
8

DOI: 10.18721/JCSTCS.13101
УДК 004.75

AN APPROACH FOR AUTOMATED DEPLOYMENT
OF CLOUD APPLICATIONS IN THE

EDGE-TO-CLOUD COMPUTING CONTINUUM SATISFYING
HIGH QUALITY OF SERVICE REQUIREMENTS

P. Kochovski, P.D. Drobintsev
Peter the Great St. Petersburg Polytechnic University,

St. Petersburg, Russian Federation

Modern component-based software engineering environments allow deployment of cloud
applications on various computing infrastructures, such as Edge-to-Cloud infrastructures. The
heterogeneous nature of such computing resources results in variable Quality of Service (QoS).
Therefore, the deployment decision can seriously affect the application’s overall performance.
This study presents an approach for automated deployment of cloud applications in the Edge-to-
Cloud computing continuum that considers non-functional requirements (NFRs). In addition, the
authors explore multiple methods for selection of optimal cloud infrastructure, such as IaaS. The
paper presents an experimental evaluation performed using a cloud application for storing data under
different workloads. For the purposes of the experimental evaluation, a Kubernetes cluster composed
of 44 computing nodes was used. The cluster nodes were geographically distributed computing
infrastructures hosted by several service providers. The proposed approach allows a reliable selection
of infrastructures, which satisfy high QoS requirements for cloud applications, from heterogeneous
Edge-to-Cloud computing environments.

Keywords: cloud computing, cloud application deployment, Quality of Service, Infrastructure as
a Service, Edge-to-Cloud.

Citation: Kochovski P., Drobintsev P.D. An approach for automated deployment of cloud
applications in the Edge-to-Cloud computing continuum satisfying high Quality of Service
requirements. Computing, Telecommunications and Control, 2020, Vol. 13, No. 1, Pp. 8-18.
DOI: 10.18721/JCSTCS.13101

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/
licenses/by-nc/4.0/).

ПОДХОД К АВТОМАТИЗИРОВАННОМУ РАЗВЕРТЫВАНИЮ
ОБЛАЧНЫХ ПРИЛОЖЕНИЙ В ВЫЧИСЛИТЕЛЬНОМ

КОНТИНУУМЕ EDGE-TO-CLOUD, УДОВЛЕТВОРЯЮЩИХ
ВЫСОКИМ ТРЕБОВАНИЯМ К КАЧЕСТВУ ОБСЛУЖИВАНИЯ

П. Кочовски, П.Д. Дробинцев
Санкт-Петербургский политехнический университет Петра Великого,

Санкт-Петербург, Российская Федерация

Современные среды разработки программного обеспечения на основе компонентно-
ориентированного программирования позволяют беспрепятственно развертывать
облачные приложения в различных вычислительных инфраструктурах, таких как Edge-to-
Cloud. Неоднородная природа таких вычислительных ресурсов приводит к непостоянному
качеству обслуживания (QoS). Поэтому решение о развертывании приложения может

Telecommunication Systems
and Computer Networks

P. Kochovski, P.D. Drobintsev, DOI: 10.18721/JCSTCS.13101

9

серьезно повлиять на его общую производительность. В статье рассмотрен подход
к автоматизированному развертыванию облачных приложений в вычислительном
континууме Edge-to-Cloud, учитывающий нефункциональные требования (NFR).
Исследованы способы выбора оптимальной услуги с точки зрения ожидаемого качества
обслуживания. Экспериментальная оценка проведена с помощью облачного приложения
для хранения данных в трех случаях с разной нагрузкой. Проведены эксперименты на
кластере Kubernetes, состоящем из 44 вычислительных узлов (облачных инфраструктур).
Узлы кластера были географически распределены в нескольких местах и размещались
несколькими поставщиками услуг. Подход позволит надежно выбирать инфраструктуры
из гетерогенных Edge-to-Cloud сред, удовлетворяющих требованиям к качеству
обслуживания облачных приложений.

Ключевые слова: облачные вычисления, развертывание облачных приложений, качество
обслуживания, инфраструктура как услуга, Edge-to-Cloud.

Ссылка при цитировании: Кочовски П., Дробинцев П.Д. Подход к автоматизированному
развертыванию облачных приложений в вычислительном континууме Edge-to-Cloud,
удовлетворяющих высоким требованиям к качеству обслуживания // Информатика,
телекоммуникации и управление. 2020. Т. 13. № 1. С. 8-18. DOI: 10.18721/JCSTCS.13101

Cтатья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https://creative-
commons.org/licenses/by-nc/4.0/).

Introduction

Intensive development of the Internet-of-Things (IoT), has led towards the development of smart
applications in different domains (e.g. smart cities, smart environments, industry 4.0). In order to
assure high Quality of Service (QoS), a plethora of non-functional requirements (NFRs), such as
computing and network performance must be addressed throughout application’s life-cycle.

