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Flat rod systems: optimization with overall stability control
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Abstract. An algorithm for discrete optimization of steel flat rod systems was developed on the
basis of an evolutionary search. The task is to minimize the weight of the bars via taking into account
constraints on stresses, displacements, and overall stability. The cross-sectional dimensions of the bars
and the coordinates of their node connections were varied. Buckling is taken into account when stability
is lost both in the object plane and out of the plane. Analysis of deformations of the considered structure
variants was performed via the displacement-based finite element method. An iterative procedure for
solving the task was formulated by using an auxiliary elite population, combined approaches to selection
and mutation, and single-point crossover. The primary feature of the proposed computing scheme is
simplified structure stability verification by determining stress-strain conditions with a tangent stiffness
matrix and the additional self-balanced system of small fictitious forces. Assessment as to how constraint
on stability was met was performed based on the results of the considered convergence of the internal
iteration cycle used for analyzing load-carrying system behavior by taking into account the influence of
longitudinal forces on the bars while bending. It was calculated that it is sufficient to perform only 3-5
iterations of this procedure to verify structure stability. Efficiency of the proposed algorithm is illustrated
via the example of optimization of bar system with two supports and a frame with a girder truss.

AHHOTaumA. PaspabotaH anroput™ AWCKPETHON ONTUMMU3ALMM U3TOTOBMEHHbIX U3 CTaNM MIOCKMX
CTEPXHEBbIX CUCTEM Ha OCHOBE 3BOJMIOUMOHHOrO noucka. CTaBuTCA 3ajada MUHMMU3aUMKW Beca
CTEPXHEN C Y4YeTOM OrpaHWYeHu MO HanpshkKeHWsM, nepemeLleHnsM u oblel yCTONYMBOCTW.
BapbupyloTca pasmepbl MonepeyHbiX CEYEHUN CTepXHem W KOoopAuHaTbl Y3MnoB WX COefUHEHMS.
YuntbiBaeTCA BbIMy4YMBaHUE Npu noTepe YCTOMYMBOCTU KaK B MIIOCKOCTU, TaK U U3 NIIOCKOCTM OObeKTa.
AHanus gedopmMaumnin paccMaTpvBaeMblX BapuUaHTOB KOHCTPYKUMMW BbIMOSTHAETCH METOAOM KOHEYHbIX
anemeHToB B (popme metoda nepemelleHun. CchopmynupoBaHa utepauuoHHasa npoueaypa peLueHus
NMOCTaBMNEHHOW 3agayn C UCMONb30BaHMEM BCMOMOraTesNlbHOM 3MUTHOW MONynAumMM, KOMOMHUPOBAHHbIX
MOAXOAOB K CenmeKkuMnm u MmyTauun, OJHOTOYEeYHOro KpoccuHroBepa. OCHOBHOW OCOBEHHOCTbLIO
npeanaraemMon BblYUCIUTENBHOW CXeMbl SIBMSEeTCA YNpOoLeHHasi npoBepka YCTOMYMBOCTU KOHCTPYKLUNIA
nyTem pacdeta UX Hanps>keHHO-AedOPMUPOBAHHOIO COCTOSIHUA C MCMOSib30BaHMEM KacaTenbHOMn
MaTpuLbl XECTKOCTU W OOMNOSTHUTENbHOW CaMOypaBHOBELUEHHOW CUCTEMbI MarbIX (UKTUBHBLIX CUIT.
OueHka yaoBreTBOPEHUS OrpaHUYEeHUs No YCTONYMBOCTU BLIMOSHAETCSA MO pesdynbTaTtaMm pacCMOTpeHus
CXOAMMOCTU BHYTPEHHErO UTEPaLMOHHOIO LMKNa, pearnunayloLwero aHanus nosegeHns HecyLlen CUCTeMbI
npu yyete BAUAHUA NS CTEPXHEN NPOAONbHbLIX CU Ha U3rnb. Pac4yeTHbIM NMyTeM YyCTaHOBMEHO, YTO ANA
NPOBEPKN YCTOMYMBOCTN KOHCTPYKLIMU JOCTATOYHO BbINOMHUTL TONbKO 3—5 UTepauumun 3Ton npoueaypsbl.
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PaboTtocnocobHoCTb npegnaraeMoro anroputma WNAKCTPUPYETCs Ha npuvMepe  ONTUMM3auuu
OBYXOMOPHOW CTEPXXHEBOW CUCTEMbI U pambl C PEPMEHHBIM pUrenem.

