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Abstract. An algorithm for discrete optimization of steel flat rod systems was developed on the 
basis of an evolutionary search. The task is to minimize the weight of the bars via taking into account 
constraints on stresses, displacements, and overall stability. The cross-sectional dimensions of the bars 
and the coordinates of their node connections were varied. Buckling is taken into account when stability 
is lost both in the object plane and out of the plane. Analysis of deformations of the considered structure 
variants was performed via the displacement-based finite element method. An iterative procedure for 
solving the task was formulated by using an auxiliary elite population, combined approaches to selection 
and mutation, and single-point crossover. The primary feature of the proposed computing scheme is 
simplified structure stability verification by determining stress-strain conditions with a tangent stiffness 
matrix and the additional self-balanced system of small fictitious forces. Assessment as to how constraint 
on stability was met was performed based on the results of the considered convergence of the internal 
iteration cycle used for analyzing load-carrying system behavior by taking into account the influence of 
longitudinal forces on the bars while bending. It was calculated that it is sufficient to perform only 3–5 
iterations of this procedure to verify structure stability. Efficiency of the proposed algorithm is illustrated 
via the example of optimization of bar system with two supports and a frame with a girder truss. 

Аннотация. Разработан алгоритм дискретной оптимизации изготовленных из стали плоских 
стержневых систем на основе эволюционного поиска. Ставится задача минимизации веса 
стержней с учетом ограничений по напряжениям, перемещениям и общей устойчивости. 
Варьируются размеры поперечных сечений стержней и координаты узлов их соединения. 
Учитывается выпучивание при потере устойчивости как в плоскости, так и из плоскости объекта. 
Анализ деформаций рассматриваемых вариантов конструкции выполняется методом конечных 
элементов в форме метода перемещений. Сформулирована итерационная процедура решения 
поставленной задачи с использованием вспомогательной элитной популяции, комбинированных 
подходов к селекции и мутации, одноточечного кроссинговера. Основной особенностью 
предлагаемой вычислительной схемы является упрощенная проверка устойчивости конструкций 
путем расчета их напряженно-деформированного состояния с использованием касательной 
матрицы жесткости и дополнительной самоуравновешенной системы малых фиктивных сил. 
Оценка удовлетворения ограничения по устойчивости выполняется по результатам рассмотрения 
сходимости внутреннего итерационного цикла, реализующего анализ поведения несущей системы 
при учете влияния для стержней продольных сил на изгиб. Расчетным путем установлено, что для 
проверки устойчивости конструкции достаточно выполнить только 3–5 итерации этой процедуры. 
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Работоспособность предлагаемого алгоритма иллюстрируется на примере оптимизации 
двухопорной стержневой системы и рамы с ферменным ригелем. 

Introduction 
For newly designed building systems, the percentage of buildings and constructions with steel 

bearing structures is increasing. These being the case, flat rod systems are in wide usage. The process 
of optimally designing such objects often includes the choice of bar profile dimensions and the 
arrangement of their connecting nodes, taking into account constraints on stresses, displacements, and 
stability. To verify the provision of strength and stiffness of flat rod systems included in steel framework 
systems, one should usually implement two-dimensional computational models. At the same time, a 
stability analysis of such objects, in many cases, is required to be performed while taking into account the 
possibility of buckling out of the structure plane. 

The issue of optimally designing bar systems is given great attention in scientific literature. The 
most universal approaches to solving these problems have been obtained via the use of meta-heuristic 
methods [1–10], which allow performing an effective search using discrete sets of variable parameters 
taking into account a set of standard requirements as the conditions for a building structure design. In 
particular, the use of genetic algorithms in such issues was considered [1, 4]. At the same time, meta-
heuristic procedures for the optimal synthesis of frameworks are often related to the need for performing 
a significant number of working capacity checks of structure solution variants taken into consideration. A 
significant volume of work hours for such checks to be spent, particularly for taking into account the 
necessity of ensuring conditions of stability, to a certain extent restrains the use of such algorithms for 
practical purposes. In a number of papers that represent optimization methods of various types, stability 
constraints were considered only for separate bars [11–15], which greatly simplifies the task, but reduces 
the possibilities of application in real design practice. In [16, 17], compliance with constraints on a 
structure’s overall stability was verified on the basis of the classical solution of the eigenvalue problem 
within the framework of the Euler approach. In [18, 19], the condition of ensuring stability at size 
optimization of the flat rod systems unfolded from displacements from the plane of the structure was 
approximately taken into account by considering the effect of longitudinal forces on bending. 

