Детальная информация

Название: Materials Physics and Mechanics. Т. 42, № 4. – 2019.
Организация: Санкт-Петербургский политехнический университет Петра Великого; Институт проблем машиноведения РАН
Выходные сведения: Санкт-Петербург, 2019
Коллекция: Общая коллекция
Тип файла: PDF
Язык: Русский
DOI: 10.18720/SPBPU/2/j19-503
Права доступа: Свободный доступ из сети Интернет (чтение, печать, копирование)

Разрешенные действия: Прочитать Загрузить (10,6 Мб)

Группа: Анонимные пользователи

Сеть: Интернет

Права на использование объекта хранения

Место доступа Группа пользователей Действие
Локальная сеть ИБК СПбПУ Все Прочитать Печать Загрузить
-> Интернет Все Прочитать Печать Загрузить

Оглавление

  • 4 N.M. Sergeeva, S.P. Bogdanov, A.V. Redkov.pdf
    • [15] Bechelany M, Brioude A, Cornu D, Ferro G, Miele P. A Raman Spectroscopy Study of Individual SiC Nanowires. Advanced Functional Materials. 2007;17(6): 939-943.
    • [16] Sahoo S, Dhara S, Sivasubramanian V, Kalavathi S, Arora AK. Phonon confinement and substitutional disorder in Cd1−xZnxS nanocrystals. Journal of Raman spectroscopy. 2009;40(8): 1050-1054.
      • [17] Abdi A, Titova LV, Smith LM, Jackson HE, Yarrison-Rice JM, Lensch JL, Lauhon LJ. Resonant Raman scattering from CdS nanowires. Applied Physics Letters. 2006;88(4): 043118.
      • [18] Antipov VV, Kukushkin SA, Osipov AV. Epitaxial growth of cadmium sulfide films on silicon. Solid State Physics. 2016;58(3): 612-615.
      • [19] Macias-Sanchez SA, Nava R, Hernandez-Morales V, Acosta-Silva YJ, Pawelec B, Al-Zahrani SM, Navarro RM, Fierro JLG. Cd1−xZnxS supported on SBA-16 as photocatalysts for water splitting under visible light: Influence of Zn concentration. Internatio...
      • [20] Kukushkin SA, Osipov AV, Redkov AV. Separation of III-N/SiC Epitaxial Heterostructure from a Si Substrate and their Transfer to other Substrate Types. Semiconductors. 2017;51(3): 396-401.
      • [21] Nien YT, Chen PW, Chen IG. Synthesis and characterization of Zn1−xCdxS:Cu, Cl red electroluminescent phosphor powders. Journal of Alloys and Compounds. 2008;462(1-2): 398-403.
      • [22] Golubev VG, Davydov VY, Medvedev AV, Pevtsov AB, Feoktistov NA. Raman spectra and electrical conductivity of silicon thin films with mixed amorphous-nanocrystalline phase composition: determination of the volume fraction of the nanocrystalline ph...
      • [23] Tsu R, Shen H, Dutta M. Correlation of Raman and photoluminescence spectra of porous silicon. Applied Physics Letters. 1992;60(1): 112-114 .
      • [24] Tsang JC, Tischler MA, Collins RT. Raman scattering from H or O terminated porous Si. Applied Physics Letters. 1992;60(18): 2279-2281.
      • [25] Ehbrecht M, Ferkel H, Huisken F, Holz L, Polivanov YN, Smirnov VV, Stelmakh OM, Schmidt R. Deposition and analysis of silicon clusters generated by laser-induced gas phase reaction. Journal Applied Physics. 1995;78(9): 5302-5305 .
      • [26] Dorofeev SG, Kononov NN, Ishchenko AA, Vasiliev RB, Goldstrakh MA, Zaitseva KV, Koltashev VV, Plotnichenko VG, Tikhonevich OV. Optical and structural properties of thin films deposited from Sol of silicon nanoparticles. Semiconductors. 2009;43(11...
      • [27] Davis EA, Lind EL. Physical properties of mixed single crystals of CdS and ZnS. Journal of Physics and Chemistry of Solids. 1968;29(1): 79-90.
      • [28] Guseva MB, Babayev VG, Khvostov VV, Konyashin IY, Korobov YA, Novikov ND. CVD Diamond with electron conductivity. New Data on FCC-Carbon. Surface. X-ray, synchrotron and neutron studies. 2007;10: 22-30.
      • [29] Verleur HW, Barker Jr AS. Infrared Lattice Vibrations in GaAsyP1−y Alloys. Physical Review. 1966;149(2): 715-729.
      • [30] Verleur HW, Barker Jr AS. Optical Phonons in Mixed Crystals of CdSeyS1−y. Physical Review. 1967;155(3): 750-763.
      • [31] Langer DW, Park YS, Euwema RN. Phonon Coupling in Edge Emission and Photoconductivity of CdSe, CdS, and Cd(SexS1−x). Physical Review. 1966;152(2): 788-796.
      • [32] Balkanski M, Beserman M, Besson JM. Phonon processes in mixed crystals of CdSxCdSe1-x. Solids State Communications. 1966;4(5): 201-204.
      • [33] Devadoss I, Muthukumaran S, Ashokkumar M. Structural and optical properties of Cd1−xZnxS (0 ≤ x ≤ 0.3) nanoparticles. Journal of Materials Science: Materials in Electronics. 2014;25(8): 3308-3317.
