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Refined finite element of rods for stability calculation
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Abstract. The article deals with the application of a rod finite element with five degrees of freedom
in a node to solve problems of stability of planar rod systems. In the presented finite element, additional
degrees of freedom are introduced in the nodes in the form of curvature and axial deformation. Additional
degrees of freedom provide a higher degree of approximation of displacements and deformations along
the length of the finite element, which can be useful for calculation of rods with variable rigidity, as well as
for solving geometrically nonlinear problems and stability problems. In this paper the elements of stiffness
matrix and the elements of geometric matrix of the finite element are obtained. The results of the
calculation of straight rods and frames under various conditions of support and various loads are
presented. A comparison is made with the results of calculations using a classic finite element with three
degrees of freedom. It is shown that the introduction of additional degrees of freedom at the nodes, in the
form of the curvature of the axis and longitudinal deformation, makes it possible in a few cases to more
accurately determine the value of the critical load. In this case, the system has more degrees of freedom,
so the approximation of the forms of stability loss is more accurate.

AHHOTaumsa. B ctaTbe paccmaTpuBaeTcs NMPUMEHEHWE CTEPXHEBOro KOHEYHOro aremMeHTa ¢
NSATbIO CTeneHsiMM cBOOOAbI B y3re Ansl pelleHns 3agay YCTOMYMBOCTU NITOCKMX CTEPXKHEBLIX cuctem. B
NnpeacTaBNeHHOM KOHEYHOM 3fieMeEHTe B y3nax BBeAEeHbl JOMONHUTENbHbIE cTeneHyn cBoboabl B BUAe
KpMBM3HbI U oceBol Aaedopmaumun. JononHutenbHble cTeneHn ceBoboabl obecneyvmsatoT 6onee BbICOKYHO
CTeneHb annpokcMMauun nepemelleHnn n gedopmaunii No OfIMHE KOHEYHOrO 3fIeMEHTa, YTO MOXeT
ObITb MOME3HbIM NS CTEPXKHEW MEPEMEHHON >XECTKOCTW, a TaKKe Mpu pelieHnn reoMeTpUYeECcKU
HenvHemHbIX 3adady M 3agady yctomumBocTu. B paboTe nonyyeHbl aneMeHTbl MaTpuLbl XECTKOCTU U
reoMeTpUYeckon maTpuubl KOHEYHOro anemeHTa. [lpeactaBneHbl pesynbTaTbl pPacyeToB MNPSIMbIX
CTEPXHEN M paMm MPW pasfnnyHbIX YCMOBWUSIX BapuaHTax OMop M Harpy3ok. BbinonHeHo cpaBHeHue ¢
pesynbTataMyM pacyeToB MNPV WUCMOMb30BaHUM KOHEYHOTO 3reMeHTa C Tpems cTeneHsamu csBobodbl.
lMokasaHo, 4YTO BedeHWe [ONOMHUTENbHbLIX CTeneHen cBobodbl B Yy3nax, B BUAE KPWMBU3HLI OCU U
npodonbHOM gedopmauun, no3BondeT B psage crnydyaeB 0Oonee TOYHO ONpedenutb  BENUYMHY
KpuTuyeckon Harpysku. B atom cnyyae cuctema wumeet 6onblie cTeneHen csBobofbl, MNoO3TOMY
annpokcumauust opm NoTepu yCTOMUMBOCTY ABNsieTcA 6onee TOYHOMN.

1. Introduction

Numerous fundamental studies, including papers [1-3], have been devoted to the calculation of
various constructions by the finite element method. For rod systems, most attention is paid to the
construction of functionals for solving stability problems of rods [4], as well as to the methods calculations
constructions considering geometric and physical nonlinearities [5, 6]. In paper [7], an exact, analytical
solution of the beam bending problem is constructed according to Euler-Bernoulli and Timoshenko
theories. The work [8] is devoted to the determination of critical forces by the flexural-torsional form of the
loss of stability of steel columns with allowance for physical nonlinearity. In [9, 10] we consider the
computational efficiency of the proposed method of quadrature finite elements for calculating the stability
of planar rod systems. In these articles the rods of constant and variable cross sections are considered
and comparison of the proposed method of calculation with the finite element method in displacements is
performed.