It should be noted that during the optimization process, it is usually not necessary to determine the 
critical load values and buckling shapes, but only to check structure stability. To do so, it is sufficient to 
confirm that the determinant of the tangent stiffness matrix of the system is positive [20]. Such a criterion 
was taken into account for optimization of bar structures in [21, 22]. In this paper, to optimize flat rod 
systems, even a simpler assessment of in-plane and out-of-plane stability is realized, including analysis 
of convergence of the iterative process of the structure calculation via the finite element method using a 
tangent stiffness matrix and a self-balanced system of small auxiliary forces. In this case, the stability test 
is combined with the analysis of the stress-strain condition of the bar system. 

Minimization of the rods’ weight is performed with a set of strength, stiffness, and overall stability 
constraints by varying rod profiles and coordinates of nodal points on discrete sets of permissible 
variants. Constructive and technological requirements are all taken into account when assigning sets of 
permissible values of variable parameters. The structure of the optimization scheme is carried out by 
using the general provisions for genetic algorithm of work [23]. 

The purpose of this paper is to develop an evolutionary algorithm for optimization of flat rod 
systems considering with acceptable computational complexity the overall stability as one of the active 
constraints. To this effect the problem of creating a simplified iteration scheme of overall stability 
evaluation of rod structures without defining the critical load level for intermediate alternatives of a 
deformable object is solved. 

Methods 

Statement of the optimization problem 

We believe that the plane steel structure is made of rectilinear bars with constant cross-sections 
along their lengths. The axes of bars and one of the main axes of bar cross-sections are located in plane  

XY  of the Overall Cartesian coordinate system XYZ  (Fig. 1). We set the task of minimizing the weight 
W  of all the bars of the structure: 

  min,...,,,,...,, 2121 MN RRRHHHW , (1) 
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where ),...,2,.1( NnHn   – set of permissible combinations of sizes of independently varied cross-

sections of the bar n , N – total number of such sections, mR
 

),...,2,1( Mm   – set of permissible 

values for the independently varied nodal coordinate m , M  – the total number of such coordinates. 

We take into account that the bars with variable cross-sectional dimensions can be combined into 
groups in which such parameters are assumed to be the same. Accordingly, variable coordinates can be 
combined into groups, the values of which are required to be the same. 

We assume that the structure is subject to loading in its plane. The stress-strain condition of the 
object is calculated using the finite element method within the framework of the displacement method. 
This being the case, the possibility of structure spatial deformation should be taken into account, 
considering the need to assess compliance with stability requirements both in the framework plane and 
out of the plane. To ensure the possibility of stability testing of separate bars, each of them is divided into 
not less than 5–6 finite elements. 

 

Figure 1. Example of the bar system with separation into bars and finite elements:  
1–3 are bar numbers, G – bar connection nodes, U – nodes of the finite element model 

A set  of all coordinates of the finite-element model nodes can be represented as follows 

 YX Ω,ΩΩ , (2) 

where  IX XXX ,..., ,Ω 21
, 

 IY YYY ,..., ,Ω 21  – sets of values of the node coordinates along 

axis X  and Y , respectively, I  – total number of nodes. 

We expand the set   into nonoverlapping subsets: 

DBA  , (3) 

where A
 
– set of independently changeable coordinates, B  – set of changeable coordinates being 

linear functions of the coordinates belonging to the set A , D  – set of unchangeable coordinates. 

Each of sets ),...,2,1( MmRm 
 
is given for one coordinate of set A . In this case, if the 

position of the rectilinear structural element varies in the plane, each coordinate of nodes 1G , 2G  of its 

marginal sections (Fig. 2) may belong only to sets A  or D  only. Then, coordinates kX , kY  of a 

certain internal node k of such a structural element for the current configuration of the structure can be 

determined using equations 

  lXXxXX kk /121  ,   lXXxXY kk /122  , (4) 

where 1X , 1Y , 2X , 2Y  – coordinates for nodes 1G  and 2G  in the current configuration, respectively, 

kx  and l  – value of coordinate x  of node k and the length of the structural element for the basic 

configuration, respectively. 