Introduction

For newly designed building systems, the percentage of buildings and constructions with steel
bearing structures is increasing. These being the case, flat rod systems are in wide usage. The process
of optimally designing such objects often includes the choice of bar profile dimensions and the
arrangement of their connecting nodes, taking into account constraints on stresses, displacements, and
stability. To verify the provision of strength and stiffness of flat rod systems included in steel framework
systems, one should usually implement two-dimensional computational models. At the same time, a
stability analysis of such objects, in many cases, is required to be performed while taking into account the
possibility of buckling out of the structure plane.

The issue of optimally designing bar systems is given great attention in scientific literature. The
most universal approaches to solving these problems have been obtained via the use of meta-heuristic
methods [1-10], which allow performing an effective search using discrete sets of variable parameters
taking into account a set of standard requirements as the conditions for a building structure design. In
particular, the use of genetic algorithms in such issues was considered [1, 4]. At the same time, meta-
heuristic procedures for the optimal synthesis of frameworks are often related to the need for performing
a significant number of working capacity checks of structure solution variants taken into consideration. A
significant volume of work hours for such checks to be spent, particularly for taking into account the
necessity of ensuring conditions of stability, to a certain extent restrains the use of such algorithms for
practical purposes. In a number of papers that represent optimization methods of various types, stability
constraints were considered only for separate bars [11-15], which greatly simplifies the task, but reduces
the possibilities of application in real design practice. In [16, 17], compliance with constraints on a
structure’s overall stability was verified on the basis of the classical solution of the eigenvalue problem
within the framework of the Euler approach. In [18, 19], the condition of ensuring stability at size
optimization of the flat rod systems unfolded from displacements from the plane of the structure was
approximately taken into account by considering the effect of longitudinal forces on bending.

It should be noted that during the optimization process, it is usually not necessary to determine the
critical load values and buckling shapes, but only to check structure stability. To do so, it is sufficient to
confirm that the determinant of the tangent stiffness matrix of the system is positive [20]. Such a criterion
was taken into account for optimization of bar structures in [21, 22]. In this paper, to optimize flat rod
systems, even a simpler assessment of in-plane and out-of-plane stability is realized, including analysis
of convergence of the iterative process of the structure calculation via the finite element method using a
tangent stiffness matrix and a self-balanced system of small auxiliary forces. In this case, the stability test
is combined with the analysis of the stress-strain condition of the bar system.

Minimization of the rods’ weight is performed with a set of strength, stiffness, and overall stability
constraints by varying rod profiles and coordinates of nodal points on discrete sets of permissible
variants. Constructive and technological requirements are all taken into account when assigning sets of
permissible values of variable parameters. The structure of the optimization scheme is carried out by
using the general provisions for genetic algorithm of work [23].

The purpose of this paper is to develop an evolutionary algorithm for optimization of flat rod
systems considering with acceptable computational complexity the overall stability as one of the active
constraints. To this effect the problem of creating a simplified iteration scheme of overall stability
evaluation of rod structures without defining the critical load level for intermediate alternatives of a
deformable object is solved.

Methods
Statement of the optimization problem

We believe that the plane steel structure is made of rectilinear bars with constant cross-sections
along their lengths. The axes of bars and one of the main axes of bar cross-sections are located in plane
XY of the Overall Cartesian coordinate system XYZ (Fig. 1). We set the task of minimizing the weight
W of all the bars of the structure:

W(Hl’H21---1HN;R1,R2,..-,RM)—) min , (1)
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where H,(n=1,2,...,N) — set of permissible combinations of sizes of independently varied cross-

sections of the bar n, N — total number of such sections, R, (m=12,...,M) — set of permissible
values for the independently varied nodal coordinate m, M - the total number of such coordinates.

We take into account that the bars with variable cross-sectional dimensions can be combined into
groups in which such parameters are assumed to be the same. Accordingly, variable coordinates can be
combined into groups, the values of which are required to be the same.

We assume that the structure is subject to loading in its plane. The stress-strain condition of the
object is calculated using the finite element method within the framework of the displacement method.
This being the case, the possibility of structure spatial deformation should be taken into account,
considering the need to assess compliance with stability requirements both in the framework plane and
out of the plane. To ensure the possibility of stability testing of separate bars, each of them is divided into
not less than 5-6 finite elements.