To analyze the stability of rods, models based on plane stress finite elements can be used. In [11]
the steel I-beam is modeled by such plane finite elements and the influence of the compressive load
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distribution law over cross section to the critical value of the load is studied. In [12, 13] we consider the
calculation of the stability of perforated steel columns. In [12] the calculation of stability of perforated
columns is based on the approximation of transverse and longitudinal displacements by trigonometric
functions and the obtained solutions compares with the solutions by the finite element method.

In article [14] the influence of the position of the compressive load in the calculation of the stability
of flat steel frames is studied. The load in the form of a concentrated force applied to the beam is
considered and the influence of its position on the value of the critical load is determined. The solution is
constructed by the finite element method.

The paper [15] presents numerical studies of possible scenarios for the loss of stability of flat
arches using the NASTRAN program. Many papers are devoted to the calculation of thin-walled rod
systems by the finite element method [16, 17] and to the study of various variational formulations of
stability problems of planar systems and geometrically nonlinear deformation of rod systems [18-19].
Features of the calculation of the stability of bars in the exact formulation are considered in [20-22]. In
this case, the solution reduces to a system of transcendental equations. This approach is highly accurate
but can only be used for simple systems.

In [23, 24] the solutions of stability problems and free vibrations of rod systems are based on the
functional of additional energy and the using approximations for the forces. It is shown that with this
approach one can obtain the upper limits of the critical forces and of the frequencies of free oscillations.

In [25] a finite element with five degrees of freedom in a node is used to calculating planar rod
systems with allowance for physical nonlinearity. Additional degrees of freedom provide better
approximation of displacements and deformations along the length of the finite element, what can be
useful for calculating the rods of variable rigidity, as well as for solving geometrically nonlinear problems
and stability problems. Note, that in solving static problems of rods bending by the finite element method,
a cubic polynomial function is used to approximate transverse displacements, which ensures the
obtaining of exact values of internal forces. But under the action of distributed loads, the displacements
along the length of the beam vary according to the polynomial of the fifth degree and so a cubic
polynomial function can’t provide the exact values of the displacements.

The aim of this paper is to construct a more accurate solution to the problem of stability of planar
rod systems using the finite element with five degrees of freedom at nodes. The main tasks are: obtaining
expressions for the elements of the stiffness matrix and the geometric matrix of the rod finite element with
five degrees of freedom in the node; the development of an algorithm for calculating the stability of planar
rod systems; comparison of the results of the determination of critical parameters for various rod
systems, according to the proposed methodology, with the results obtained using the LIRA-SAPR
program, which uses a finite element with three degrees of freedom.

2. Methods

In paper [23] the rod finite element with five degrees of freedom at a node (Figure 1) is used to
solve the dynamic problems of reinforced concrete planar bar systems with allowance for physical
nonlinearity. In this finite element additional degrees of freedom were introduced in the form of curvature
and axial deformation. Note that the curvatures and axial deformations in the node are different for the
finite elements adjacent to this node. Therefore, the total number of unknowns for the whole system is

n = 3k, + 4k, —s. k,, — number of nodes; k, — number of finite elements; s — the number of
superimposed links. On the other hand, such the finite element provides an accurate calculation of
deformations and stresses and ensures, if necessary, their continuity. As is known, when using a
standard rod finite element, with three degrees of freedom, gaps of deformations and stresses may
appear at the nodes, for example, at the start or end points of a distributed load. In addition, direct
calculation of deformations and ensuring continuity of stresses makes it easier to obtain of solving
physically nonlinear problem and can improve the accuracy of calculations. Also, when solving stability
problems, increasing the number of degrees of freedom makes the system more flexible and, therefore,
leads to smaller and more accurate values of the critical forces.

We use this finite element to solve the problem of determining the critical load for planar rod
systems. At the first stage, it is necessary to determine the internal forces (longitudinal forces) in the rods
from the action of the applied loads. In Figure 1 this finite element is represented and the following

notations are introduced: wy, w, — displacements of nodes along the Y; axis; ¢, ¢, — angles of rotation
of sections; u,, u, — displacements of nodes along the X; axis; k4, k, — the curvatures of the axes at the
nodes; &4, &, — axial deformations at the nodes.
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Figure 1. Finite element with five degrees of freedom in the node

The transverse displacement of the axis of the finite element is represented by the polynomial of
the fifth degree in the following form:

w(x) = Li()wy + Ly(x)@q + L3 (0)ky + Ly(x)w, + Ls(x) @, + Le(X) k5, 1)

where:
5
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Longitudinal displacements are approximated by the polynomial of the third degree:

u(x) = L,(x)uy + Lg(x)e; + Lo(x)u, + Ly(x)e,, 3)
3

L,(x) = 1—3(%)2 +2(§) ,
L) =1]7 -2 G)Z + (%)3]

