 
successful formation of graphene. 

Here, this study evaluated the synthesis of graphene using an electrochemical 
exfoliation process under various types of solvents during sonication process. The selection of 
solvents during this sonication process is important in the graphene synthesis because it will 
affect the product of graphene, including the long-term dispersing stability of graphene. Two 
different solvents were used, namely Dimethylformamide (DMF) and aqueous solution. These 
solvents were selected based on Paredes et al. [7], stating that these are the best solvent for 
providing and diluting graphene oxide (GO). However, their study concerned only on GO 
(not in graphene). 

The finding of DMF and aqueous solution effects on the graphene synthesis would be 
good for providing information that can contribute in the industrial world or engineering 
application. Specifically, DMF and aqueous solution are able to disperse graphene without 
additional surfactant. Thus, when we understand this solvent parameter, we can estimate and 
predict the way for minimizing the amount of surfactant and stabilizing agent. The surfactant 
and stabilizing agent are sometimes undesirable for most applications. 

In short of the experimental procedure, graphene was synthesized from graphite rods 
using the electrochemical exfoliation method. To support the synthesis process, a sonication 
process was added to decipher the graphene layer, whereas the centrifugation process was to 
remove large agglomerates.  

In addition, this study focused on understanding the effect of solvent types on the 
formation of graphene. Thus, this study did not concern on the number of layers in the 
graphene. Indeed, the present method allowed the formation of multilayer of graphene (MG) 
and graphene oxide (MGO) from both solvents. This is probably because of the limitation in 
the processing time used in the electrochemical exfoliation as well as sonication process. 
 
2. Experimental method 

Synthesis of graphene via electrochemical exfoliation. Graphite rods with a purity of 
95% and a dimension of diameter and length of 0.40 and 10 cm were used as an anode and a 
cathode electrode. Prior to being used, both graphite materials were immersed into 300 mL 
ammonium sulfate solution (0.1 M; R&M chemicals, UK). The electrochemical exfoliation 
process was carried out for 5 hours with a 10 V. This process consumed three graphite rods in 
the anode site. During the process, a black product is gradually formed, which indicated that 
exfoliation of graphite is in progress. Then, electrolyte was filtrated using a vacuum filtration. 
The residue was dried, and the dried residue was a black powder. The dried black powder was 
dissolved in a 300 mL of specific solvent (i.e., N,N-Dymethylformamide (DMF; R&M 
Chemicals, UK) or aqueous solution). The amount of dried black powder was fixed at 2 wt%, 
in which this is due to the fact that graphite fine powder is well-suspended in the 
concentration range of 1-2% during the sonication process [8]. Indeed, concentration of 2% 
was selected to get maximum yield of graphene. The dissolved black powder was sonicated 
for 3 hours, and the result was filtered using a vacuum filtration. The final product was a 
black filtrate. Detailed information for the synthesis process was shown in Fig. 1.  
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Fig. 1. Steps of graphene synthesis by electrochemical exfoliation method followed by 

sonication process 
 

Characterizations. Chemical properties of the product were investigated using a 
Fourier Transform Infrared (FTIR, Nicolet iS50 FT-IR) in the range of 400-4000 cm-1. 
A Raman Spectroscope (Raman, Horiba LabRam HR Evolution) was used to analyze the 
chemical composition and characteristics of the products at 514 nm. A Transmission Electron 
Microscope (TEM, FP 5022/12 Tecnai G2 20 Twin) was used for the analysis of the 
morphology of graphene. Analysis of the effect of solvents on the products produced was also 
done by a UV-Vis spectroscope (UV/VIS Spectrometer, Lambda 1050 PerkinElmer), where 
the solution before and after centrifugation were investigated.  

 
3. Results and discussion  
The FTIR analysis (presented in Fig. 2) shows that the process using various solvents can 
allow the formation of graphene from graphite. Detailed analyses are in the following. 

In the case of process with aqueous solution, there are two peaks at the wavelengths of 
3331 and 1636 cm-1, which indicated the vibration of the -OH group and the aromatic C = C 
group. The -OH group is from the water molecule.  

In the sonication process with DMF, there are peaks at wavelengths of 1254, 1096, 
1062, and 660 cm-1, which were due to the vibrations of C-N groups. The peak at wavelength 
of 1651 cm-1 was also found, corresponding to the vibration of C = O group. This result was 
in a good agreement with the results reported by Tatariants et al. [9]; this is due to the 
existence of DMF. In addition, peaks at wavelengths of 1496, 1438, and 1411 cm-1 were due 
to a vibration of the C = C aromatic group [10]. The C = C aromatic group was also found in 
sample produced using the aqueous solution, in which this is due to the possible formation of 
graphene or graphene oxide. 