G 2
——

IY T +
7 Y 777 +
e

Figure 1. Example of the bar system with separation into bars and finite elements:
1-3 are bar numbers, G — bar connection nodes, U — nodes of the finite element model

A set Q of all coordinates of the finite-element model nodes can be represented as follows
Q={0. O}, @
where Qy ={X1, Xo, Xy } Qy ={Y1,Y2,...,Y|} — sets of values of the node coordinates along
axis X and Y ,respectively, | — total number of nodes.
We expand the set Q into nonoverlapping subsets:
Q=0,+0Q +Qp, ©)
where Q, — set of independently changeable coordinates, QB — set of changeable coordinates being

linear functions of the coordinates belonging to the set QA, QD — set of unchangeable coordinates.

Each of sets R, (M=12,...,M) is given for one coordinate of set ),. In this case, if the
position of the rectilinear structural element varies in the plane, each coordinate of nodes G;, G, of its
marginal sections (Fig. 2) may belong only to sets {25 or Qp only. Then, coordinates. Xy, Yy of a

certain internal node K of such a structural element for the current configuration of the structure can be
determined using equations

Xy = Xg+ X (Xo = X )1, Yy = X+ % (Xp = Xg )1, (4)
where Xq, Yy, X,, Yo — coordinates for nodes G; and G, in the current configuration, respectively,

Xk and | — value of coordinate X of node k and the length of the structural element for the basic
configuration, respectively.

We believe that, in the general case, the following constraints can be taken into account:
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A) Strength condition:
om <Ry, (5)
where oy, — Mises stress; Ry — design steel resistance assigned with regard to the yield strength [24].

B) Stiffness requirements. For each node i. of the discretizable structure, inequations should be
met

il <[y, il < (6)
where Uj, vj - projections of jnode displacement on X and Y axis, respectively, [u]j , [V]j -
permissible values for such displacements.

C) Overall stability of bar system structure, including stability of individual bars.
D) Stability of side flanges and walls of profiles.

E) Stability of plane bending of bars.

F) Provision of local structural strength.

G) Unification regarding topologies and parameters.

H) Design constraints (possibility of determining layout of nodal connections, support conditions,
etc.).

r % 1
z¢¥ x G koo \ G

© / |

Figure 2. Straight-line structural element in plane XY : 1, 2 —basic and current configurations
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Principles of constraints accounting

Constraints A, B, and C are considered active and are directly taken into account during the
optimization process. Other constraints are taken into account when choosing the initial prerequisites for
optimal design and are controlled after the optimal search has been performed. In general, it is
understood that the result of optimization, a variant of the design solution, in any case, should be
checked for compliance with all the constraints imposed, by applying certain adjusted schemes. If
necessary, the initial prerequisites for optimization can be adjusted and the optimization process
performed again.

We assume that the structure material operates under conditions of linear elasticity. In general, we
take into account that bars are subject to deformations caused by tension/compression, bending in both
main planes, and pure torsion. The finite element model of the bar system is formed in accordance with
known provisions [25].

We will check compliance with active constraints based on an analysis of the stress-strain
condition of the design variants using the method of a step-by-step approach. We consider the system
deformations under conditions of small displacements, while taking into account longitudinal-transverse
bending of the bars. For each standard combination of loads, during the first iteration, we perform
calculations by applying conventional stiffness matrices of the finite element method and the actual load,
and, in iteration r > 2, we solve the following system of linear algebraic equations:
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K]} - Q)+ {a}. o

where [K]T — tangent of the stiffness matrix [20] of the spatial finite element model, {5} r_ vector of

nodal displacements calculated in iteration I, {Q} — vector of nodal forces that takes into account the
standard impact, {A} — randomly generated vector of a self-balanced system of small nodal forces that
can take non-zero values for any nodal degree of freedom.

The tangent matrix of stiffness can be represented as [20]
(K], =[]+ ke (2] G

where [K] — stiffness matrix of the finite element model, [KG ({N }(r_l) )] — geometric matrix of the finite
element system [25] expressed through longitudinal bar forces found in iteration r —1 that are combined
into vector {N }(r—l) .

Vector {A} should not have any significant influence on the task solution if the load does not

approach the Euler critical level. In this case, additional fictitious displacements associated with this
vector should allow creating the conditions for the manifestation of stability loss by a planar or spatial
scheme. Then, according to the theory of stability [26], as the load approaches the critical level, the
energy of the object deformation obtained through the effect of longitudinal forces on the bars bending
will tend to infinity. We introduce an estimate of structure stability based on the premise that when
implementing the iterative process on a computer in accordance with equation (7), the absence of the
convergence of solutions indicates non-fulfilment of constraint C. We control the approach to the

condition of instability by verifying the following condition for the preset iteration number I, = 3.