We believe that, in the general case, the following constraints can be taken into account: 
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A) Strength condition: 

ym R , (5) 

where m  
– Mises stress; yR  – design steel resistance assigned with regard to the yield strength [24]. 

B) Stiffness requirements. For each node i  of the discretizable structure, inequations should be 

met 

  jj uu  ,   jj vv  , (6) 

where ju , jv  – projections of j node displacement on X  and Y  axis, respectively,  ju ,   jv  – 

permissible values for such displacements. 

C) Overall stability of bar system structure, including stability of individual bars. 

D) Stability of side flanges and walls of profiles. 

E) Stability of plane bending of bars. 

F) Provision of local structural strength. 

G) Unification regarding topologies and parameters. 

H) Design constraints (possibility of determining layout of nodal connections, support conditions, 
etc.). 

 

Figure 2. Straight-line structural element in plane XY : 1, 2 – basic and current configurations 

Principles of constraints accounting 

Constraints A, B, and C are considered active and are directly taken into account during the 
optimization process. Other constraints are taken into account when choosing the initial prerequisites for 
optimal design and are controlled after the optimal search has been performed. In general, it is 
understood that the result of optimization, a variant of the design solution, in any case, should be 
checked for compliance with all the constraints imposed, by applying certain adjusted schemes. If 
necessary, the initial prerequisites for optimization can be adjusted and the optimization process 
performed again. 

We assume that the structure material operates under conditions of linear elasticity. In general, we 
take into account that bars are subject to deformations caused by tension/compression, bending in both 
main planes, and pure torsion. The finite element model of the bar system is formed in accordance with 
known provisions [25]. 

We will check compliance with active constraints based on an analysis of the stress-strain 
condition of the design variants using the method of a step-by-step approach. We consider the system 
deformations under conditions of small displacements, while taking into account longitudinal-transverse 
bending of the bars. For each standard combination of loads, during the first iteration, we perform 
calculations by applying conventional stiffness matrices of the finite element method and the actual load, 

and, in iteration 2r , we solve the following system of linear algebraic equations: 
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   
 

    QK
r

 , (7) 

where  K
 
– tangent of the stiffness matrix [20] of the spatial finite element model,   r  

– vector of 

nodal displacements calculated in iteration r ,  Q  – vector of nodal forces that takes into account the 

standard impact,    – randomly generated vector of a self-balanced system of small nodal forces that 

can take non-zero values for any nodal degree of freedom. 

The tangent matrix of stiffness can be represented as [20] 

    KK     )1( r
G NK , (7) 

where  K
 
– stiffness matrix of the finite element model,    )1( r

G NK
 
– geometric matrix of the finite 

element system [25] expressed through longitudinal bar forces found in iteration 1r  that are combined 

into vector   )1( r
N . 

Vector    should not have any significant influence on the task solution if the load does not 

approach the Euler critical level. In this case, additional fictitious displacements associated with this 
vector should allow creating the conditions for the manifestation of stability loss by a planar or spatial 
scheme. Then, according to the theory of stability [26], as the load approaches the critical level, the 
energy of the object deformation obtained through the effect of longitudinal forces on the bars bending 
will tend to infinity. We introduce an estimate of structure stability based on the premise that when 
implementing the iterative process on a computer in accordance with equation (7), the absence of the 
convergence of solutions indicates non-fulfillment of constraint C. We control the approach to the 

condition of instability by verifying the following condition for the preset iteration number 3or : 


 )1(

)(

1
o

o

r

r

U

U
, (9) 

where 
)( orU , 

)1( orU  – discretized object deformation energies obtained in iterations or  
and 1or , 

respectively,   – fixed small positive number. 

According to calculations, a sufficiently effective verification of this type is ensured if 5or , 

001.0 . If all the standard requirements are met for the bar system, then practically 3–5 iterations are 

required for the iterative process to be implemented. 

