NH:KeHepHO-CTPOUTEILHBII KypHaJ, Ne 6, 2018

doi: 10.18720/MCE.82.16
Finite element models in stresses for bending plates
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Abstract. Finite element models for plate bending problems are constructed on the basis of
approximations of moments fields. The bending and twisting moments are approximated in the finite
element area by piecewise constant functions. The solution is based on the functional of the additional
energy. Algebraic equations of equilibrium of nodes of grid of finite elements are formed using the principle
of possible displacements and are included in the functional with the help of Lagrange multipliers. The
necessary expressions for rectangular and triangular finite elements are obtained. Calculations of square
clamped and hinged-supported plates on the action of uniformly distributed load are performed.
Comparison of the obtained results with the results by the finite element method calculations in
displacements is presented. It is shown that the presented method of calculating bent plates by the finite
element method in stresses has the property of convergence from above. The displacements obtained by
this method converge to the exact values from above, while the values of the moments is determined with
reserve. When the grid of finite elements is crushed, the difference of the two solutions, in stresses and in
displacements, decreases monotonically and the accuracy of the obtained results can be estimated from
the value of this difference.

AHHOTauusa. KoHe4yHO-anemMeHTHble Mogenu Ans 3agadv usrmba nnacTuH NocTPOeHbl Ha OCHOBE
annpokcMMaLnii Nonen MOMEHTOB. M3armbatowme 1 KpyTswme MOMEHTbI annpoKCMMUPYOTCSA No obnactu
KOHEYHbIX 3MTEMEHTOB KYCOYHO-MOCTOSAHHLIMWN (DYHKLMSMU. PelleHne CTpouTcs Ha OCHOBE (DyHKUMOHaNa
OOMNONHUTENbBHOWN 3Heprnn. Anrebpanyeckne ypaBHEHUSI PaBHOBECUS Y3MOB CETKN KOHEYHbIX 31IEMEHTOB
dhopMUPYIOTCA NPY MOMOLLM NPUHLUMNA BO3MOXHbIX NEPEMELLEHUA U BKIOYaOTCs B (DYHKLMOHAN npwu
nomoLwn MHoxutenen Jlarpanxa. [lonyvyeHbl HeoOXxoaumble BbIPaXEHWUs ONs NPSAMOYTOfibHbIX U
TPEYroNbHbIX KOHEYHbIX 3MEeMEHTOB. BbINOMHEHb! pacyeTbl KBaApaTHbIX 3alleMIEHHbIX U LIapHUPHO-
onepTbiX MNNUT Ha [OEWCTBME PaBHOMEPHO pacnpegeneHHon Harpysku. [lpvBegeHo cpaBHeHue
MOMyYeHHbIX pe3ynbTaToB C pe3ysfibTaTaMy pacyeToB MO METOAY KOHEYHbIX 311IEMEHTOB B NEpPEMELLEHUSIX.
MokasaHo, 4To NpeAcTaBNEHHbIN METOA pacyeTa M3rnbaemblx NNACTUH METOAOM KOHEYHBIX 3NIEMEHTOB B
HanpsikeHusix obrnagaeT CBOMCTBOM CXOAUMOCTU CBEPXY — NEPEMELLLEHUS], NOMYYEHHbIE JaHHBIM METOLOM
CXOOATCA K TOYHbIM 3HAYEHWsIM CBEPXY, NpW STOM BENWYMHbI MOMEHTOB OMpedensitoTcsa B 3anac
NPOYHOCTK. MpK M3MENbYEHUN CETKM KOHEYHbIX 31IEMEHTOB Pa3HOCTb ABYX PELLUEHWI, B HANPSPKEHUSX U B
nepeMeLLeHNsIX, MOHOTOHHO YMEHbLLAETCS U MO BEMMYMHE STON Pa3HOCTU MOXHO OLIEHMBATb TOYHOCTb
MOMyYeHHbIX Pe3ynbTaToB.

1. Introduction

Bending plates are widely used in construction of various buildings and structures. They are
important constructive elements. From their strength very often depends the security and reliability of the
entire structure. A more accurate definition of the internal forces, arising in bent plates, from various types
of loads and impacts, remains an actual task now. Therefore, a lot of scientific articles and books are
devoted to the construction of various finite elements modeling the bending of plates [1, 2], but the problem
remains topical.

When finite element method is used based on the displacements fields approximation, it is difficult
to select suitable functions for the approximations [3—6]. As is known, when we solve problems of bending
of plates by the finite element method, the polynomials, used to approximate the displacements, must have
higher order, in comparison with the plane problem of the theory of elasticity. It is difficult to ensure the
continuity of the stress fields at the node points and along the boundaries of the finite elements [2]. Stresses
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and forces are usually determined for the central points of finite elements. In [7, 8], displacement fields
along the boundaries of finite elements are accorded by means of additional equations introduced by
means of penalty functions or Lagrange multipliers.

In paper [9], the Ritz method is used to solve the problem of nonlinear bending of elliptic plates, and
comparison is made with the solutions of other authors. The construction of finite elements for bent plates
is possible based on the application of the equations of the three-dimensional theory of elasticity [10, 11].
This approach allows to obtain good results when analyzing thick plates, when it is necessary to consider
the shear strains.

A few papers are devoted to the use of mixed and hybrid methods for the construction of finite
elements [12-15]. With this approach, the approximations of displacement fields and stress (force) fields
are used, which leads to an increase in the total number of unknowns. In addition, the obtained solutions
do not possess the properties of the lower or upper boundary. In [16], the displacement function is chosen
as polynomial of the fourth degree to solve the problem of bending of clamped rectangular plate. The results
of calculations of deflections, bending moments and shearing forces for square plates of different
thicknesses are presented and compared with the results of other authors.

The finite element models for bending the plate according to the Kirchhoff theory can be constructed
since approximations only for forces [17-19]. In this case, the solution is built on the basis functional of the
additional energy. Algebraic equilibrium equations for nodes are forming using the principle of possible
displacements and they are including in the functional as penalty functions. It is shown that in the case of
using piecewise-constant functions to approximate the nodal moments, the solution has property of upper
boundary.

In [22], a comparative analysis of different types of finite elements is carried out for the calculation
of bent plates. More than ten types of finite elements are developed since the Lagrange principle, and they
have a different number of degrees of freedom in the form of nodal displacements and angles of rotation.
Also presented many finite elements developed since mixed variational principles, when both nodal forces
and displacements are used as unknowns. In book consider only two finite elements developed since the
method of forces having 9 and 16 degrees of freedom. Obviously, finite elements based on the method of
forces are not developed enough.

To solve the plates bending problems, incompatible elements of the displacement method building
based on the Lagrange functional are widely used. When formulating such elements, additional conditions
are introduced for matching the slope angles of the normal along the boundaries of finite elements [24, 25],
or independent approximations are used for displacements and angles of rotation [26, 27, 30], and then
additional conditions are used to harmonize the introduced approximations. Also, various hybrid [27, 28],
equilibrium [33] and mixed formulations [35] of the finite element method are used for the solution.