(@)

(4)
X 2 x\3
Lo(x) =3 (7) —2 (T) ,
LS(X) = l[— (T) + (7) ]
The unknowns and the form functions are combined into vectors:
(W1\ (L1 ()N
P1 L2 (X) Uq qu(.%)
_ _ ) L3(x) B _ Ls(x)l
Wl =y, 0 WA= 0 0 W=y, Ld=y 000 (5)
P2 Ls(x) & Lio(x)
ke L ()

When solving problems of stability, without considering the shear strains, deformations are
expressed in the following form [1]:

du d?w | 1 (dw)?
— — — —_— —_— — 6
& T ax dx? + Z(dx) ' ©)

Then the strain energy of the finite element is expressed in the following form [1, 2]:
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(7)

where: EI, EA - flexural and longitudinal stiffness of cross-section of the element. The longitudinal
force can vary along the length of the finite element, so we assume that

N(x)=N,(1—-x/1)+ N, x/l,

where: N;, N, — longitudinal forces at the beginning and end of the finite element.

Using (1 5), we write expression (7) in the matrix form:

U® = (el Tk Jwe} + (o) Tl s} + (wel el (we ),

] = [y ELGMLLY dx, [k = [} EALLLY dx, Tky] = [y NOO{L L) dx.

We unite the nodal unknowns into one vector

o) =1

et

The expression (8) can be written in the following form:

1
e T
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The matrices (13) and (14) are symmetric, therefore the matrix elements above the main diagonal

are shown.
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Figure 2. Global and local coordinate systems.

In Figure 2 shows the global and local coordinate systems. Nodal unknowns in the global
coordinate system are indicated by an upper line. Vectors of nodal unknown finite elements in local {y,}
and global coordinate systems {ie} are connected by a matrix of directing cosines:

.} = [S10ye}. (15)
rcosa 0 O 0 0 0 sina O 0 07
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 cosa 0 O 0 0 sina O
0 0 0 0 1 0 0 0 0 0
[S1= 0 00 0 01 0o 0 0 of (16)
—sina 0 O 0 0 0 cosa O 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 —sina 0 0 0 0 cosa O
0 0 0 0 0 0 0 0 0 1

Using the vector of nodal unknowns in the global coordinate system, we get:
— T/~ — _
U= %{ye} ([ke] + [kne]) (7, }: (17)
[Ee] = [S] [ke][S]T' [ENe] = [S] [kNe][S]T- (18)

[k.] is the finite element stiffness matrix in the global coordinate system; [ky,| is the geometric matrix of

the finite element in the global coordinate system. From the matrices [k, ] and [ky,] of all finite elements
of the system, in accordance with the numbering of nodes and elements, the corresponding global
matrices — [K] and [Ky] are formed, and the unknowns for the whole system are represented by the
vector {Y}. Then the energy of deformation of all finite elements

U =YY ([K] + [Ky DY}, (19)

To obtain a solution, it is necessary to write down the expression for the potential of external

concentrated and distributed forces V. For the loads distributed over the length of the finite element, the
potential is expressed as the integral

l
ve=-—J, (quW(X) + qxlu(X)) dx, (20)
where:
Qy, = Qy COS A — qy sina, Ax, = qy sina + g, cosa. (21)

4y, qx — values of the loads distributed along the length of the finite element, directed along the global
axes Y and X, respectively. For evenly distributed loads:

Ve = e} {F}, (22)
(F }T=(Qy1L il Ayl ayil 4y L’ 4y LP Ayl 4gl® dxnl —qleZ). (23)
€ 2 10 120 2 10 120 2 12 2 12
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Using the vector of nodal unknowns in the global coordinate system, we get:
— T (=
ve =) (7.}, @
{Fe} = [SI{F.}. (25)

From vectors {Fe} for all finite elements the global vector {F} is formed for the whole system. The
forces P, Py, concentrated in the nodes, which directed along the global axes, and the concentrated in
the nodes moments M are added to the corresponding elements of the global vector {F}.

