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Abstract. The most economically viable and practicable method of moisture removal from the air
gap with the help of free convective air flows are presented in the article. An experiment conducted on a
laboratory bench simulating a hinged ventilated facade is described. The parameters and design features
of a particular building envelope are determined. Also, the impact of technological gaps — grooved lines is
described, which influence the air velocity in the ventilated channel, which in turn affects the temperature
and humidity conditions of the building envelope. The experimental evaluation of air velocity and air
temperature along the height of ventilated layer is provided in the article. The impact of grooved lines
density and the method of hot plane heating on the distribution of air temperature and velocity. Optimal is
the construction which is designed with the least number of rusts, from the technological point of view.

AHHOTaumsA. bbin paccmMoTpeH Hanbonee aKOHOMUYHBIN U NPaKTUYHBIN METOA YAANeHWUst Bnarv n3
BO3[YLUHOro 3a30pa HaBECHOIo BEHTUNMpyeMoro dacaga — ¢ NoOMOLLbI CBOOOLHOKOHBEKTUBHBLIX MOTOKOB
Bo3gyxa. OnucaH SKCMEpPUMEHT, MNPOBEAEHHbI Ha JabopaTOpHOM CTeHAe, UMUTUPYHOLEM Ccobon
HaBeCHOW BeHTUNupyembin dacag. bbinm  onpegeneHbl napamMeTpbl  TenjioMaccoobMeHa U
KOHCTPYKTMBHbIE OCODEHHOCTM OTAENBHO B3ATOW OrpakaatoLlen KOHCTPYKUMK. Takke Obinio paccMOTPEHO
BMMSIHUE TEXHONOMMYECKNX 3a30POB-PYCTOB, BO3AENCTBYIOLNX HA CKOPOCTb BO34yXa B BEHTUITMPYEMOM
KaHane, koTopasi, B CBOK oyepedb, BAMSeT Ha TemnepaTypHO-BMaXHOCTHbIN PEeXUM orpaxgaroLmnx
KOHCTpyKUmi. [prBedeHa YMcrneHHas OueHKa CKOPOCTU OBWXEHUS U TemnepaTypbl Bo3dyxa Mo BbICOTE
BEHTUNMPYEMON NPOCMONKN. YCTaHOBNEHO BNUsIHWUE PYCTOB W cnocoba oborpeBa «ropsven» CTEHKM Ha
pacnpefeneHne CKOpoCcTu U TemnepaTtypbl BO3AYLUHOrO noToka. ONTUMarnbHOW SBNSIETCS KOHCTPYKLUMSA C
HauMeHbLUNM, C TEXHOINOTMYECKON TOYKMN 3PEHUS], KONTMYECTBOM PYCTOB.

1. Introduction

Ventilated facade — is a facade with ventilated air gap aimed at climatic action protection and exterior
development.

The system is constructed in the way, where air gap, which is located between insulation and outer
cladding, provides free air movement. Free convective air flows occur in air gap because of volume force,
which depends on density difference and which is justified by heat energy transfer due to temperature non-
uniformity. Besides, there are technological gaps — grooved lines. From a physics perspective, a facade
without grooved lines forms an ideal channel.

These constructive features influence air velocity in vertical channel. Air velocity affects temperature
and humidity conditions of external envelope.

As can be seen from the above, natural air movement in a gap provides dryness of a wall and prevent
condensate formation in insulation layer.

Craneako E.A., OctpoBas A.®., Onpmesckuii B.A., [Terpuaerko M.P. TemnepaTypHBIi 1 CKOPOCTHOH PEKUMBI B
BEPTHKAILHOM KaHajIe BEHTHIMpyeMoro ¢acana // MmkeHepHO-cTponuTenbHbI xypHai. 2018. Ne 4(80). C. 119-127.

119



Magazine of Civil Engineering, No. 4 (80), 2018

At the present times suspended ventilated facades building is relevant to many Russian and foreign
scientists. A great contribution to the study of free-convection flow in a vertical ventilated channel was made
by Russian and foreign researchers. The article of V.G. Gagarin, V.V. Kozlov, D.V. Nemova,
M.V. Petrochenko, E.B. Yevtushenko and many other specialists have been devoted to the determination
of the thermophysical properties of ventilated air gaps and their influence on the temperature and humidity
conditions of the enclosing structures [1-29].