The present paper is aimed at constructing the solution of the problem of bending of Kirchhoff plates
by the finite element method based on approximation of forces and using only the principles of minimum
of additional energy and possible displacements.

2. Methods

The solution of plate bending problems in stresses can be obtained using the additional energy
functional [1, 2]:

ne=U"+V*= %f{M}T[E]‘l{M}dQ — f{T}T{Z}ds - min, (1)

U™ — additional energy of the strains, I/*— potential of boundary forces corresponding to the specified
displacements [1]; {A} —vector given displacements of nodes; {T'} —vector boundary forces; S — boundary

M,
surface, on which the displacement nodes are given; {2 — subject area; {M} = My — vector of
My,
bending and torsional moments; [E]~1 — matrix of flexibility of the material:
1 —u 0
[El7t=—=|-u 1 o | )
0 0 214w
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where: E — modulus of elasticity of the material; i is the Poisson ratio; t is the thickness of the plate.

In accordance with the principle of minimum additional energy, the moments functions M,,, My, Mxy,
must satisfy the differential equations of equilibrium. The system of differential equations of equilibrium for
bent plates, under the action of distributed load g, has the following form [2]:

(0Q, 00, _
o + 3y +q=0,
oM, OM,,
— = 3
0x + oy Qx =0, 3
oM, oM,
oy T ax O =0

Eliminating the transverse forces ¢ and @,, from (3), we obtain the known differential equation of
equilibrium of second-order:

%My 49 0%Myy, n 92M,,

dx2 0x0y d0y?

+q=0. (4)

Since, in the general case, it is practically impossible to select the basis functions for M,,, My, Mxy,

which satisfy the differential equation (4), it is suggested to introduce additional stress functions of
Southwell [2]. Then the moments are expressed in terms of the derivatives of the introduced stress
functions. This approach leads to additional difficulties in specifying loads and boundary conditions and
has not received wide practical spread.

In [17-19] another approach is proposed for the solution. The subject area is divided into rectangular
or triangular finite elements. The fields of moments in the region of the finite element can be approximated
by linear or piecewise constant functions (Figure 1). Linear approximating functions (Figure 1a) ensure the
continuity of the moment fields across the entire subject area. Piecewise-constant functions (Figure 1b)
satisfy the differential equation of equilibrium (4) in the absence of a distributed load and are continuous
along the boundaries of finite elements but have discontinuities inside the region of the finite element.

{M;} {M;}

{M:} '_L‘ M} (M}

{M,}

{M,}

b)
Figure 1. Variants of the approximation of moments in the region of the finite element:
a) the moments vary linearly; b) the moments are piecewise-constant

For simplicity, we assume that the given node displacements are absent. Then, using for moments
any variant of approximating functions (Figure 1), the expression for the functional (1) can be written in the
following matrix form:

¢ =~ {(M)T[D]{M} - min, (5)

where{M} is a vector of unknown stresses for the whole system; [D] is the matrix of flexibility for the entire
system.
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4z

Figure 2. Possible displacement of the node 13 and adjacent finite elements

Using the principle of possible displacements (Figure 2), for all non-supported nodes of the system,
we will get algebraic equations of equilibrium of forces along the vertical axis Z:

{Ci}T{Ml'} + ﬁi = 0,l € EZ' (6)

where{M;} is the vector of unknown node moments of all finite elements adjacent to node i; =, is the set of
nodes, that have non-fixed displacement along the vertical axis Z; P; is the generalized force corresponding
to the potential of external loads for possible displacements of node i along the Z axis; {C;} is vector
containing coefficients on unknown node moments in the equilibrium equation of node i along the Z axis.
Algebraic equilibrium equations (6) ensure the equilibrium of the moment fields in discrete sense. Unknown
parameters are only the moments in nodes of finite elements grid. In [17-19], the solution of this problem
was considered using the penalty functions method, which makes it possible to obtain the functional (7):

e = %{M}T [DI{M} + Eiez, o« ({C3{M} + ﬁi)z- @

& is the penalty parameter, recommendations for the choice of which are given in [17-19]. Equating
the derivatives (7) along the unknown nodal moments to zero, we obtain a system of linear algebraic
equations. The matrix of non-zero coefficients of this system of equations will have ribbon structure for any
variant of the moments approximation.

In this paper, to minimize the functional (5), in the presence of constraints in the form of system of
algebraic equations (6), we will use the method of Lagrange multipliers:

e = %{M}T [DItM} + ZiEEz Wi({ci}T{Mi} + ﬁl) - min, (8)

w; — vertical displacement of node . In this solution, additional unknowns appear in the form of node
displacements. But we must accent that the approximations of the displacement field in region of finite
element are not used in the getting (8).

We represent the expression (8) in form more convenient for constructing the solution:
ne = §{M}T [DI{M} + {w}" ({F} — [LI{M}) > min, ©

where {w} is the global vector of unknown nodal displacements for the whole system; {F} is vector whose
elements are equal to the works of external forces on the corresponding unit displacements of the nodes;

[L] is the matrix of “equilibrium”, whose rows are formed from the corresponding vectors {Ci}. If we equate

the derivatives I1¢ c along the vector {M} to zero, we obtain the equations of consistency of deformations
which expressed in the forces:

[DI{M} — [L]"{w} = 0. (10)
Derivatives I1¢ along the vector {w} are the system of equations of equilibrium of nodes
{F}—[L]{M} = 0. (11)
Combining (10) and (11), we obtain the following system of linear algebraic equations:
5 16 L)
—[L]  [o] 1Uw}) — HAF}
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Expressing the vector {M} from the first matrix equation and substituting it into the second, we obtain

[K] = [L][D]*[LI", 13)
[Kw} = (F}, 14
(M} = [DI[L]7{w}. (15)

Thus, solving the system of algebraic equations (14), we obtain the values of the node displacements
{w}, and then the vector of moments {M} from (15).

If linear functions are used to approximate the moments (Figure 1a), then the matrix [K ] will be filled
and the solution of the system of linear algebraic equations (14) or the direct solution of the system of
equations (12) will require large computational costs. Therefore, below, we will consider variant of the
approximation of moments in the region of finite element by piecewise constant functions (Figure 1b). In
this case, the matrix [D] is block-diagonal, and the matrix [K] will have ribbon structure of non-zero
elements.

Will obtain the necessary expressions for the elements of the matrices [D], [L] and the vector {F},
which enter (9), when rectangular and triangular finite elements are used to discredit the subject area
(Figure 3).

X

X1 X3 X2

Figure 3. Triangular and rectangular finite elements

Mi,x
We introduce the following notations: {Ml-} =4 M;,, ;- vector of moments in node i in local
Mi,xy
Mi,x
coordinate system X;0Y;; {Ml-} = Mi,y — vector of moments at node i in the global coordinate
Mix
Xy

system XOY. M; , — bending moment at node i, directed along the X axis; M; ,, is the bending moment
at node i, directed along the Y axis; M; ,,, is the torque at node i.