Using the notation introduced above, we write the total potential energy of the system in the
following form:

M=U+V =V} (K] + [Ky]D{Y} + {YYT{F} > min. (26)

Equating the derivatives of the total potential energy of the system with along the vector of nodal
unknowns to zero, we obtain a system of resolving equations:

([K]+ [KyDiY} + {F} = 0. (27)

In the classical approach, the matrix [Ky | is not considered when solving the system of equations
(27), therefore the values of displacements and internal forces are determined without considering the
effect of longitudinal forces on bending. In a more precise variant, the iterative solution of the system (27)

is performed and the elements of the matrix [Ky | are calculated using the longitudinal forces obtained in
the previous step. For some constructions, solutions for the two options may differ materially.

Solving the system of linear equations (27), we find the displacement vector {Y}, and, further,

calculate the longitudinal forces in finite elements. The critical load parameter A, can be found by the
well-known method of reverse iterations. The algorithm consists of the following steps:

i=12,--m;
{r}i = [KI' [Ky){Y}ie1
Ymax = Max 1{Y}il,
j=1.n
1

|Ymax!’

\ {Y}i = Acr,i{y}i-

In (28) Ymax iS the maximum modulo element of the vector {Y};. The iterative procedure ends

when the necessary accuracy is getting for |/1€T_i — Acr,i_1| < &. The vector {Y}; is the vector of the
shape of the loss of stability.

(28)

cr,i

3. Results and Discussion

As a first example, according to a program compiled in Mathcad 14.0, calculations of the critical
forces for straight rods were performed under various conditions of supporting the ends (Figure 3). To
simplify the analysis of the results, all the parameters of the rods were equal as single ones. The rod was
modeled by only one finite element. Table 1 shows the results of calculations using the proposed finite
element and the results of calculations using the LIRA-SAPR program, as well as the exact, analytically
obtained values [26].

P P = P

¥ 4
2‘7 20—.' zl"l 20—4

Tyukalov Yu.Ya. Thermal cracking resistance in massive steel-reinforced concrete structures. Magazine of Civil
Engineering. 2018. No. 3. Pp. 54-65. doi: 10.18720/MCE.79.6.



HNnxenepHo-cTponTebHBIN KypHaJ, Ne 3, 2018

Figure 3. Variants of support of straight rods. Il = 1 m., EI = 1 kN - m?

Table 1. Critical forces for straight rods (Figure 3)

. L Finite element with three degrees
Finite element with five degrees of of freedom, Exact
freedom .
Rod LIRA-SAPR decision,
uantity of uantity of
P..,kN| Error, % Q y P..,kN| Error, % Q y Py, kN
cr unknowns cr unknowns
a) Console rod 2.4674 0 7 2.486 0.75 4 2.4674
b) Hinged supports 9.882 0.125 7 12.0 21.6 3 9.8696
c) Clamped ends 39.480 0.004 5 - - 1 39.4784
d) Clamped and | ) 5,5 0.77 6 30 48.6 2 20.1906
hinged support

The obtained solutions show that when using the finite element with five degrees of freedom, the
calculated values of the critical forces are very close to the exact values under any conditions of support
of the rod ends. The greatest error in the calculation of the critical force of only 0.77 % was obtained for a
rod with one pinched and one hinged support end.

When using the classical finite element with three degrees of freedom in a node, for a rod with
clamped supports (Figure 3c), a solution can't be obtained, since the calculation scheme with one finite
element has only one degree of freedom associated with the longitudinal displacement of the upper node.
For this finite element, the exact solution is obtained only for the console rod (Figure 3a), in other cases
the errors of the solutions are significant. To obtain more precise solutions, it is obviously necessary to
divide the rod into two finite elements, thereby increasing the total number of degrees of freedom.

2P 2P
3“—0' 3“—0'
El El
6m P 6m P
Y Y
20—4 20—4
9am|1.5El om|1.5El
1 1
A =i
a) b)

Figure 4. Straight rods with intermediate support. Flexural stiffness varies stepwise

In Figure 4 shows straight rods with intermediate supports and with different bending stiffness,
varying stepwise. A well-known "forces method" can be used to determine the exact value of the critical
load. In this case, the coefficients of the canonical equations are determined based on the exact solution
of the differential equation of a compressed-bent rod. We introduce the following notation:

N,_. 2P N,_, 3p
Al = 12_3 El =6 E, AZ = ll—Z El =9 m = 15/11

Then the equation of the "forces method" for determining the critical load for the rod in Fig. 4a will
be as follows:

(29)

3/1 1 3/1 1 3/1 1 2 1 1
a2 ) 2 ) @
A4\, tandy/ A, \1, tanAi, A4\, tandy/ A \1.54; tanl1l.54;
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Solving equation (30) in Mathcad 14, we obtain that A; . = 2.355779. We will take

EI = 1 kN/m?, then P, = 2%6/11”2 = 0.077079 kN. The equation of the "forces method" for the rod
in Figure 4b has the form:

18/ 1 1
()
)11 )11 terl){l

Solving equation (31), we obtain 1, ., = 3.053638, P., = ﬁlmrz = 0.1295098 kN.