Management of the optimal search process on the basis of genetic algorithm 

In our case, an individual is the variant of the structure obtained by choosing values of parameters 
from predefined discrete sets. Each of such sets shall be arranged in descending order: by area of cross-

sections for sets nH
 
and the values of the coordinates for sets mR . 

We believe that during each iteration of the genetic algorithm, the following two populations (sets) 
of individuals shall be considered: 

1. Current population 1 . It has the fixed size 1N  and is used for individuals that can be 

processed by genetic operators. 

2. Elite population 2 . It is introduced to save the best variants of solutions in the search process. 

The genetic material of this population can be used in the modification of population 1 . It is envisaged 

that the number of individuals in population 2  should not exceed preset value 2N . 
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Initially, population 1  is formed. 1N  identical projects based on the first elements of sets nH  

),...,2,1( Nn  , mR
 

),...,2,1( Mm 
 
are introduced. Next, an iterative procedure is performed, each 

iteration of which includes the following steps: 

1. Check of the individuals’ fitness for work. The stress-strain condition is calculated for each 

variant of the structure related to population 1 . This population is divided into groups: 1
 
and 1  . If 

for an individual belonging to group 1 , any of the active constraints is not met, then such individual is 

replaced by the best individual from the elite population 2
 
not available in population 1 . If there are 

no such individuals in population 2 , then, for this purpose, random information is generated about 

parameters for a new variant of the structure not considered in population 1 . For an individual from 

group 1  , constraint (9) is taken into account in the same way. At the same time, if only constraints A 

and B are violated for individuals belonging to this group, a significant penalty shall be introduced by 
multiplying the value of the objective function by a factor 

        11рk , (10) 

where   ,  – set positive numbers, )(x
 
– heaviside function of some argument   ( 0)(  , if

0  and 1)(  , if 0 ), 




























 1maxmax

max)(

yi

i

it R
m


 ,

    












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


 1max,1maxmaxmax

j

j

jj

j

jt v

v

u

u
 , (11) 

t  – number of load combination variants, 
max)(i

m
  – maximum value m  for i bar, yiR

 
– value yR

 
for 

this bar material. 

2. Modification of the elite population. For each individual l1  
of population 1 , the objective 

function value  lW 1  is calculated and the following condition shall be verified: 

       max212221 )( WW ljjl   , (12) 

where j2  – j individual from population 2 , max2W
 
– the maximum value of the objective function for 

this population individuals. 

If the criterion (12) is met, the individual from population 1
 
is copied into population 2 . This 

being the case, if the elite population already contains individuals 2N , then the individual with the largest 

value of the objective function is removed from it. 

3. Check of conditions for the optimization completion. Calculations show that in the absence of 

changes in population 2 , throughout 200-300 iterations, further continuation of the search, as a rule, 

does not lead to a change in the best value of the objective function. It was assumed that, providing that 
the elite population is stable for 300 iterations, the solution of the optimization problem is complete. 

4. Mutation. For individuals of population 1 , where in each generation there exists the possibility 

of random change in part of the parameters in several individuals. The following mixed scheme for 

changing the position of parameter j
 
in the discrete set jT  of its permissible values is used. Suppose 

that this set has jw  elements. On the interval (0; 1), with the help of a random number generator, values

ba mm  ,  are selected by applying the uniform distribution law to be compared with the control numbers 

of mutation 321 ,, , ffff . If fma  , then the number of the parameter value in set iT  shall be chosen 

randomly with equal probability. When fma  , the choice shall be made in accordance with Table 1, 
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where jr
 
is the number of the parameter value in set iT  before mutation, r~  is the value by which this 

number changes as a result of mutation. 

Table 1. Values of additions to the parameter number at fma   

jr
 

r~  

1fmb   21 fmf b   32 fmf b   3fmb   

1 0 0 1 2 

2 -1 -1 1 2 

3 -2 -1 1 2 

4 -2 -1 1 2 

… … … … … 

2jw  -2 -1 1 2 

1jw  -2 -1 1 1 

jw  -2 -1 0 0 

 

5. Selection and crossover. The selection operator is applied to all individuals from population 1  

by applying the roulette method [27, 28] on the basis of the obtained objective function values in 
accordance with the mixed scheme used in [22]. Crossover was performed using the single-point 
operator [27, 28]. 