2

Figure 4. Separation of a triangular finite element into regions with constant moments:
a) an arbitrary triangle; b) right-angled triangle

Since the bending moments and torques are piecewise constant, the expression for the additional
deformation energy in the global coordinate system can be written in the form of simple sum:
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Ut =3m, A MYTIE] M), (16)
A=A+ AL 1”)

where m is the total number of nodes; n; g is the number of rectangular elements connected to node ;
n; r —the number of triangular elements connected to node i; A® is the area of finite element. We introduce

the notation for the flexibility matrix of "neighborhoods" of the node i; Af is the area of the part of the
triangular finite element with constant bending moments (Figure 4a). This point can be defined as the point
of intersection of perpendiculars, drawn from the middle of the sides (Figure 4a).

For a rectangular finite element, the separation of an element into regions with constant moments is
uniquely — into four equal regions. For a triangular element, each side must be equally divided, but there
must also be a point inside the element in which the three areas, related to the nodes, intersect. If the
largest angle of the triangle is greater than 90 degrees, then such a point lies outside the triangle. In this
case, the triangle is divided into regions by lines passing through the middle of the sides — these lines will
be parallel to the sides of the triangle. Such a division of a triangular element into regions with constant
moments makes it possible to obtain more accurate results, than in the case of division simply into three

1
equal parts — 3 AS.

In Figure 4a, the point O is the center of a circle described about the triangle. OA, OB, OC -
perpendiculars, directed from the middle of the corresponding sides of the triangle. Denote the lengths of
the sides of the triangle — L;, l,3, l31. From the schemes in Figure 4a we get:

151551
R = 12723731

44s '
Al =
(18)

A5 =

A5 =
It is obvious that for a right-angled triangle (Figure 4b) — A = A5 = %AS, S = %AS. For an
equilateral triangle — A = A5 = A3 = éAS. If one of the angles of triangle is greater than 90°, then, as
well as for a right-angled triangle, we take: A] = A5 = %AS,A‘; = %AS. Besides, you do not need to use

too elongated triangles. Better such triangles divided into two more correct triangles.

We introduce the notation for the flexibility matrix of "neighborhoods" of node i and for the global
flexibility matrix for the entire system, which consists of matrices of flexibility for all nodes of the system:

[D4]
[D;] = A[E]™,[D] = : (19)
[Drm]
It is obvious that the matrix [D] is easily invertible analytically.
[D:]7*
[D]1 = . (20)
[Dp]™!

Consider the derivation of the equilibrium equations for possible displacement of node of rectangular
finite element in the local coordinate system X; OY; (Figure 5). For rectangular finite element, we introduce

also the local coordinate system &cn, connected with its center (Figure 5) and enter the basic functions,
which are expressed in normalized local coordinates in the following form:
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A+&OA +nmm) | 2x 2y

Ni(x,y) = 2 == 7,1‘ =1,2,3,4. (21)

The index i denotes the local node number of the finite element; x, y - coordinates along the axes

X, and Y7, respectively; &;, 17; are the local normalized coordinates of the node i taking the values 1 or -1.
The nodes are numbered counterclockwise, beginning with the lower-left node.

Y My /'Y, .
4/ /'n 3 4 21

M3, X

a) b)

Figure 5. a — possible displacement of the node 1 and deformation of the rectangular finite
element; b —the red line shows the graph of the change in the angle of rotation ¢, of the sides
of the finite element from the possible movement of the node 1

The displacements of the points of the finite element after the possible displacement of the node i
(i = 1,2,3,4) can be expressed in the following form:

@+ &)@ +nm)
7 .
Possible displacements along each coordinate axis vary linearly, so the curvatures 6k, and (Sky

ow (22)

along the axes X; and Y; are respectively zero, and the torsional curvature & k. is constant.

_0%(6w) _ 0 5k _9%(6w) _ _0%(6w) _ 24
axz Y ay2 % 9xdy  a-b’

Thus, with possible displacement of node i, only internal torques Mxy and normal bending moments

(23)

Sk, =

Mn along the boundaries of finite elements I'® at the corresponding rotation angles 6 5,, will work. Then

the work of internal forces for the finite element k on possible displacements of node i can be expressed
in the following form:

UL, = [ ) My Skyydxdy + [ My 6Bpds. (24)
For the boundaries of element directed along the X; axis, the bending moment My and the
corresponding angle of rotation of the finite element along the axis Y; — 6<py are normal. For boundaries
directed along the axis Y;, respectively M,. and § ¢,, are normal (Figure 5b).
_96w) _ & +nm) P d(6w) _ ni(1+45i)

P 0x 2a % dy 2b

In Figure 5b, the red line shows the graph of the change in the angle of rotation along the boundaries
of the finite element after possible displacement of the node 1.

: (25)

Considering that the moments are constant in each quarter of the finite element, the first integral in
expression (24) is calculated simply:

b b v ini v
foa fo Mxy Skxydxdy = %2321 Mxy,jgkxy = - 5277 Z?:l Mxy,j- (26)

The work of the bending moments Mx for the angles of rotation of the sides 1-4 and 2-3 of the finite
element (Figure 4b) is calculated by integrals

— b— 0 &(1+nmy) b+~ 1&;(1+nmy)
Jre M 8@, ds = =2 My & [2 250 dn — 2 My oy f) 25 7 dn — o
b— 0 &(1+nmy) b+~ 1&;(1+nny)
EMX,Zfz f—l Zann dn - EMx,3€3 fo Zann dT’
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In expression (27), the coefficients §; + &4, which are to the right of the moments, consider the
directions of the moments M, and of the rotation angle §¢,. On the side 1-4, the moments M, and the

rotation ¢, are directed equally, so the first two terms in (27) will be positive, since {; = &, = —1. On
the side 2-3, the moments and the rotation are directed in the opposite direction, so the third and fourth

terms will be negative, since §; = &, = 1. Calculating the integrals in (27), we can obtain the following
compact expression:

_ ) oy
Jre My 8g,ds = ==& 30, & (1+20) M, (29)

Similarly, one can obtain an expression for the operation of the moments My

— a $i8i\ 77
Jre My 8@yds = — - Xj-1m; (1 + ‘T’) M, ;. (29)
Summing the expressions (26), (28), and (29), we obtain
k _ b 4 i\ 77 a 4 $i¢i\ 77
6Ui, = = -SiLj=15j (1+ )Mx,j—gm j=11j (1+_)My,j_

2 2 (30)
Siniga 77
*5 Lj=1 My,

Substituting i to be equal from 1 to 4 in (30), we obtain expressions for the operation of internal
forces (moments) for possible displacements of nodes from the first to the fourth.