The paper [1] studies physical processes of free convective current and determines the conditions
of cool air filtration in the gap. There are a number of problems associated with the condensation of
moisture in the structure in the operation of ventilated facade systems with air gap widely used today in
construction [3-7].

The article [8] determines best hydraulic ventilated cavity of a suspended facade. The author of the
article [10] estimates the average velocity of free-convective current dependence with different wall
temperature.

The author of the article [11] gives the description of air-vent quarter division with different air motion
modes. The research [15] determines experimentally and theoretically the average velocity and
temperature profiles along the ventilated channel width.

The article [27] provides evaluation methods of thermal insulation with longitudinal air filtration of
ventilated facade.

The article describes the impact of arrangement of assembling grooved lines and the heating
methods of interior wall plan on air velocity and temperature in vertical ventilated air gap. That is especially
important in the conditions of the temperature and climatic zone of St. Petersburg.

Research objective:

e determining the influence of grooved lines density and the method of hot plane heating on the
distribution of air temperature and velocity in free convective flow.

Goal Setting:

¢ determining the average velocity and temperature of free convective flow in air gap in relation to
grooved lines pitch with constant geometric parameters of the gap;

e determining of heat and mass transfer parameters for various degrees of hot surface heating.

2. Methods

Imperfection of building constructions leads to excess humidification. That is why it is necessary to
focus on water storage capacity of materials. Most methods of insulation layer moisture control aimed at
reducing moisture inflow to the air gap.

Moisture removal with the help of free convective air-flows is the most economically viable and
practicable method, since the energy source is the heat flow from the hot wall to air. No other external
energy sources (ventilators) are needed. Free convection in gravity field is justified by the existence of
negative air density gradient, which is associated with temperature gradient. If the surface temperature is
higher than the ambient temperature, the air flow in the surface runs hot, becomes lighter and ascends. In
this case, less denser air layers replace the ascended layers.

When considering moisture removal, significant attention should be paid to grooved lines, which
perform thermal compensator function. Cladding grooved lines provide hydraulic connection with outdoor
air. All mentioned factors are prevailing when designing and engineering air cavities. All results of the
research were obtained experimentally. Schematic view of a ventilated gap (Fig. 2), which is located
between the “hot” plane y = 0 (with the temperature Th = 67) and the cold plane y = h (with the temperature
Tc= 22). Pressure at level z = 0 equals po, pressure at level z = h equals p1, while po>pa1. It is required to
estimate average velocity and temperature through free-convective flow. To measure the speed are used
a thermo-anemometer Testo 435-2, with a resolution of 1 cm/s, it allows to measure the velocity with an
error of 0.5 cm/s, air temperature - with an error of 0.1 °C

Required control volume comes over the air-vent and spreads out from zero level to z = L plane,
which lays above the outlet air-vent cut in still air. It is taken, that outdoor air penetrates air cavity through
lower air holes. Outdoor air ascends along the air-vent and passes through upper air holes [16].
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Heating is provided by three vertical fastened thermal elementary units. For equal heat distribution
the elementary units are fastened to the tin sheet with high thermal conductivity. Consequently, Tn = const.
Model height equals L = 2040 mm, while L >> h. When manufacturing the facade model, we should take
into consideration the difference in the temperatures of outer and inner layers, which is justified by the
heating systems operation. The model considers heating of the wall and heat inflow to the air cavity. For
this experiment different combinations of thermal elements are used: lower-middle, lower-upper. Upper-
middle combination is not used, since the lower installation section is not heated and there is no air heating
in channel inlet. The temperature in this section stays homothermal, consequently, there is no active air
movement and the flow is inefficient.

Velocity depends on the air supply method, internal parameters of the gap and the method of hot
plane heating. In the experiments the gap width /h/ was set at h =80 mm = const. In the experiments
grooved lines pitch with different fixed activation methods of heating elements was determined. For this
purpose, the average velocity and temperature of air in central part of the low were measured.