U(ro)
1—m <a, 9)

where U (r"), U =D _ giscretized object deformation energies obtained in iterations I and Iy —1,

respectively, a — fixed small positive number.

According to calculations, a sufficiently effective verification of this type is ensured if Iy =5,

a =0.001. If all the standard requirements are met for the bar system, then practically 3-5 iterations are
required for the iterative process to be implemented.

Management of the optimal search process on the basis of genetic algorithm

In our case, an individual is the variant of the structure obtained by choosing values of parameters
from predefined discrete sets. Each of such sets shall be arranged in descending order: by area of cross-

sections for sets H,, and the values of the coordinates for sets R, .

We believe that during each iteration of the genetic algorithm, the following two populations (sets)
of individuals shall be considered:

1. Current population @q. It has the fixed size N; and is used for individuals that can be
processed by genetic operators.

2. Elite population @, . It is introduced to save the best variants of solutions in the search process.
The genetic material of this population can be used in the modification of population @, . It is envisaged

that the number of individuals in population @, should not exceed preset value N2 .
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Initially, population @, is formed. Nl identical projects based on the first elements of sets H,

(n=12..,N), R, (m=12,...,M) are introduced. Next, an iterative procedure is performed, each
iteration of which includes the following steps:

1. Check of the individuals’ fitness for work. The stress-strain condition is calculated for each
variant of the structure related to population ®;. This population is divided into groups: CD’l and CD{. If

for an individual belonging to group CDi, any of the active constraints is not met, then such individual is
replaced by the best individual from the elite population @, not available in population @, . If there are
no such individuals in population @, then, for this purpose, random information is generated about
parameters for a new variant of the structure not considered in population @;. For an individual from

group (DI, constraint (9) is taken into account in the same way. At the same time, if only constraints A

and B are violated for individuals belonging to this group, a significant penalty shall be introduced by
multiplying the value of the objective function by a factor

kp = L+ &g 2lag N1+ &5 (a5 ), (10)
where &,&5 — set positive numbers, y(X) — heaviside function of some argument @ (y(@) =0, if

w<0 and y(w)=1,if ®>0),

a—maxrmlxﬂ—l a—maxrrﬁxmaxu—j‘— max_‘vj‘_
o 145 = , : (11)
t | i Ryi t i | [ul; i V]

(imax)

m

t — number of load combination variants, o — maximum value o, for ibar, Ryi — value Ry for

this bar material.

2. Modification of the elite population. For each individual @7, of population (Dl, the objective

function value W((01|) is calculated and the following condition shall be verified:

(—(ew =<02j)V((P2j e @, )))v W (@y) <Wom ), (12)

where ¢, —j individual from population @5, Wy 5 — the maximum value of the objective function for
this population individuals.

If the criterion (12) is met, the individual from population (Dl is Copied into population (I>2. This

being the case, if the elite population already contains individuals N, then the individual with the largest
value of the objective function is removed from it.

3. Check of conditions for the optimization completion. Calculations show that in the absence of
changes in population (I>2, throughout 200-300 iterations, further continuation of the search, as a rule,

does not lead to a change in the best value of the objective function. It was assumed that, providing that
the elite population is stable for 300 iterations, the solution of the optimization problem is complete.

4. Mutation. For individuals of population @, where in each generation there exists the possibility
of random change in part of the parameters in several individuals. The following mixed scheme for
changing the position of parameter | in the discrete set Tj of its permissible values is used. Suppose

that this set has W elements. On the interval (0; 1), with the help of a random number generator, values
m,, My, are selected by applying the uniform distribution law. to be compared with the control numbers
of mutation f, fy, f5, f3.1f my > f | then the number of the parameter value in set T; shall be chosen

randomly with equal probability. When m, < f , the choice shall be made in accordance with Table 1,
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where I is the number of the parameter value in set T; before mutation, T is the value by which this
number changes as a result of mutation.

Table 1. Values of additions to the parameter number at m, < f

r
r.
) mb<f1 f1£mb<f2 fzfmb<f3 mefg
1 0 0 1 2
2 -1 -1 1 2
3 -2 -1 1 2
4 -2 -1 1 2
WJ—2 '2 -1 1 2
Wj—l -2 -1 1 1
WJ -2 -1 0 0

5. Selection and crossover. The selection operator is applied to all individuals from population @1

by applying the roulette method [27, 28] on the basis of the obtained objective function values in
accordance with the mixed scheme used in [22]. Crossover was performed using the single-point
operator [27, 28].