We unite the node moments in the local coordinate system X; OY; for the finite element k to the
—k
vector {M }

kT
N L (31)
(Mx,l My,l Mxy,l Mx,Z My,Z Mxy,Z Mx,3 My,3 Mxy,3 Mx,4 My.4 Mxy,4)'

We also introduce vector combining the values of the work of internal forces for possible
displacements of nodes of finite element

k
(SULZ\'
k
6U
{6U’Z‘}={ iz} (32)
|6U3,Z|
k
k6U4,Z)
Then we can write the following expression in matrix form:
—Kk1 (—k
ousy =[] {m}. (33)
. . . . _k
Using (30), we obtain expressions for the elements of the matrix | L ]
3 8¢ 1 3% - 1 b a 1 -b 3a 17
8a  8b 2 8a  8b 2 8a 8b 2 8a 8b 2
3b -a -1 -3b -3a -1 -b 3a -1 b a -1
—k o on - o Ton - o o - o o -
_lsa 8b 2 8a 8b 2 8a 8b 2 8a 8b 2
N R IR S S e A R R | 59
8a  8b 2 8a 8b 2 8a 8b 2 8a 8b 2
b 3 -1 b a -1 3 -a -1 =3 =3a -1
-8a  8b 2 8a  8b 2 8a 8b 2 8a 8b 2 -
The node moments {M } in local and {M*} in global coordinate system are connected by the

matrix of the direction cosines

cos? « sin? o —2sin &« cos &
[l]=] sin? « cos? « 2 sin « cos « |. (35)
sin &« cos & —sin & cos & co0s? & —sin? o«
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X is the angle between the Y; axis and the Y axis (Figure 3). Using (35), we obtain the matrix of the
direction cosines for the finite element

1 |
sq=| l
|

36
[1] | (36)
[0
The work of internal forces (33) can be represented in the following form:
(UL} = [LIM*, [14] = [L7] (51 (37

The matrix can be called the local matrix of "equilibrium" of the finite element. From matrices [L¥]
for finite elements, in accordance with the numbering of the nodes and elements, global "equilibrium" matrix

[L] is formed for the whole system.

The potential of the external concentrated and uniformly distributed loads for possible displacements
of the node i along the global coordinate axis is determined by the formula (38).

1
SV, =P +quab =R;. (38)
P; — the force concentrated at node i; qk — uniformly distributed by element load. The generalized

forces R; are placed in the vector {F} (see (12)).

Consider possible displacement of node of triangular finite element (Figure 6). We can express
possible displacements of the nodes of finite element using triangular coordinates:

Sw;(x,y) = L;,i =1,2,3. (39)

1
L; = yi (a; + bix + ¢;¥), a; = Xip1Yiv2 — Xiv2Yit1s (40)
bi = Yit1 = Vi+2, Ci = Xirz = Xi41.

A is the area of the triangular element; X;, y; are the coordinates of node i (Figure 3).

3 X n
‘> M

Figure 6. Possible displacement 8wy of the node 1 of the triangular finite element

Triangular coordinates are the natural coordinates of the triangular region. The function L; takes
value of 1 in node i and values of zero in the other two nodes. Since the function L; is linear with respect
to x and y coordinates, curvatures 6k, and §k,, along the X and Y axes, respectively, and torsional
curvature Skxy for a possible node displacement will be zero. In this case, the finite element moves as
rigid whole without deforming, and the work will be performed only by bending moments M™ normal to
boundaries of the finite element on the corresponding angles of rotation of the sides of the element
(Figure 6).

In Figure 6 lines 1A, AB, AC are perpendicular to the corresponding sides of the triangles 2-3,1-2,

3-1. The angles of rotation of the sides are denoted respectively — @15, 23, @31. The values of angles of
sides rotation can be easily determined by means of geometric scheme (Figure 6):
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_ BB/ __cosf3q _ cc/ __cosfBqy

1
P23 hys’ P12 =5 ps P31 = ¢ Mas (41)

The moments M™ normal to the side of the element are directed oppositely with respect to internal
moments and are expressed through the bending and twisting moments in the following form:

MJ; = —M, sin® a;; — M,, cos® a;; + 2M,,, sin a;; cos a;;. (42)
In (42) @;; is the angle between the side i — j of the element and the X axis.
x.

i X . Yi = Yi

— SN = —— . (43)
Using (42), (43), we obtain the expressions for the nodal moments directed perpendicular to the

sides of the finite element (Figure 5):

Ccos a'l-j =

Mﬂl—z = - x,1 Sinz a1y — y,1 COSZ (24 + 2Mxy,1 Sin (247 COoS a12,
M§3_1 = — x,1 Sinz a3 — My,l COSZ a31 + 2Mxy,1 sin 31 COS A3,
M;l’l_z = — x,2 Sinz a1y — My‘z COSZ (24 + 2Mxy,2 sin a1 COS K1y, (44)
M3, 3 = =M, , sin® ayz — My, cos? a3 + 2M,,y,  Sin @3 COS A3,
M%,_3 = =M, 3 sin® ayz — My, 3 c0S® aty3 + 2M,,y, 3 Sin @3 COS A3,
MZ;_y = =M, 3 sin® az; — My, 3 cos® azq + 2M,,, 3 Sin @34 COS A3 .

Considering the piecewise constant approximation of the moments, the expression for the work of
internal forces on possible displacement of node 1 (Figure 6) can be written in the following form:

k _1am 1. 1. 1 n
5U1,z = 5M1,1—2€012112 + 5M1,3—1§031l31 + 5M2,1—2<P12l12 - 5M2,2—3<P23123 -
1. 1.
5M3,2—3§023123 + 5M3,3—1<P31l31-

Substituting (44) into (45), we obtain the expression for & Ufzz

(45)

k _ x,1 2 i 2
SUf, = ET (=1, sin®a,, cos B3, — l3; sin®a3, cos By,) +
23
M

y,1
2h23

(—1y, cos? ay, cos B3y — l31 cOS? agq cos fBy,) +

M, 1
Zh—y’ (21, sin a;, cos @y, cos B3, + 213, sin a3, cOS azq cos f1,) +
23

M
2}:’2 (_llz Sinzalz COS B31 + l23 Sinzazg) +
23

M, ,

(=1, cos? ay, cos B3q + ly3 cos? ays) + (46)

Mxy,z

oh (21,5 sin a1, cOS @15 €OS P31 — 2153 Sin @y3 COS Ay3) +
23

M
Zh—x,3 (_l31 Sin2a31 COS ﬁlz + l23 Sin2a23) +
23

M, 5

(=131 cos? agq oS Byp + L3 cOs? ays) +

Mxy,3

To obtain the expression for the work of internal forces for possible displacement of node 2, we need
to perform cyclic replacement of the indices in expression (46): replace index 1 by index 2, index 2 by 3,

and index 3 replaced by index 1. Then we obtain the expression for 5U§Z:

(213, sin a3, cos a3, €cos 1, — 21,3 sin a,3 COS y3).
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sUS, = 2h31 — 22 (1, sin?ays COS B2 — L1 sin?ay, cos fBp3) +