36tan 1 A
fan (tan?2 - 72) =0. (31)

)12 (tiill ;[2 —‘;12)

In Table 2, in addition to the exact values, the values of the critical load are given, which are
determined using a finite element with 5 degrees of freedom and the results of calculations using the
LIRA-SAPR program for the rods in Figure 4.

Table 2. Critical forces for straight rods with an intermediate support (Figure 4)

. o Finite element with three
Finite element with five degrees of freedom Exact
Rod degrees of freedom LIRA-SAPR decision,
P, kN
P.., kN Error, % P, kN Error, %
Figure 4a 0.077158 0.10 0.097055 25.9 0.0770790
Figure 4b 0.129967 0.35 0.175336 35.4 0.1295098

The obtained results confirm the high accuracy of determining the critical forces when using the
finite element with five degrees of freedom. Since the proposed finite element quite accurately simulates
the stress-strain state of compressed-bent rods with different types of supports, it can be confidently
asserted that for arbitrary rod systems, this finite element will allow us to determine the values of the
critical forces with sufficiently high accuracy.

" 2P B 2P
JF Y \ J
2 om 3 2 2m 3
3m 3m
1 4 1 4
| | | L}
a) b)

Figure 5. Single-span frame with clamped ends

Calculations have also been performed to determine the critical load for a single-span frame shown
in Figure 5. The lengths of the rods are shown in the figure. The flexural rigidity of the rods is

EI = 10 kH/m?, longitudinal stiffness EA = 100 kH, P = 10 kH. The critical load parameter was
determined by using from 1 to 8 finite elements for modeling each rod (Table 3).

Table 3. Critical loading parameter A, for frames (Figure 5)

The frame in Figure 5a The frame in Figure 5b
Crushing Finite element Finite element Finite element .
of rods with three with five Difference with three Finite element | i o ce
into finite degrees of of the degrees of with five of the
elements freedom, degrees of results. % freedom, degrees of results. %
freedom ' freedom '
LIRA-SAPR LIRA-SAPR
1 0.5171 0.51200 0.99 3.2898 1.66299 97.8
2 0.5135 0.51199 0.27 1.6711 1.63717 2.07
4 0.5121 0.51199 0.02 1.6421 1.63712 0.3
8 0.5120 0.51199 0.02 1.6375 1.63712 0.02

For the frame in Figure 5a, the critical load parameter, calculated using a finite element with five
degrees of freedom in the node, practically does not change when the rods are crushed. If we use a

classical finite element with three degrees of freedom, then A.,- with an increase in crushing of the rods to
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8 finite elements decreases by approximately 1 % and becomes equal to the critical parameter calculated
using a finite element with five degrees of freedom without crushing the rods.

For a frame with an additional support (Figure 5b), which excludes horizontal displacement, the
change in the critical parameter during crushing of rods for finite elements with three degrees of freedom
is more significant (Table 3). If you don't divide the rods into few finite elements, then the critical
parameter is almost twice as large as the parameter obtained by using one element with five degrees of
freedom. When dividing each rod into 2 finite elements, the difference of solutions is only 2 %. With
further crushing of the rods, the results become practically equal.

q
Tt ¥ ¥ ¥ ¥V ¥ ¥ 3

Figure 6. Frame from eight rods inscribed in a circle, with hinged supports

Figure 6 shows a frame, which inscribed in a circle of radius R = 6 m. The frame consists of eight

straight rods. The flexural rigidity of the rods is EI = 10 kH /m?, longitudinal stiffness EA = 100 kH.
We considered loading in a form uniformly distributed load and in a form single concentrated force. The
critical load parameter was determined for the additional dividing all the rods by 1, 2, 4, 8, and 16 finite
elements (Table 4). In Fig. 6a shows an example of dividing the rod (2-3) into 4 finite elements.