Novel software development environments support software development based on component-
based development (CBD). In other words, they allow to compose software from existing microservices,
discovery and selection of computing resources, deployment and resource orchestration in heterogeneous
computing environments. The deployment process of microservices in such heterogeneous environments,
covering the complete computing Edge-Fog-Cloud continuum, is a difficult problem. At this stage the
microservice needs to be placed on optimal or near to optimal infrastructure from a large number of
options, whilst considering multiple quality constraints.

The goal of this study is to describe an approach for resource balancing that increases application’s
performance by ranking and automatically deploying applications on optimal Edge-to-Cloud
computing infrastructure.

Related work

The selection of optimal computing infrastructure (i.e. Infrastructure as a Service – IaaS) has
been a point of interest in various studies related to load balancing [1–4], resource management
and allocation [5–8], resource provisioning [9–11] or service placement and management systems
[12, 13]. Since in such cases is necessary to consider large number of NFRs, the reviewed studies
recommend implementing various multi-criteria approaches for different placement scenarios in
Edge-to-Cloud computing environments.

The authors [14–16] describe the implementation of a multi-criteria decision-making method
called the Analytic Hierarchy Process (AHP) for ranking various computing infrastructures. In
order to perform the ranking, the AHP executes pairwise comparison of infrastructures instead of
considering the software engineer’s QoS requirements.

Zheng et al. [17] proposed a framework that ranks the infrastructures according to QoS requirements.
In order to perform the ranking, the framework implements two forecasting algorithms, which calculate
the ranking results based on the software engineer’s QoS requirements. However, the framework’s results
are only based on network-level measurements data from prior usage experience.

Computing, Telecommunications and Control Vol. 13, No. 1, 2020

10

Another commonly used method that is used to compute optimal cloud infrastructure is the Pareto
method, which is used to find the optimal set of solutions by performing a trade-off between the
conflicting objectives. Guerrero et al. [18] described an approach for resource allocation that is based
on the Pareto optimization and implements Non-dominated sorting genetic algorithm (NSGA-II).
In addition, another study [19] also utilizes the Pareto optimization for a trade-off of non-functional
requirements at the earliest stages of the software development process and thus place the software on
an optimal cloud infrastructure. However, the reviewed Pareto-based solutions suggest their results
are based on no more than three criteria. Although some studies proposed more than three criteria,
they all combined them into two or three main criteria upon which a trade-off was performed and a
decision was derived. Using Pareto optimization for more than three criteria is also computationally
expensive [20]. Moreover, it is impossible to visualize the Pareto curve on one figure for more than
three criteria.

In comparison to the studies considered above, where cloud computing is considered as deterministic,
multiple studies consider cloud computing as stochastic [21, 22]. In particular, they investigate the
infrastructure’s dependability on uncertainty. Moreover, numerous studies in various domains utilize
Markov decision-process (MDP) to make decisions in random cases where unforeseen situations may
arise. In this context, MDP is also suitable for applications in the field of cloud computing due to its
stochastic nature. Yang et al. [23] present an MDP-based method to select a deployment infrastructure
that provides optimal performance for applications. Su et al. [24] also proposed an MDP-based
planning mechanism that maintains a compromise between the three attributes (accuracy, data usage,
and computational cost) by implementing an iterative approach for decision making. In addition,
the studies of Tsoumakos et al. [27] and Naskos et al. [28] applied MDP to the problem of horizontal
scaling of virtual machines. However, their computational complexity hinders the integration of such
methods in the main software practices, thus this challenge has not been addressed in existing studies.
MDP also allows to formally verify the correctness of the deployment decision placement. Llerena et
al. [25] developed a methodology for analyzing the influence of probability perturbations by checking
the reachability properties of MDP models with applications for cloud computing.

Nevertheless, as far as we know, the use of MDP to ensure high quality of service when deploying a
software component in the context of containers within the Edge-to-Cloud computing environments
has not yet been considered.

Approach for automated deployment of microservices in Edge-to-Cloud computing environments

The foundation of this work is the hypothesis of implementing MDP as an effective decision-
making mechanism for deploying microservices on an optimal cloud infrastructure by taking into
account specific quality requirements, relevant infrastructure and network measurements.

Fig. 1 illustrates the process of ranking all available computing infrastructures and automated
deployment of microservices by considering NFRs and their utilization context. The process is
composed of five consecutive steps that are described as follows.

At the first step, the software engineer composes an application from containerized microservices
that need to be deployed. The engineer selects the important NFRs, such as: location, cost,
network performance, infrastructure performance and etc. In addition, at this step the engineer also
defines threshold values for the chosen NFRs. However, this choice may vary significantly between
different types of microservices. In other words, the engineer determines which requirements must
be continuously met at run time (i.e. hard constraints), and which requirements are desirable but
not mandatory (i.e. soft constraints). Once hard and soft constraints are defined, they are used in
the two final stages of the automated decision-making process. Hard constraints are used as input
parameters for the equivalence classification (second step), while soft constraints are used at the stage
of generation and verification of the probabilistic model (third step).