2h 2 (- l,3 cos? ay3 cos By — Iy, cos? ayy cos Br3) +
31

(2l23 sin a,3 COS @53 €OS By, + 214, Sin ay, COS @15 COS fBr3) +

( 123 Sln a,3 COS ﬁlz + l31 sin a31) +
2h31

( l,3 cos? ay3 cos By, + I34 cos? azq) +

h (2l23 sin a,3 COS dp3 COS B, — 2131 Sinas; cosazq) +
31

( l12 Sln a1, COS ﬁ23 + l31 sin a31) +
2h31

( 11, cos? @y, cos By3 + I34 cos? azq) +

oh L (21, sin @y, cos @y, cos P23 — 213, sin a3, COS a3).
31

Performing the cyclic replacement of the indices again, we obtain an expression for 5U3’f_Z:

sUk, = Zh 23 (—l4; sin?as; oS Pys — Ly Sin?ays cos Pay) +
12
Zh 23— l31 €0s? a3 COS Br3 — ly3 COS? ay3 COS f31) +
12
Mxy3
h (2154 sin a3q €OS a3q €OS o3 + 2155 Sin ay3 COS Ay3 COS B3q) +
12
M, 1
Zhlz —EL (—13, sin®as; oS By + lyy sinay,) +
Zh X 2 (—lgy OS2 @zy €OS Pos + Ly COS2 ayy) +
1
Zh (2l31 sin a3 COS @37 COS fa3 — 211, sinay, cosay,) +
12
M, ,
2h12 —22 (—l,q sin®a,s3 oS Bag + lyy sinZay,) +
2h 2 (- l,53 cos? ay3 cos B3q + 15 cos? ayy) +
12
2h (Zl23 sin a,3 COS @53 €OS B3 — 211, sinaq, cos ay,).
12

Let us unite the node moments in the global coordinate system XQOY for the triangular finite element

with the index K into the vector {M*}.
{Mk}T = (Mx,l My,l Mxy,l Mx,Z My,2 Mxy,Z Mx,3 My,3 Mxy,3)-

We also introduce vector combining the values of the work of internal forces for possible

displacements of nodes of finite element:
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(48)

(49)
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>
<

N

(sU% )

(sU%) = su%, . (50)
| 27|
\6U3,2)

»
»
”

>
<

Z

Then we can write the matrix expression:
{6UF} = [L¥]{M"}. (51)
The matrix [Lk] has 3 rows and 9 columns. The elements of the matrix [Lk] are coefficients under

the corresponding moments in the expressions (46)—(48). From matrices [Lk] for finite elements, in

accordance with the numbering of nodes and elements, global "equilibrium" matrix [L] is formed for the
whole system.

The global equilibrium matrix [L] for the whole system will have “tape-line” structure of non-zero

elements. The number of rows of the matrix [L] is equal to the number of unfixed nodes of the system n.
Indexes for unknown moments are assigned in accordance with the numbering of nodes. Therefore, the

width of the “tape” of non-zero elements of the matrix [L] will be determined by the maximum difference of
the node numbers of all finite elements adjoining to the node. For example, for node 13 in Figure 2 the
maximum difference of the indexes of nodes, the finite elements adjoining it, my 3 = 18 =7 = 11.
Accordingly, the width of the “tape” of non-zero elements for the row of the matrix [L] corresponding to
node 13, my ;3 = (mp,13 + 1)3 = 36. After calculating the width of the “tape” m, ; of the matrix [L] for
each of the rows, the maximum value my, ,,,, is determined. Thus, for elements of the matrix [L], we can
use a rectangular array consisting of m; ,,,,, columns and n lines.

In addition, it is necessary to form an array Ind, consisting of two columns. In the first and second
columns, respectively, the minimum and maximum indexes of finite element nodes, for each row of the

matrix [L], are stored. For example, for the row corresponding to node 13 in Figure 2, we obtain:
Ind[13,1] = 7,Ind[13,2] = 18. The Ind array is used in the construction of the matrix multiplication
algorithm for calculating the elements of the matrix [K] = [L][D]~*[L]7, and, also, for determining the
width of the “tape” of non-zero elements of matrix [K] — my.

The potential of external concentrated and evenly distributed loads for possible displacement of node
[ along the global coordinate axis is determined by formula (52).

8V, = P+ q A = R;. (52)

P; — the force concentrated at node i; qk — uniformly distributed by element load. The generalized
forces R; are placed in the vector {F} (see (12)).

3. Results and Discussion

According to the program developed in MathCad 14.0, calculations of square and rectangular plates
were performed on the action of concentrated force and distributed load (Figure 7). Hinged-supported and
clamped plates were calculated in accordance with the Kirchhoff theory. In the calculations, grids of
rectangular and triangular finite elements were used. The plate has the following parameters: side length

— 6m or 3m, thickness — 1m, modulus of elasticity E = 10000 kN/m?, Poisson's ratio u = 0.3,
uniformly distributed load g = 10 kN /m?.

As consequence of the symmetry of the problem, the quarter of the plate was calculated, with the
corresponding boundary conditions on the sides lying on the symmetry axes. At the nodes lying on the
axes of symmetry, the torques were assumed to be zero. The bending moments directed along the plate
boundary and moments directed perpendicular to the boundary were assumed to be zero in the support
nodes of the hinged plates.

In [23] analytical solutions of the plate bending problems for various types of the support of sides for
distributed and concentrated loads are presented. The displacements are expressed in the form:
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qa4- 2

w=a—,w
D

of the calculation schemes are given in Table 1. D =

Table 1. Coefficients from [23] for the determination of analytical values

Et3

12(1-p2)

= a%, and moments in the form: M = Bqa?, M = BP. The coefficients for the variants

- bending stiffness of a plate.

i w. M, M M M
S;Zigzsof Support = Load L yi X1 3 2
a B B B B

a=>b hinged q 0.00406 0.0479 0.0479 - -
a=>»b clamped q 0.00126 @ 0.0231 @ 0.0231 -0.0513 -0.0513
a=>b | clamped P 0.0056 - - -0.1257 = -0.1257
b
—=2 clamped q 0.00254 0.0412 0.0158 @ -0.0571 -0.0829
a

6m
SRR R

;
2 1 6m o N
2 am SESSSEEEEE
- = 3 A = // /' / =4 / 1\ N R N L 7:37 o
a) b) c) d)

Figure 7. Finite element grids for square and rectangular plates:
a) 5x5 square grid of finite elements; b) 5x5 grid of isosceles triangular finite elements; c) grid of
5x5 rectangular finite elements; d) grid of 5x5 elongated triangular finite elements

The results of calculations of plates according to the proposed method were compared with the
results obtained by the finite elements method in the LIRA-SAPR program and analytical solutions. A
comparison of solutions is shown in Figures 8-15 and in Tables 2—-16. In the figures, the green line shows
the analytical solutions from [23]. In the tables and in the figures, the grid parameters are indicated for the
whole plate.

w M:

59.5 T T T T 17.6f T T T T

5"_\ ) 1 7.4X .