Table 4. Critical loading parameter 4, for the frame (Figure 6)

The frame in Figure 6a The frame in Figure 6b
Crushing of FIC\I/ti?hetlr‘]srrggm Finite element ) F'C\'/tifhifg:m Finite element
rods into finite with five Difference with five
elements degrees of of the degrees of
freedom, degrees of results, % freedom, degrees of

LIRA-SAPR freedom LIRA-SAPR freedom

1 0.1109 0.12341 10.1 1.7212 1.7212

2 0.1164 0.12341 5.7 1.7212 1.7212

4 0.1197 0.12341 3.0 1.7212 1.7212

8 0.1215 0.12341 15 1.7212 1.7212

16 0.1224 0.12341 0.8 1.7212 1.7212

The results of calculations for the frame in Figure 6 show, that with additional crushing of the rods
into finite elements (from 1 to 16):

1. for a finite element with five degrees of freedom — critical load parameter A.,- does not change
for both loading schemes;

2. for a finite element with three degrees of freedom — value of the critical load parameter A, for
the action of the distributed load (Figure 6a), increases by approximately 10 % and approaches the value
obtained for a finite element with five degrees of freedom (Figure 7);

3. for a finite element with three degrees of freedom — value of the critical load parameter A, for
the action of a concentrated load (Figure 6b), does not change and is equal to the value obtained for a
finite element with five degrees of freedom.
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Figure 7. Changing the parameter 4, for the frame in Figure 6a, depending

on the division of the rods into finite elements.
1-for finite element with 5 degrees of freedom; 2 — for finite element with 3 degrees of freedom.

Figure 8 and Table 5 show the results of calculating the critical load parameter for a three-story
frame, depending on the number of finite elements into which each rod of the frame is divided. The

flexural rigidity of the rods is EI = 10 kH/m?, longitudinal stiffness EA = 100 kH. The columns of
the frame are rigidly clamped, and the crossbars have hinged fixed supports.

q=10 kH/m
LI 1 - - |
Y
0.16 g=10kH/m 7|
1 T 1
'y
0.155 g=10 kH/m 4
T I L I ]
6m A
0.15 E
-
0.145K 1 -
0.14 . . .
2 4 6 n 8

Figure 8. Changing the parameter 4., for the three-story frame, depending
on the division of the rods into finite elements.
1 —for finite element with 5 degrees of freedom; 2 — for finite element with 3 degrees of freedom.

Table 5. Critical loading parameter 4, for the frame (Figure 8)

Finite element with five
degrees of freedom

Crushing of rods into
finite elements

Finite element with three degrees
of freedom, LIRA-SAPR

1 0.1605 0.1445
2 0.1482 0.1434
4 0.1459 0.1434
8 0.1456 0.1434

The results of calculations for the frame in Figure 8 show, that with additional crushing of the rods
into finite elements (from 1 to 8):

1. for finite elements with five degrees of freedom, the critical load parameter A.,- decreases by
0.8 %, when rods divided by two finite elements, and does not change with further crushing of the rods;
2. for finite elements with three degrees of freedom, the value of the critical load parameter A,

decreases by approximately 9 % and approaches the value obtained for finite element with five degrees
of freedom.

4. Conclusion

1. The introduction of additional degrees of freedom at the nodes, in the form of the curvature of
the axis and longitudinal deformation, makes it possible in many cases to more accurately determine the
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magnitude of the critical load. In this case, the system has more degrees of freedom, so the
approximation of the forms of stability loss is more accurate.

2. For some calculation schemes, for example, shown in Figures 3-5, when using a classical finite
element with three degrees of freedom, the critical parameter is determined with a significant error of
20 % to 100 %. To increase the accuracy of determining the critical load, it is necessary to divide the rods
into several finite elements. When using a finite element with five degrees of freedom, the error in
calculating the critical parameter is no more than 10.1 % without additional crushing of the rods.

3. For computational schemes, in which there are no distributed loads and in which there are
enough degrees of freedom in the form of displacements of nodes along the coordinate axes, the
solutions for the two finite elements under consideration coincide.

4. For the frame in Figure 6, for finite element with three degrees of freedom, with additional
division of the rods into finite elements, the value of the critical load parameter increases and approaches
the value obtained for the finite element with five degrees of freedom.

5. For the frame in Figure 8, for finite element with three degrees of freedom, with additional
division of the rods into finite elements, the value of the critical load parameter decreases by
approximately 9 %, and approaches the value, obtained for the finite element with five degrees of
freedom.

6. The use of the finite element with five degrees of freedom will avoid possible large errors in the
determination of critical forces for design schemes in which no additional crushing of the rods into finite
elements is used.
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