The results of the Raman Spectroscopy analysis (see Fig. 3) showed that the use of 
different solvents did not have impacts on the chemical components of the product. Three 
types of chemical compositions were obtained, namely multilayer graphene (MLG 1 and 2) 
and graphene oxide (GO). In the three Raman spectras, there are two main peaks, namely G 
and 2D peaks. The G peak is located at 1580 cm-1 and peak 2D at 2700 cm-1, which arises due 
to the optical vibrations in the center of the E2g degeneration zone and second-order zone on 
the phonon boundary. In addition, there is a secondary peak, namely the D peak located at 
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1350 cm-1. This peak arises in defected graphene, indicating the existence of carbon 
impurities (as the main impurities component) that are released from imperfect exfoliation 
process [11].  

 

 
Fig. 2. The FTIR analysis results of graphene after the sonication process using DMF and 

aqueous solution 
 

The Raman Spectra can be used as a reference in determining the quality and number of 
graphene layers based on 2D shape, width, and peak position [1]. MLG 1 and 2 indicated 
from G peak is higher than 2D peak. The both spectras from MLG 1 and MLG 2 are in 
accordance with the results of the study by Niilisk et al. [12] that the higher the 2D peak 
intensity, the more the number of layers in MLG. Therefore, MLG 2 has more layers than 
MLG 1. Actually, the specific analysis of single layer graphene can be done, by justification 
through Raman Spectroscopy analysis to show sharp single 2D peaks with higher intensity 
than G [1]. However, this study is for comparing the aqueous solution and DMF only; thus, 
we did not concern this specific peaks in our results. 

The results of TEM analysis of the both sample produced with different solvents are 
shown in Fig. 4. Different morphologies were obtained, but they are almost the same. Their 
morphologies are rolls and wavy sheets forms. The rolls and wavy sheets are an intrinsic 
characteristics of grapheme [13-15]. The analysis showed dark and transparent areas. The 
dark areas can occur due to the existence of a number of graphene sheets, oxygen groups from 
graphene oxide, graphite, and impurities attached to the surface of the products. The 
transparent areas are the parts of thin layers from graphene. The more transparent has 
correlations to the thinner sheets or fewer groups of oxygen [16].  
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Fig. 3. The results of the Raman Spectroscopy analysis of compounds contained in the 
product 

 

 

Fig. 4. The results of TEM analysis of graphene with sonication process using DMF (a) and 
aqueous solution (b) 

 
Figure 5 shows the results of UV-Vis spectrophotometry before and after the 

centrifugation process. In the use of DMF, a peak did not change at 275 nm, which is an 
absorption area of graphene [17]. In the use of aqueous solution, the absorption changed from 
265 to 256 nm, in which these represented the graphene absorption area [18-19]. There is no 
peak change in DMF solvents, confirming that graphene in DMF is more stable than that in 
aqueous solution.  

Aqueous solution can allow the reversible reaction that can reform graphite oxide from 
graphene. This is due to the existence of hydroxyl components in the aqueous Solutions. In 
the case of DMF, this type of solvent has better effects on producing more graphene in the 
final product. No reversible reaction is formed in DMF process. As a consequence, this 
solvent is also able to produce high quality single layer graphenes compared to aqueous 
solution. However, since this study focused on understanding the effect of solvent types on 
the formation of graphene, we did not concern on the number of layers in the graphene. 
Indeed, the present method allowed the formation of multilayer of graphene and graphene 
oxide from both solvents. We believe that the main reason is due to the limitation in the 
processing time used in the electrochemical exfoliation as well as sonication process. 
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(a) 

 
(b) 

Fig. 5. The results of UV-Visible spectrophotometry analysis of graphene with sonication 
process using aqueous solution (a) and DMF (b) solvents before and after centrifugation 

 
4. Conclusion 
The electrochemical exfoliation process of graphite has successfully led the production of 
multilayer graphene (MLG) product with layers of 1-6 and graphene oxide (GO). The results 
indicated that both types of solvents can promote the formation of graphene from graphite. 
Similar structure of graphene was obtained. However, the amount of graphene produced was 
different, in which this is due to the differences in graphene stability.  
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