58.5F

5817

57.5F

1 1 1 1 n 1 1 1 1 n

5 8
10 20 30 40 50 60 10 20 30 40 50 60
a) b)

Figure 8. Hinged-supported square plate - rectangular finite elements (Figure 7a),
q = 10 kN/m?: a) displacement of the center of the plate - w; b) the bending moment at the

center of the plate is M1. 1 —the solution in stresses;

2 —the solution in displacements (LIRA-SAPR)
w M1

1 ! 1 ! n
10 20 30 40 50 60
a)

Trokaznos 10.10. KoHeuHo aneMeHTHBIE MOJIENN B HANIPSDKEHUAX JUTS M3THOAaeMBbIX TuiacTH // HxkeHepHo-
cTpouTesbHbIH KypHai 2018. Ne 6(82). C. 170-190.

182



Magazine of Civil Engineering, No. 6, 2018

Figure 9. Hinged-supported square plate — triangular finite elements (Figure 7a), ¢ = 10 kN/mZ:
a) displacement of the center of the plate —w; b) the bending moment at the center of the plate is

M. 1 —the solution in stresses; 2 — the solution in displacements (LIRA-SAPR)

Table 2. The square plate with hinged supports, divided by the square finite elements
(Figure 7a), ¢ = 10 kN /m?.

Grid

10x10
20x20
30x30
40x40
50x50
60x60
Exact
Error, %

W, mm
59.342
57.950
57.695
57.606
57.565
57.542
57.458
0.15

Solution in stresses

M, kNmim | my .. mg
17.4523 41 15
17.2919 71 25
17.2625 101 35
17.2523 131 45
17.2475 161 55
17.2449 191 65

17.244
0.005

Solution in displacements

LIRA-SAPR
n W, mm = M1, kNm/m | mg n
25 58.097 16.8897 21 85
100 57.643 17.1518 36 320
225  57.559 17.2003 51 705
400 57.530 17.2173 66 1240
625 57.516 17.2251 81 1925
900 57.509 17.2294 96 2760
57.458 17.244
0.09 0.08

Table 3. The square plate with hinged supports, divided by the triangular finite elements
(Figure 7b), ¢ = 10 kN /m?.

Grid

10x10
20x20
30x30
40x40
50x50
60x60
Exact
Error, %

W, mm
57.653
57.531
57.510
57.502
57.499
57.497
57.458
0.07

Solution in displacements

Solution in stresses

20)

20 30 40

a)

LIRA-SAPR
Mi kNm/Im My e Mg N W, mm M kNm/im | my n
16.9602 41 15 25 56.910 16.9338 21 85
17.1260 71 25 100 57.348 17.1573 36 320
17.1777 101 35 225 57.423 17.2002 51 705
17.2002 131 45 | 400 57.456 17.2161 66 1240
17.2120 161 55 625 57.469 17.2238 81 1925
17.2191 191 65 900 57.476 17.2281 96 2760
17.244 57.458 17.244
0.14 0.03 0.09
M1 -M:
T 8.8 T T T T 20 T T T T
- 8.6["
1
8.4
8.2
2
g
1 n = 1 1 1 1 n 10/ L 1 1 1 n
50 60 Hl() 20 30 40 50 60 10 20 30 40 50 60

Figure 10. Clamped square plate - rectangular finite elements (Figure 7a), ¢ = 10 kN/mZ:
a) displacement of the center of the plate —w; b) the bending moment at the center of the plate is
M;. c) the bending moment at the clamped side is M..1 — the solution in stresses; 2 — the solution
in displacements (LIRA-SAPR)

20)

T 8.6]

8.4

Il n
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Figure 11. Clamped square plate - triangular finite elements (Figure 7b), q = 10 kN/mZ:

a) displacement of the center of the plate —w; b) the bending moment at the center of the plate is

M. c) the bending moment at the clamped side is M>. 1 —the solution in stresses;
2 —the solution in displacements (LIRA-SAPR)

Table 4. Clamped square plate - rectangular finite elements (Figure 7a), q = 10 kN/mZ.

L Solution in displacements
Solution in stresses

Grid LIRA-SAPR
W, mm  Mip kNm/m = Mo kNm/m = W, mm = M kNm/m = M> kNm/m
10x10 20.293 8.66832 -17.65748 18.257 7.91934 -11.4736
20x20 18.537 8.36097 -18.25078 17.997 8.16432 -14.7482
30x30 18.193 8.29848 -18.37533 | 17.947 8.20962 -15.9398
40x40 18.069 8.27586 -18.42045  17.930 8.22546 -16.5550
50x50 18.012 8.26521 -18.44167 17.922 8.23280 -16.9304
60x60 17.980 8.25936 -18.45331  17.917 8.23678 -17.1833
Exact 17.832 8.316 -18.468 17.832 8.316 -18.468
Error, % 0.83 0.68 0.08 0.47 0.95 6.96
w M1
20) T T T T 8.6 T T T T
8.4 { 7
191 1 =
8.2 7

181 e — " 2
2 8 i

17 I I 1 1 n 78 1 1 1 i n 12 L n

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
a) b) c)

Figure 11. Clamped square plate - triangular finite elements (Figure 7b), g = 10 kN/m?: a)

displacement of the center of the plate - w; b) the bending moment at the center of the plate is M.
¢) the bending moment at the clamped side is M. 1 - the solution in stresses; 2 - the solution in

displacements (LIRA-SAPR).

Table 5. Clamped square plate - triangular finite elements (Figure 7b), ¢ = 10 kN/mz.

L Solution in displacements
Solution in stresses

Grid LIRA-SAPR
W, mm | M1, kNm/m = Mo kNm/m = W, mm = Mi kNm/m = M>, kNm/m
10x10 19.921 8.56379 -17.86275 17.251 7.90791 -12.3842
20x20 18.449 8.30952 -18.34177 17.826 8.17397 -15.2137
30x30 18.154 8.26870 -18.42369 17.875 8.21509 -16.2554
40x40 18.048 8.25636 -18.45019 17.890 8.22875 -16.7944
50x50 17.998 8.25136 -18.46175 17.897 8.23494 -17.1235
60x60 17.970 8.24898 -18.46776 17.900 8.23827 -17.3453
Exact 17.832 8.316 -18.468 17.832 8.316 -18.468
Error, % 0.77 0.81 0.001 0.38 0.93 6.08
L T T T T 2.6f - T T T T 1 W T T T T ] 1 Me T T T T
{‘\ | z<\\ 1 12 /1/77477:,/—1
\\ 24F \ . LiF .
n \\ . L \\ 1 ] L. /2 i

.
e 22 — 0.9 .
22 //'
n

2.1 0. 1 1 L 1 n 1 1 1 1 n
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
a) b) c) d)

Trokaznos 10.10. KoHeuHo aneMeHTHBIE MOJIENN B HANIPSDKEHUAX JUTS M3THOAaeMBbIX TuiacTH // HxkeHepHo-
cTpouTesbHbIH KypHai 2018. Ne 6(82). C. 170-190.