Results

The use of a developed computational scheme is considered for examples of a bar structure with
two supports and a frame with a girder truss. It was assumed that the optimized objects were made of

S235 steel [24]. The following was taken into account: modulus of elasticity E = 2.06 .10°MPa, weight
density p =77kN/m3. The following was set out: N, =N, =20, r,=5, & =10, &5 =100,

f=09, f; =05 f,=075, f3=0.9. Compliance with constraints on strength, stiffness, and

stability were confirmed for the obtained optimization task solutions by applying the Autodesk NEi
Nastran software package (License FGBOU VO "BGITU” N PR-05918596) and with regard to the existing
standards [24].

Example 1 considered the bar structure with two supports consisting of six bars 1-6 of equal length
(Fig. 3a) with an H-shaped cross-section (Fig. 3b) at Z || Z . Dimensions of each bar 1-3 cross-section of
the symmetric system were varied independently. Permissible combinations of bar cross-sections are

indicated in Table 2. Coordinates of the central node C also varied, provided that straightness of
segments D|C n D”C. remain unchanged. The following set of permissible values was specified for

this coordinate: {-20, -17.5, -15, -12.5, -10, -7.5, -5, -4, -3, -2, -1, 0, 1, 2, 3 4, 5, 7.5, 10, 12.5, 15, 17.5,
20} (cm). The uniform finite element mesh was introduced (see Fig. 3a). Independently, three cases of

optimization were implemented with the following loading conditions: P, =25MN, P, =P; =P, =0;
2) R=25MN, P,=P;=PF,=05MN un 3 B =25MN, P,=P;=125MN, P, =0. It was
assumed that [u]i = [V]i =8cm, Ry =230 MPa. Optimization results are shown in Figure 4, where

kst — safety factor of stability by the Euler method obtained through the use of Autodesk NEi Nastran
software. These design parameters were achieved in no more than 60 generations.
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a) b)

Figure 3. Bar system with two supports: a —design diagram applying the basic geometry of the
object with subdivision on finite elements: 1-6 — bar numbers, b — bar cross-section in local
system of axes

Table 2. Permissible combinations of cross-section variable parameters for Example 1

Combination number bs,cm t;,cm h,,,Ccm t,,Ccm
1 16 1 15 0.6
2 20 15 18 0.8
3 25 2 20 1
4 28 2 25 1.2
5 30 22 30 1.2
6 34 22 35 1.4
7 38 2.4 40 1.4
8 42 26 45 16
9 46 28 50 16
10 50 3 55 1.8
Case 1 Case 2 Case 3
g !
o 9
& 8 A £
. 3 5 6 A\ —F 7 i A "
g gt gl T N
W= 5.54 kN W=28.97 kN W=1491KkN
k,=1.17 k,=1.15 k,=1.12

Figure 4. Results of an optimal search for a bar system with two supports with numbers of bar
cross-section combinations (see Table 2)

Example 2 demonstrates the object of optimization represented by a symmetrical plane frame with
a girder truss, span L =36m (Fig. 5). In the basic configuration of the object H; =10m, H, =3.5m,
H3; =1.75m. The frame has rigid supports 4, B and is fixed in the nodes of the upper chord of the
truss from displacement in the direction of axis Z . The operational load of the weight of the structure and
snow in the form of the system of forces P}, P,, wind pressure represented by distributed loads 0y -Qa .

and bars weight adjusted during the process of optimization according to the varied parameters, was
taken into account. Values of loads were determined considering the structure location in Bryansk

(Russian Federation). The following was set out: P, =108kN, P, =54kN, g; =1.38kN/m,
G, =4.42kN/m, g3 =1.035 kN/m, g, =3.31kN/m, [u] =9cm, [v} =12cm, R, =234 MPa.

Serpik I.N., Alekseytsev A.V., Balabin P.Yu., Kurchenko N.S. Flat rod systems: optimization with overall stability
control. Magazine of Civil Engineering. 2017. No. 8. Pp. 181-192. doi: 10.18720/MCE.76.16.