      • [34] Grudinkin SA, Kukushkin SA, Osipov AV, Feoktistov NA. IR spectra of carbon-vacancy clusters at topochemical transformation of silicon into silicon carbide. Solid State Physics. 2017;59(12): 2403-2408.
      • [35] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry, Sixth Edition. NY: J. Wiley & Sons, Inc.; 2008.
      • [36] Jimenez-Sandoval S, Lopez-Rivera A, Irwin JC. Influence of reduced mass differences on the Raman spectra of ternary mixed compounds: Zn1−xFexS and Zn1−xMnxS. Physical Review B. 2003;68(5): 54303.
      • [37] Nien YT, Chen IG. Raman scattering and electroluminescence of ZnS:Cu,Cl phosphor powder. Applied Physics Letters. 2006;89(26): 261906/3.
      • [38] Hossu M, Schaeffer RO, Ma L, Chen W, Zhu Y, Sammynaiken R, Joly AG. On the luminescence enhancement of Mn2+ by co-doping of Eu2+ in ZnS:Mn,Eu. Optical Materials. 2013;35(8): 1513-1519.
      • [39] Cheng YC, Jin CQ, Gao F, Wu XL, Zhong W, Li SH, Chu PK. Raman scattering study of zinc blende and wurtzite ZnS. Journal of Applied Physics. 2009;106(12): 123505.
      • [40] Genzel L, Martin TP, Perry CH. Model for Long ‐ Wavelength Optical‐Phonon Modes of Mixed Crystals. Physica Status Solidi B. 1974;62(1): 83-92.
      • [41] Ichimura M, Usami A, Wada T, Funato M, Ichino K, Fujita Sz, Fujita Sg. Raman spectra of cubic Zn1−xCdxS. Physical Review B. 1992;46(7): 4273-4276.
      • [42] Zakria M, Khan TM, Nasir A, Mahmood A. Annealing-induced effects on structural and optical properties of Cd1−xZnxS thin films for optoelectronic applications. Materials Science-Poland. 2015;33(4): 677-684.
      • [43] Vineeshkumar TV, Raj DR, Prasanth S, Sankar P, Unnikrishnan NV, Pillai VPM, Sudarsanakumar C. Composition dependent structural, Raman and nonlinear optical properties of PVA capped ZN1-X-YCDXCUYS Quantum dots. Optical Materials. 2016;58: 128-135.
      • [44] Xiong Z, Zheng M, Zhu Ch, Zhang B, Ma Li, Shen W. One-step synthesis of highly efficient three-dimensional Cd1-xZn x S photocatalysts for visible light photocatalytic water splitting. Nanoscale Research Letters. 2013;8(1): 334.
  • 6 V.V. Skripnyak, A.A Kozulyn, V.A. Skripnyak.pdf
    • [1] Kanel GI, Razorenov SV, Garkushin GV. Rate and temperature dependences of the yield stress of commercial titanium under conditions of shock-wave loading. Journal of Applied Physics. 2016;119(18): 185903.
    • [2] Kanel GI, Garkushin GV, Razorenov SV. Temperature–rate dependences of the flow stress and the resistance to fracture of a VT6 titanium alloy under shock loading at a temperature of 20 C and 600 C. Technical Physics. The Russian Journal of Applied ...
    • [3] Meshcheryakov YI, Atroshenko SA. On the mesoscopic mechanisms of spall fracture. Materials Physics and Mechanics. 2018;36(1): 121-130.
    • [4] Divakov AK, Mescheryakov YI, Zhigacheva NI, Barakhtin BK, Gooch WA. Spall strength of titanium alloys. Physical Mesomechanics. 2010;13(3-4): 113.
    • [5] Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence. International Journal of Plasticity. 2008;24(6): 1071-1096.
    • [7] Volkov IA, Igumnov LA, Ipatov AA, Vorobtsov IV. On the issue of determining parameters in models and criteria of dynamic spallation fracture. Procedia Engineering. 2017;197: 244-251.
    • [8] Volkov IA, Vorobtsov IV, Igumnov LA, Markov IP, Litvinchuk SY. A damaged medium model for describing dynamic spallation fracture. Procedia Engineering. 2017;197: 252-259.
    • [9] Kolobov YR, Perevensentcev VN, Manokhin SS, Kudymova YF, Kolobova AY, Bragov AM, Konstantinov AY. Features of structure formation and development of plastic deformation under dynamic loading of coarse-grained and nanostructured titanium. Composite...
    • [10] Bobbili R, Madhu V. Effect of strain rate and stress triaxiality on tensile behavior of Titanium alloy Ti-10-2-3 at elevated temperatures. Materials Science and Engineering A. 2016;667: 33-41.
    • [11] Bragov AM, Balandin VV, Konstantinov AY, Lomunov AK, Vorobtsov IV, Kuznetsov AV, Savenkov GG. High-rate deformation and spall fracture of some metals. Procedia Engineering. 2017;197: 260-269.