184



Magazine of Civil Engineering, No. 6, 2018

Figure 12. Clamped square plate - the action of concentrated force in the center P = 10 kN:
a) square finite elements — displacement of the center of the plate w; b) triangular finite elements -
displacement of the center of the plate W; c) square finite elements - moments in clamped side

Mp>; d) triangular finite elements - moments in clamped side M>. 1 —solution in stresses;
2 —solution in displacements LIRA-SAPR

Table 6. The clamped square plate. The action of the concentrated force P = 10 kN.

Solution in stresses Solution in displacements LIRA-SAPR
Grid square elements triangular elements square elements triangular elements
W, mm = M> kNm/m W, mm M> kNm/m = W, mm = Mz kNm/m = W, mm = Mz kKNm/m
10x10 2.7351 -1.17795 2.5213 -1.20274 2.2548 -0.8901 2.1160 -0.96346
20x20 2.3638 -1.23115 2.3044 -1.24078 2.2115 -1.0659 2.1833 -1.09814
30x30 2.2826 -1.24479 2.2546 -1.24980 2.2138 -1.1262 2.1945 -1.14827
40x40 2.2517 -125012 2.2352 -1.25319 2.2108 -1.1604 2.1994 -1.17446
50x50 2.2365 -1.25273 2.2257 -1.25481 2.2093 -1.1792 2.2017 -1.19056
60x60 2.2279 -1.25420 2.2202 -1.25569 2.2084 -1.1922 2.2030 -1.20686
Exact 2.2015 -1.257 2.2015 -1.257 2.2015 -1.257 2.2015 -1.257
Error, % 1.1 0.22 0.85 0.1 0.31 5.16 0.07 3.99

10 20 30 ) 40 50 60 10 20 30 40 50 60
a

Figure 13. The displacements of the center of rectangular clamped plate (Figure 7c, 7d) under the

action of load q = 10 kN/mZ: a) rectangular finite elements; b) triangular finite elements.
1 - solution in stresses; 2 — solution in displacements LIRA-SAPR

-Ms -M: My Mi.x
8| T T T T 6 T T T T 3.9 T T T T 1.43] T T T T

1 o —

e n c n

h) & . -

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 . 40 50 60
a) b) c) d)

Figure 14. Bending moments in rectangular clamped plate under the action of load
q = 10 kN /m? for rectangular grid of finite elements (Figure 7c)

-Ms -M2 My Mi.x

5 1 1 1 1 n
10 20 30 40 50 60
a)

n 35 1 1 1 1 n 1.4 1 1 1 L n
60 710 20 30 40 50 60 10 20 30 40 50 60
<) d)

Figure 15. Bending moments in rectangular clamped plate under the action of load
q = 10 kN /m? for triangular grid of finite elements (Figure 7d)
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Table 7. The clamped rectangular plate (Figure 7c) —rectangular finite elements. Load action

q = 10 kH/m?
Gid
mm

10x10 | 2.4658
20x20 | 2.2990
30x30 @ 2.2668
40x40 | 2.2554
50x50 @ 2.2500
60x60 @ 2.2471
Exact 2.2467

Error,

% 0.02

Solution in stresses

Ms,
kNm/m
-7.41651
-7.45081
-7.45332
-7.45663
-7.45716
-7.45743
-7.461

0.05

Mo,
kNm/m
-3.97326
-4.73785
-4.93844
-5.01715
-5.05563
-5.07722
-5.139

12

My1,
kNm/m
3.81770
3.73492
3.71812
3.71203
3.70917
3.70759

3.708

0.01

My,
kNm/m
1.42455
1.42046
1.42127
1.42178
1.42207
1.42225

1.422

0.02

Solution in displacements LIRA-SAPR

W,
mm

2.2747
2.2491
2.2443
2.2426
2.2418
2.2414
2.2467

0.24

Ms,
kNm/m
-5.30885
-6.34108
-6.70369
-6.88858
-7.00068
-7.07590
-7.461

5.16

Mz,
kNm/m
-2.04139
-3.33420
-3.87049
-4.16096
-4.34272
-4.46709
-5.139

13.07

My,
kNm/m
3.56671
3.66967
3.68882
3.69544
3.69850
3.70017

3.708

0.2

Mxl,
kNm/m

1.39448
1.41457
1.41906
1.42065
1.42139
1.42180

1.

422

0.01

Table 8. The clamped rectangular plate (Figure 7d) — triangular finite elements. Load action

q = 10 kH/m?

Grid

w, mm
10x10 2.46209
20x20 2.29638
30x30 = 2.26548
40x40 = 2.25459
50x50 2.24952
60x60 = 2.24676
Exact 2.2467

Error,

% 0.0003

Solution in stresses

Ms,
kNm/m
-7.47306
-7.46733
-7.46316
-7.46118
-7.46013
-7.45951
-7.461

0.02

Mo,
kKNm/m
-4.0175
-4.7710
-4.9588
-5.0306
-5.0652
-5.0843

-5.139

1.06

My,
kNm/m
3.88984
3.75561
3.72829
3.71818
3.71332
3.71060

3.708

0.07

My,
kNm/m
1.55522
1.45769
1.43891
1.43215
1.42894
1.42714

1.422

0.14

Solution in displacements LIRA-SAPR

w, mm

2.20474
2.23251
2.23718
2.23871
2.23938
2.23973
2.2467

0.3

Ms,
kNm/m
-5.55454
-6.48844
-6.80927
-6.97098
-7.06830
-7.13339
-7.461

4.39

Mo,
kNm/m
-2.21824
-3.39414
-3.91612
-4.20201
-4.38058
-4.50216
-5.139

12.4

Table 9. Errors in calculating bending moments, expressed in percent

Grid

Figure 7a
Figure 7b
Figure 7a
Figure 7b
Figure 7a
Figure 7b
Figure 7c
Figure 7d

Support

hinged

hinged
clamped
clamped
clamped
clamped
clamped
clamped

Load

Q Q v T Q@ 9

Solution in stresses

M3 M> My1 Mx1
- - 0.005 0,005
- - 0.14 0.14
0.08 0.08 0.68 0.68
0.001 0.001 0.81 0.81
0.22 0.22 - -
0.1 0.1 - -
0.05 1.2 0.01 0.02
0.02 1.06 0.07 0.14

Myl,

kNm/m
3.56493
3.67033
3.69106
3.69753
3.70025
3.70160

3.708

0.17

Solution in displacements

6.96
6.08
5.16
3.99
5.16
4.39

LIRA-SAPR
M My1
- 0,08
- 0.09
6.96 0.95
6.08 0.93
5.16 -
3.99 -
13.07 0.2
12.4 0.17

My
0,08
0.09
0.95
0.93

0.01
0.45

My,
kNm/m
1.48789
1.45181
1.43924
1.43348
1.43034
1.42843

1.422

0.45

By beginning we estimate the convergence of displacements determined by the proposed calculation
method in stresses and by the finite element method in displacements:

— for all the considered variants of calculation schemes and loads, the displacements obtained in
the stresses, when crushing the grid, tend to the exact values from above - the proposed solution
is more flexible and has the property of convergence of displacements from above;

— the solution in displacements (LIRA-SAPR) tends to the exact value from above if rectangular
elements are used, and from below, if triangular elements are used - in one case the solution is

more flexible, in the other case it is more rigid.