Figures 2,3. Installation scheme

3. Results and Discussion

Within the scope of the given measurements, the following charts were obtained, fig. 4-12. Figures
4-5 show air and velocity dependence on height with different grooved lines pitch and constant heating
along the height. Based on the obtained dependencies it was identified that air flow temperature increases
when grooved lines pitch increases (with constant heat flow density along the heated channel height). The
most significant reason is the decrease of high-density air inflow to the channel. The velocity is maximum
in the ideal channel (grooved lines are fully closed).
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Figure 4. Temperature distribution along the channel height in relation to grooved lines pitch with
constant height heating
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Figure 5. Velocity distribution along the channel height in relation to grooved lines pitch with
constant height heating

Figures 6-7 show the velocity-temperature to height relations with different grooved lines pitch and
activated central and lower heat sources. While lower and central installation sections heating, the
temperature of the top section does not change significantly. As may be supposed, air flow temperature
increase occurs due to blowing-out through the upper grooved lines. In the top unheated section of the
channel, the velocities converge and have no relations to the grooved lines pitch.

t,°C
245
24 = .
¢ pooved linesare
e opened
735 =
_J.x-‘-"'ﬁi’ ' B interval 600 mm
23 — g, e
N R -e-"":j: , .
225 Q""zr.'.;‘_'_‘“_‘_g____::_ SeTTE - grooved lines are
i e closed
22
nh
1
40 1550 18R0 |_J mm

Figure 6. Temperature distribution along the channel height in relation to grooved lines
arrangement with activated central and lower heat sources
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Figure 7. Velocity distribution along the channel height in relation to grooved lines arrangement
with activated central and lower heat source

Figures 8-9 show the velocity-temperature to height relations with different grooved lines pitch and
activated central and lower heat source. Based on the results it is concluded that temperature and velocity
distribution in relation to grooved lines pitch corresponds the above given charts, while heating of channel
inlet and outlet, and central section adiabatization. There is minimal fibration of experimental data in central
unheated section.
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Figure 8. Temperature distribution along the channel height in relation to grooved lines
arrangement with activated central and lower heat sources
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Figure 9. Velocity distribution along the channel height in relation to grooved lines arrangement
with activated central and lower heat sources
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Figures 10-12 show the velocity to height relation with different variations of heat flow distribution. It
was identified that velocity increases in heated areas. From Figures 11, 12 it is observed that the velocity
growth rate is maximal in the ideal channel.

This can be explained by inability of high-density air to penetrate the channel, and by change
absence of air flow movement with hermetic sealing of grooved lines.
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Figure 10. Velocity distribution along the channel height in relation to variations of heat flow with
opened grooved lines

v, m/s
045
04 -
0:35 G SRR
e e - all heating
) * B e * B, | elements
03 = L
P - A B lower-middle
025 - heating elements
=" lower-upper
>
o0 m- heating elements
01
041
0.05
o
L, mm

Figure 11. Velocity distribution along the channel height in dependence with heat flow variations
with groove line pitch of one meter
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Figure 12. Velocity distribution along the channel height in dependence with heat flow variations
in the ideal channel
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The main goal of this article is to study the mechanisms of the method of heating the wall on the heat
and mass transfer parameters of the facade along its height. The article focuses on the experimental
determination of temperature and airflow velocity dependences from combinations of heat sources in the
ventilated channel of the facade and the width of the facing layers panels.

In articles by other authors on the same topic are described the heated enclosing structure with a
constant temperature and averaged height parameters of the air in the channel [1, 4, 8-9], but the
contribution of technological gaps — grooved lines is not taken into account. In this researching examines
the influence of the variable position of heat sources and various combinations of grooved lines on the
efficiency of the entire system.

4. Conclusions

Based on the results the following conclusions can be summarized:

1. A series of experimental studies was carried out and the result of which it was found that the
facade is sensitive to changes in grooved lines number and heating method change.

2. The maximum velocity — around 0.37 m/s — is observed with hermetically-sealed grooved lines
(the ideal channel), but at the present time such system is technologically impracticable. Minimum number
of grooved lines is optimal (in this case interval is 600 mm).

3. For thermal energy saving purposes, heating of the middle section of the channel can be
neglected. When heating of the middle section is neglected, the average velocity undergoes minor
changes.

4. Temperature variation rate in different heating areas changes in dependence with grooved lines
spacing. The fibration of experimental data in unheated sections is minimal.
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