Results 
The use of a developed computational scheme is considered for examples of a bar structure with 

two supports and a frame with a girder truss. It was assumed that the optimized objects were made of 

S235 steel [24]. The following was taken into account: modulus of elasticity MPa1006.2 5E , weight 

density 
3kN/m77 . The following was set out: 2021  NN , 5or , 10 , 100 , 

9.0f , 5.0 1 f , 75.02 f , 9.03 f . Compliance with constraints on strength, stiffness, and 

stability were confirmed for the obtained optimization task solutions by applying the Autodesk NEi 
Nastran software package (License FGBOU VO "BGITU” N PR-05918596) and with regard to the existing 
standards [24]. 

Example 1 considered the bar structure with two supports consisting of six bars 1–6 of equal length 

(Fig. 3a) with an H-shaped cross-section (Fig. 3b) at z ║ Z . Dimensions of each bar 1–3 cross-section of 
the symmetric system were varied independently. Permissible combinations of bar cross-sections are 

indicated in Table 2. Coordinates of the central node C  also varied, provided that straightness of 

segments CDI  и CDII  remain unchanged. The following set of permissible values was specified for 

this coordinate: {-20, -17.5, -15, -12.5, -10, -7.5, -5, -4, -3, -2, -1, 0, 1, 2, 3 4, 5, 7.5, 10, 12.5, 15, 17.5, 
20} (cm). The uniform finite element mesh was introduced (see Fig. 3a). Independently, three cases of 

optimization were implemented with the following loading conditions: MN5.21 P , 0432  РPP ; 

2) MN5.21 P , MN5.0432  PPP  и 3) МN5.21 P , MN25.132  PP , 04 Р . It was 

assumed that     cm8 ii vu , MPa230yR . Optimization results are shown in Figure 4, where 

stk  – safety factor of stability by the Euler method obtained through the use of Autodesk NEi Nastran 

software. These design parameters were achieved in no more than 60 generations. 
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a)                                                                            b) 

Figure 3. Bar system with two supports: a – design diagram applying the basic geometry of the 
object with subdivision on finite elements: 1–6 – bar numbers, b – bar cross-section in local 

system of axes 

Table 2. Permissible combinations of cross-section variable parameters for Example 1 

Combination number cm,fb  cm,ft  cm,wh  cm,wt  

1 16 1 15 0.6 

2 20 1.5 18 0.8 

3 25 2 20 1 

4 28 2 25 1.2 

5 30 2.2 30 1.2 

6 34 2.2 35 1.4 

7 38 2.4 40 1.4 

8 42 2.6 45 1.6 

9 46 2.8 50 1.6 

10 50 3 55 1.8 

 

 

Figure 4. Results of an optimal search for a bar system with two supports with numbers of bar 
cross-section combinations (see Table 2) 

Example 2 demonstrates the object of optimization represented by a symmetrical plane frame with 

a girder truss, span m36L  (Fig. 5). In the basic configuration of the object m101 H , m5.32 H , 

m75.13 H . The frame has rigid supports А , B  and is fixed in the nodes of the upper chord of the 

truss from displacement in the direction of axis Z . The operational load of the weight of the structure and 

snow in the form of the system of forces 21  , PP , wind pressure represented by distributed loads 41 - qq , 

and bars weight adjusted during the process of optimization according to the varied parameters, was 
taken into account. Values of loads were determined considering the structure location in Bryansk 

(Russian Federation). The following was set out: kN1081 P , kN542 P , kN/m38.11 q , 

kN/m42.42 q , kN/m035.13 q , kN/m31.34 q ,   cm9iu ,   cm12iv , MPa234yR . 
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Figure 5. Frame basic configuration 

All in all, 22 variables were varied independently: 15 combinations of cross-section dimensions and 
7 coordinates. This being the case, provisions were made to ensure structure symmetry. In Figure 5, for 

the left half of the object, 151 gg   groups of bars are shown with independently varied combinations of 

cross-section dimensions and nodes 71 UU   with independently variable coordinates Y . It was 

supposed that the bars have an H-beam cross-section (see Fig. 3b), provided that z ║ Z . For each 

group 151 gg   of bars, the search was performed with reference to the combinations of dimensions 

indicated in Table 3. For Y coordinates of 41 UU   nodes, a set of permissible values {700; 800; 900; 

1000; 1050 1100} (cm) was taken into account, and for 75 UU   nodes – the set {1150; 1175; 1200; 

1225; 1250} (cm). 