188



NuxeHepHO-CTPOUTENBHBII KypHaJI, Ne 8, 2017

p P P, P, P P
q Wt g 1 &7 83 Y ; : Pz*/{ ER
2N 2 &1 813 815 V
U, 8| U, gy U; g )
> g0 812 84 -
U, & Uy & U g iU f’\
> i >
81 ! T
— [ >
@ |4, | Bl |4 |
Z X L6 L/6 L/6 \L

Figure 5. Frame basic configuration

All'in all, 22 variables were varied independently: 15 combinations of cross-section dimensions and
7 coordinates. This being the case, provisions were made to ensure structure symmetry. In Figure 5, for

the left half of the object, J; —Jy5 groups of bars are shown with independently varied combinations of
cross-section dimensions and nodes U; —U;. with independently variable coordinates Y . It was

supposed that the bars have an H-beam cross-section (see Fig. 3b), provided that Z || Z . For each
group g; —Qq5 of bars, the search was performed with reference to the combinations of dimensions

indicated in Table 3. For Y coordinates of U; —U, nodes, a set of permissible values {700; 800; 900;

1000; 1050 1100} (cm) was taken into account, and for Us —U- nodes — the set {1150; 1175; 1200;
1225: 1250} (cm).

Table 3. Permissible combinations of bar cross-sections in Example 2

cgumrgﬁgig; by ,cm ty,cm h,,cm t,,,CmM

1 10 1 8 0.6
2 20 1.2 18 0.6
3 25 1.6 23 0.8
4 30 1.8 28 0.8
5 35 1.8 33 0.8
6 40 2 38 1
7 43 2 40 1
8 45 2.2 43

9 50 2.4 48 1.2
10 55 2.4 52 1.4
11 60 2.6 58 1.6
12 70 2.8 68 1.8

In performing the structure discretization, each bar was divided into five finite elements. As a result
of the optimal search, the solution was obtained and shown in Fig. 6 with the value of the objective
function W =88.50KkN, where digits indicate the number of combinations of bar cross-section
dimensions (see Table 3). In this case, 300 iterations of the outer cycle were required with less than

6-104 structure variant analysis. The optimization process took 37 hours of computer time by using an
Intel Core i7 Processor. For this project, coefficient kst =1.19. From Figure 6, it is clear that during the

course of optimization, for the most important bar cross-sections, an arch configuration was reproduced
approximately.
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Figure 6. Result of frame optimization

Discussion

It should be noted that in the presented algorithm used for the performance of optimal search
iterations, an object stability assessment is provided for, including the stability of individual bars according
to a spatial pattern. The introduction of a random self-balanced system of small forces can be considered
as a practical means to reduce complexity of calculations when there is an opportunity to approximately
reproduce buckling corresponding to the Euler mode of stability loss in the case where a normative load
does not allow it to be done. Such conditional additional loading cannot lead to rejection of an efficient
structure variant. At the same time, it is presumed that, in any case, the solution of an optimization task
must be analyzed in detail, including by applying widely-distributed software for finite element analysis.

In the considered examples, the proposed procedure provided for obtaining the resulting
framework variants and stability conditions both via the Euler method and in accordance with standard
requirements [24]. The values of the Euler stability coefficient for such project solutions did not exceed
1.19. Since the search was performed using discrete sets of parameters, the stability coefficients are
quite acceptable for practical purposes. In this case, in assessing the structure variant stability combined
with the calculation of stress and strain of the bar system. This approach does not require intermediate
search stages of multiple consideration of the generalized problem of eigenvalues or the performance of
calculating the stress-strain structure in a geometrically nonlinear setting, and allows solving, with an
acceptable level of requirements to the complexity of the calculations, complex optimization problems of
bar systems.

Conclusion
1. A computational scheme is proposed which allows optimization of flat rod systems made of
steel, on discrete sets of bar cross-section dimensions and geometrical parameters defining the shape of
a structure.

2. An optimal search is performed using the genetic algorithm procedures earlier proposed by the
authors for effectively solving complex tasks with a large number of constraints.

3. In the optimization process, verification of the structure variants for stresses, displacements,
and overall stability is provided for. Assessment of compliance with requirements for stability is performed
both for buckling in the structure plane and out of plane by applying an approximate approach providing
for the implementation of 5 iterations of the object deformation analysis via the finite element method
based on the tangent of the stiffness matrix. In this case, no multiple generalized eigenvalue problems
require solving.

4. Examples of steel load-bearing structures were used to make it possible, due to the proposed
approach, to find solutions for flat rod systems optimization. Verification of compliance with stability
constraints based on the adjusted schemes showed that factors of safety for the obtained constructive
solutions were within the interval [1.12, 1.19].
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