    • [12] Herzig N, Meyer LW, Musch D, Halle T, Skripnyak VA, Skripnyak EG, Razorenov SV, Krüger L. The mechanical behaviour of ultrafine grained titanium alloys at high strain rates. In: 3rd International Conference on High Speed Forming. March 11-12, 200...
    • [13] Skripnyak VA, Skripnyak EG. Mechanical behaviour of nanostructured and ultrafine-grained metal alloy under intensive dynamic loading, Chapter 2: Nanotechnology and Nanomaterials. In: Vakhrushev A. (ed.) Nanomechanics. IntechOpen; 2017. p.31-67.
    • [14] Valoppi B, Brusch S, Ghiotti A, Shivpuri R. Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets. International Journal of Mechanical Sciences. ...
    • [15] Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics. 1985;21(1): 31-48.
    • [16] Marino B, Mudry F, Pineau A. Experimental study of cavity growth in ductile rupture. Engineering Fracture Mechanics. 1985;22(6): 989-996.
    • [17] Neilsen KL, Tvergaard V. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model. Engineering Fracture Mechanics. 2010;77(7): 1031-1047.
    • [18] Tvergaard V. Behavior of porous ductile solids at low stress triaxiality in different modes of deformation. International Journal of Solids and. Structures. 2015;60-61: 28-34.
    • [19] Selini N, Elmeguenni M, Benguediab M. Effect of the triaxiality in plane stress conditions. Engineering, Technology and Applied Science Research. 2013;3(1): 373-380.
  • 8 V.G. Zubchaninov, E.G. Alekseeva, A.A. Alekseev, V.I. Gultiaev.pdf
    • In a linear combined space E6 of stresses and strains with an orthonormal basis for stress and strain tensors
    • vectors are assigned
    • where vectors coordinates , related to tensor , and deviator components , noted by unequivocal transformation [1,2]. The volume strain in E6 is assumed to be elastic according to the law , where K is modulus of volume elasticity (Bulk modulus). Acc...
    • where , – functionals, depending on the following parameters of complex loading: s – the arc length of the trajectories of strain and its break angle . The angle of delay characterizes the direction of the vector towards the shearing to strain tr...
    • In the mathematical model of materials plastic deformation process theory in addition to the equations (3) uses universal approximations of functionals proposed by V.G. Zubchaninov [3]
    • where – universal function of Odkvist-Il'yushin for simple (proportional) loading; , – elastic and secant shear modulus; ; – arc length at the break point K of trajectory;
    • – complex loading function; – observed approximation parameters [3]. The index «zero» refers to the quantities at the break point of trajectory. The numerical solution of the defining relations (3) for the acquainted functionals (4) is implemente...
    • 3. Comparison of numerical results with experimental ones
    • Using the foregoing mathematical model, experimental studies and numerical calculations of the processes of deformation of thin-walled tubular specimens of steel 45 on the SN-EVM testing complex along two-link broken strain trajectory in the plane , p...
    • Figures 1-4 show the results of calculations and experimental data for two-link strain trajectory with the break angle 45º. The experimental data are marked with circles. Figure 1 shows the implemented strain trajectory in the plane , and on Fig. 2 th...
    • Fig. 1. Strain trajectorywith the break angle 45º
    • Fig. 2. The response
    • Fig. 3. Chart of deformation
    • Fig. 4. Chart
    • Figures 5-8 present the results of calculation and experimental data for two-link strain trajectory with the break angle 90º and Fig. 9-12 – with the break angle 135º.
    • Fig. 5. Strain trajectory with the break angle 90º
    • Fig. 6. The response
    • Fig. 8. Chart
    • Fig. 7. Chart of deformation
    • Fig. 9. Strain trajectorywith the break angle 135º
    • Fig. 10. The response
    • Fig. 11. Chart of deformation
    • Fig. 12. Chart
    • As we can see, the numerical calculations according to the mathematical model are in good agreement with the experimental data on scalar and vector properties, both qualitatively and quantitatively. This shows the integrity of the calculated data, suf...
    • 4. The property of delay vector and scalar characteristics of the materials