Trokaznos 10.10. KoHeuHo aneMeHTHBIE MOJIENN B HANIPSDKEHUAX JUTS M3THOAaeMBbIX TuiacTH // HxkeHepHo-
cTpouTesbHbIH KypHai 2018. Ne 6(82). C. 170-190.
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Analysis of the obtained results allows us to do the following conclusions about the accuracy of
calculating bending moments (Table 9):

the proposed solution method in stresses makes it possible to obtain the values of the bending
moments with greater accuracy than the finite element method in displacements (LIRA-SAPR)
for all the considered plate bending problems;

the greatest error in calculating the moments for solving in stresses is 0.8 %, and for the finite
element method in displacements (LIRA-SAPR), the error in calculating the moments in the
clamped sides reaches 13 %;

when using elongated rectangular and triangular elements (Figure 7c, d), the accuracy of
calculating the bending moments according to the proposed technique in stresses is reduced a
little;

when calculating by the finite element method in displacements (LIRA-SAPR), the moments are
determined for the centers of the finite elements, but for calculation in stresses — for the finite
elements nodes;

It is also necessary to note the following computational features of obtaining the solution in stresses:

additional computational costs associated with matrix multiplication [L][D]~*[L]” are necessary
to form the resolving system of linear equations. Since the matrix [D]~* is block-diagonal (block
size 3x3), and the matrix [L] has form of tape (the width of the tape of non-zero elements My max

of Tables 2—3), we can use the special algorithm of multiplication of matrices, allowing to reduce
computational costs;

the resolving system of linear equations, in comparison with the solution by the finite element
method in displacements, has a smaller number of unknowns N and a smaller width of the tape
of non-zero elements my (Tables 2-3).

The paper [29] compares the results of calculations of clamped plates on the action of a uniformly
distributed load for four types of triangular finite elements: BZIC is uncoordinated element of the
displacement method [24, 30, 31]; TEC is element with forced compatibility of the inclination angles of the
normal [26]; DKT is discrete Kirchhoff theory triangular element [30—31]; HSM is triangular hybrid finite
element [33]. In Tables 10-11, the results of calculations for clamped square and rectangular plates, with
a ratio of sides of 2 to 1, obtained for action uniformly distributed load, are compared. In Tables 10-11
shows the results of calculations for finite element grid 11 x 11 (for quarter of a plate), which corresponds
to an 22 x 22 grid for the whole plate. In the tables, the solutions obtained by the proposed finite element
method in stresses is designated FEM-S.

Table 10. A clamped square plate under the action of a uniformly distributed load. A grid of
11x11 for a quarter of the plate

Type of element  wD/qa* @ Error,% = M,/qa®? @ Error,%  M,/qa* @ Error,%

BZIC 0,001277 +1.3 0,02374 +2.8 -0,05522 +7.6
TEC 0,001269 +0.7 0,02673 +15.7 0,05455 +6.3

DKT 0.001279 +1.5 0.02331 +0.91 -0.05212 +1.6
HSM 0.001269 +0.7 0.02325 +0.65 -0.05068 -1.2
FEM-S 0.001297 +2.9 0.023045 -0.24 -0.05102 -0.55
Exact 0.00126 0.0231 -0.0513

Table 11. A clamped rectangular plate (b / a = 2) under the action of a uniformly distributed
load. A grid of 11x11 for a quarter of the plate

Type of element  wD/qa*  Error,%  M,,/qa* Error,% M,,/qa*  Error, %

BZIC 0.002583 +1.7 0.04216 +2.33 0.01495 -5.4
TEC 0.002551 +0.4 0.04666 +13.2 0.01888 +19.5
DKT 0.002566 +1.0 0.04188 +1.65 0.01650 +4.4
HSM 0.002541 0 0.04193 +1.77 0.01697 +7.4
FEM-S 0.002585 +1.8 0.041636 +1.06 0.016132 +2.1
Exact 0.00254 0.0412 0.0158

Tyukalov, Yu.Ya. Finite element models in stresses for bending plates. Magazine of Civil Engineering. 2018. 82(6).
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Comparison of the values in Tables 10-11 allows us to have the following conclusions:

— rate of convergence of displacements obtained by the proposed method at stresses lower than
the rate of convergence of displacements for finite elements TEC, DKT, HSM; for elongated finite
elements rate of convergence of displacements, obtained by method in stresses, is near to the
rate of convergence of displacements for the BZIC element (Table 11);

— the rate of convergence of the bending moments obtained by the proposed method in the stresses
is higher than the rate of convergence of the moments obtained by the method with other
considered finite elements;

— the use of elongated finite elements (Table 11) to a lesser degree leads to an increase in the
error in calculating the moments by the proposed solution method in stresses, then for other
considered finite elements; especially, this applies to bending moments in clamped sides of plate.

Note, that in constructing solution by the proposed technique in stresses, unlike traditional finite
element method, we do not form stiffness matrix or flexible matrix for the finite element. A matrix of
coefficients of system of linear algebraic equations for the whole system is directly formed. This matrix can
be considered a stiffness matrix of the system, since it connects the displacements of nodes with external
forces. When constructing the solutions by the proposed method, there is no need to apply any
approximating functions for displacements at the finite element domain. For the solution, only
approximations of the fields of possible displacements are used, which can be arbitrary, satisfying the
kinematic boundary conditions. This approach is general and is applicable to solving various problems of
building mechanics: flat and volume problems of the theory of elasticity, shell calculations, calculation of
rod systems [20, 21].

4. Conclusion

1. The presented method of calculating the bent plates according to the Kirchhoff theory by the finite
element method in stresses has property of convergence from above — the displacements obtained by this
method converge to the exact values from above.

2. The solution by method in stresses requires large computational costs when obtaining elements
of matrix of the resolving system of linear algebraic equations, but the number of unknowns and the width
of the tape of non-zero elements is less than when solving by the finite element method in displacements.

3. When solving by method in stresses, the values of moments is determined directly at nodes of
finite element grid, and not at the centers of the finite elements, which allows obtaining more accurate
values of the moments, especially in the clamped nodes.

4. The proposed method of solving in stresses is based on the fundamental principles of structural
mechanics — the principle of minimum of additional energy and the principle of possible displacements.
Constant functions are used to approximate the forces, and linear ones are used for possible
displacements, which ensures the convergence of the approximate solution to the exact solution, when we
crush the finite element grid.
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