Table | Card | RUSMARC | |
Allowed Actions: Read Download (0.4 Mb) Group: Anonymous Network: Internet |
Annotation
Описан процесс многокритериальной оптимизации по методу Парето-оптимальности. В качестве объекта управления выступает крупное промышленное предприятие. Объект декомпозируется и представляется в виде иерархии вложенных орграфов. Вершины орграфов отмечают состояние производимого продукта, рёбра – технологические операции. На основании технической документации по объекту составляются списки целевых показателей и факторов управления, помогающие систематизировать источники влияния на качество и объем производимого продукта. Нейронная сеть, обученная на архиве статистических данных, идентифицирует связи между параметрами выходного продукта и источниками влияния. Полученные связи дискретизируются по времени и подаются на вход алгоритма SPEA2. Алгоритм производит сравнение зависимостей и выстраивает Парето-оптимальный фронт, состоящий из комбинаций значений управляемых параметров.
This article describes the process of multicriterial optimization using the Pareto efficiency method. A large-scale industrial plant was taken as a controllable object. The object was decomposed and represented as a hierarchy of embedded orgraphs. The orgraph’s vertices mark the current state of the product while the edges stand for technological operations. Based on the object’s technical documentation, a list of influencing factors is created. The list contains every technological parameter affecting the quality of the final product. A neural network trained on a set of statistical data is utilized to identify dependencies between discrete influencing factors and the product quality. These dependencies are then processed with the SPEA2 algorithm, outputting a set of combinations of optimized parameters values known as the Pareto front.
Usage statistics
|
Access count: 181
Last 30 days: 8 Detailed usage statistics |