    • In [4] A.A. Ilyushin noted that the delay of vector properties is a common property of all plastic materials. The experiments show that the direction of the stress vector at some point K relative to the strain trajectory does not depend on the entire ...
    • By hypothesis of R.A. Vasin, it is considered [15] that the trace of delay is exhausted when the angle of delay 6º÷7º is achieved, which is equivalent to the Hencky-Il'yushin theory of small elastic-plastic deformations. The magnitude estimation of th...
    • Figure 13 shows the combined dependency graphs for the implemented two-link strain trajectories, and on Fig. 14 the calculated dependence of the trace of delay of the vector characteristics of the material on the break angle of the trajectory is giv...
    • Fig. 13. Chart for different break angles of trajectories
    • Fig. 14. Chart
    • If we divide the current value of the angle of delay by the value of the angle of delay at the break point of trajectory , we get a relative angle of delay . However, it is impossible to postpone the value on the axis with a dimensionless quantity. ...
    • Figure 15 shows the dependence of the relative angle of delay on the increment of the arc length of the strain trajectory after a break. It can be seen that for all the break angles, the calculated charts practically coincide with each other. Thus, i...
    • V.S. Lensky in his work [23] introduced the concept of trace of delay of the scalar properties of materials. Fig. 16 shows the dependence on the break angle of the trajectory for the scalar trace of delay of material . For the value on the diagram w...
    • This dependence (Fig. 16) shows that the characteristic is also unstable, and when compared with Fig. 14, it is seen that , while the trace of delay of vector characteristics was several times larger than the trace of delay of the scalar characteris...
    • Fig. 16. Chart
    • Fig. 15. Chart for different break angles of trajectories
    • To determine the effect of the length of the first link of the strain trajectory on the scalar and vector properties of the material, numerical and experimental studies were conducted on the strain programs of testing are shown on Fig. 17. The specim...
    • Fig. 17. Strain trajectories with different lengths of the first link
    • Fig. 18. Charts
    • It is seen that the experimental points practically coincide with each other and are consistent with the numerical calculations of the proposed mathematical model. This means that the length of the first link of the strain trajectory, in the case of a...
    • 5. Conclusion
    • The theoretical positions of the mathematical model of the theory of processes during deformation along two-link strain trajectories are verified in comparison with experimental data. Verification results indicate the correct modeling of elastoplastic...
    • It is established that the trace of delay of vector properties and the trace of delay of the scalar characteristics of the material significantly depend on the break angle of the trajectories. This indicates the instability of the value of the trace o...
  • 9 O.K. Garishin, V.V. Shadrin, Yu.V. Kornev.pdf
    • [19] Mullins L. Effect of stretching in the properties of rubber. Journal of Rubber Research. 1947;16(12): 275-289.
    • [20] Diani J, Fayolle B, Gilormini P. A review on the Mullins effect. European Polymer Journal. 2009;45(3): 601-612.
    • [21] Garishin OK, Shadrin VV, Svistkov AL, Sokolov AK. Experimental studies of rubbers filled by layered clay nanoparticles. In: Proceedings of the XLVI Summer School-Conference "Advanced problems in mechanics". St.Petersburg; 2017. p. 168-174.
  • 12 E.A. Ivanova, D.V. Matyas, M.D. Stepanov.pdf
    • EMPLOYMENT OF EULERIAN, LAGRANGIAN, AND ARBITRARY LAGRANGIAN-EULERIAN DESCRIPTION FOR CRACK OPENING PROBLEM
  • 13 V.I. Ivlev, A.F. Sigachyov, V.A. Yudin.pdf
    • [3] Chauhan A, Chauhan P. Natural Fibers Reinforced Advanced Materials. J. Chem. Eng. Process Technol. 2013;S6: 003. Available from: doi:10.4172/2157-7048.S6-003.
    • [4] Pickering KL, Aruan Efendy MG, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing. 2016;83: 98-112.

Статистика использования

stat Количество обращений: 160
За последние 30 дней: 9
Подробная статистика