Table 3. Permissible combinations of bar cross-sections in Example 2 

Number of 
combination 

cm,fb  cm,ft  cm,wh  cm,wt  

1 10 1 8 0.6 

2 20 1.2 18 0.6 

3 25 1.6 23 0.8 

4 30 1.8 28 0.8 

5 35 1.8 33 0.8 

6 40 2 38 1 

7 43 2 40 1 

8 45 2.2 43 1 

9 50 2.4 48 1.2 

10 55 2.4 52 1.4 

11 60 2.6 58 1.6 

12 70 2.8 68 1.8 

 
In performing the structure discretization, each bar was divided into five finite elements. As a result 

of the optimal search, the solution was obtained and shown in Fig. 6 with the value of the objective 

function kN 50.88W , where digits indicate the number of combinations of bar cross-section 

dimensions (see Table 3). In this case, 300 iterations of the outer cycle were required with less than 

4106   structure variant analysis. The optimization process took 37 hours of computer time by using an 

Intel Core i7 Processor. For this project, coefficient 19.1stk . From Figure 6, it is clear that during the 

course of optimization, for the most important bar cross-sections, an arch configuration was reproduced 
approximately. 
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Figure 6. Result of frame optimization 

Discussion 

It should be noted that in the presented algorithm used for the performance of optimal search 
iterations, an object stability assessment is provided for, including the stability of individual bars according 
to a spatial pattern. The introduction of a random self-balanced system of small forces can be considered 
as a practical means to reduce complexity of calculations when there is an opportunity to approximately 
reproduce buckling corresponding to the Euler mode of stability loss in the case where a normative load 
does not allow it to be done. Such conditional additional loading cannot lead to rejection of an efficient 
structure variant. At the same time, it is presumed that, in any case, the solution of an optimization task 
must be analyzed in detail, including by applying widely-distributed software for finite element analysis. 

In the considered examples, the proposed procedure provided for obtaining the resulting 
framework variants and stability conditions both via the Euler method and in accordance with standard 
requirements [24]. The values of the Euler stability coefficient for such project solutions did not exceed 
1.19. Since the search was performed using discrete sets of parameters, the stability coefficients are 
quite acceptable for practical purposes. In this case, in assessing the structure variant stability combined 
with the calculation of stress and strain of the bar system. This approach does not require intermediate 
search stages of multiple consideration of the generalized problem of eigenvalues or the performance of 
calculating the stress-strain structure in a geometrically nonlinear setting, and allows solving, with an 
acceptable level of requirements to the complexity of the calculations, complex optimization problems of 
bar systems. 

Conclusion 
1. A computational scheme is proposed which allows optimization of flat rod systems made of 

steel, on discrete sets of bar cross-section dimensions and geometrical parameters defining the shape of 
a structure. 

2. An optimal search is performed using the genetic algorithm procedures earlier proposed by the 
authors for effectively solving complex tasks with a large number of constraints. 

3. In the optimization process, verification of the structure variants for stresses, displacements, 
and overall stability is provided for. Assessment of compliance with requirements for stability is performed 
both for buckling in the structure plane and out of plane by applying an approximate approach providing 
for the implementation of 5 iterations of the object deformation analysis via the finite element method 
based on the tangent of the stiffness matrix. In this case, no multiple generalized eigenvalue problems 
require solving. 

4. Examples of steel load-bearing structures were used to make it possible, due to the proposed 
approach, to find solutions for flat rod systems optimization. Verification of compliance with stability 
constraints based on the adjusted schemes showed that factors of safety for the obtained constructive 
solutions were within the interval [1.12, 1.19]. 
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