P. Kochovski, P.D. Drobintsev, DOI: 10.18721/JCSTCS.13101

11

Fig. 1. Approach for automated deployment of cloud applications

in the Edge-to-Cloud computing continuum

The second step is responsible for reducing the computational complexity of the method by reducing
the number of computations for the decision-making process. As a result, the decision-making process
considers only infrastructures that meet the hard constraints. At the beginning of this step, an automaton
from all available deployment infrastructures is built. Each state of the automaton represents a deployment
infrastructure. Once the automaton is built, an automated process, which classifies infrastructures into
classes, is initiated. For instance, an equivalence class can be composed of all available deployment
infrastructures that contain at least 8 CPU, or that are located in the territory of Russia.

The goal of the third step is to build a probabilistic model. In order to build the probabilistic model,
multiple QoS metrics that represent the past and present performance of the infrastructures are used.
These metrics are collected and stored in databases using a multi-tier monitoring system. However, this
step only utilizes NFRs that are defined as soft constraints. At the end, the decision-making mechanism
calculates the rank scores and sort all of the deployment infrastructures, which were included in this step.

The forth step verifies the results that are obtained from the previous. Using formal criteria and model-
checking method, this step verifies the number of NFRs that are satisfied in the equivalence class. The
estimated verification value is the output of the probabilistic model and represents a formal guarantee for
achieving high QoS.

At the fifth step, the top-ranking infrastructure is automatically selected, where the microservice is
going to be deployed using an orchestration tool (e.g. Kubernetes). This step is carried out under the
assumption that the formal guarantee obtained for the top-ranking infrastructure, that is, the one with the
highest score, is acceptable to the software developer.

Implementation

Applications in smart environments constantly generate and utilize large amounts of different formats
and sizes of unstructured data. As a result, traditional cloud computing infrastructures cannot achieve the
desired QoS. However, implementing a datacentric architecture, which offers moving the computing in
close proximity to data sources, can be a solution to this problem.

Fig. 2 depicts a multi-tier architecture that was developed throughout the period of this research.
It complies with the interoperability standards set by organizations such as: Cloud Native Computing
Foundation (CNCF), Edge Computing Consortium Europe (ECCE), and OpenFog Consortium. The
proposed design is composed of three tiers: Graphical User Interface, decision-making tier and computing
tier with available Edge-to-Cloud infrastructures for the deployment of containerized microservices.

Computing, Telecommunications and Control Vol. 13, No. 1, 2020

12

The Graphical User Interface (GUI) is an entry point for the software engineer, which is used to compose
an application from containerized microservices, manage QoS requirements and input parameters for
the deployment process, and initiate the deployment process. The GUI is implemented using EmberJS
framework, which offers several views (e.g. component creation view and application composition view).

The decision-making tier is responsible for estimating an optimal deployment infrastructure based on
MDP. In addition, this module also verifies the deployment decision and analyzes possible scenarios of
the redistribution of microservices from one infrastructure to another at some point in time in the future.
This tier also incorporates a container-orchestration system for automated application deployment, which
initiates the deployment process after MDP estimates and verifies optimal deployment infrastructure.

The Edge-to-Cloud computing tier is composed of IoT devices, monitoring components and
infrastructures that are used for deployment of containerized microservices and data. The infrastructures
in this tier are used to store and process data in the computational continuum. Depending on the purpose
and requirements of the deployed application, the proposed architecture allows to deploy application’s
containers in close proximity to data resources (i.e. Edge), the Fog or the Cloud infrastructures.

Fig. 2. High level system architecture

P. Kochovski, P.D. Drobintsev, DOI: 10.18721/JCSTCS.13101

13

Deployment decision-making mechanism

The deployment decision-making mechanism is composed of two systems: monitoring system and
MDP-based system for decision-making and verification.

The MDP-based system for decision-making and verification is composed of three subsystems:
Equivalence Classification Subsystem (ECS), Probabilistic Model Generation Subsystem (PMGS)
and Model Checking Subsystem (MCS). ECS initiates the decision-making process. First it retrieves
all available infrastructures and generates an initial model, which is used as an input parameter for
equivalence classification. Then, ECS discovers the infrastructures that satisfy the hard constraints and
assigns them to the equivalence class. The composed equivalence class as an output from ECS is forwarded
to PMGS. PMGS performs decision-making based on MDP method. First, PMGS generates a finite
probabilistic model, where each state in the model is a different member of the equivalence class. Then,
PMGS calculates the transition probability values, state rewards and state utility. Both subsystems, ECS
and PMGS are developed using Java-based development technologies, such as: Java Jersey for RESTful
web services and Apache Maven for software management.

MCS performs model-checking over the model and the output from PMGS based on probabilistic
computation tree logic (PCTL). In other words, MCS checks the extent to which the selected optimal
infrastructure will satisfy application’s NFRs regarding the specific restrictions that were set by the software
engineer. Therefore, MCS assures the engineer that the mechanism provides the optimal infrastructure
for the application. This subsystem integrates the PRISM model-checker into the mechanism, which
is used to analyze probabilistic models. To execute the model-checking, PRISM imports models from
configuration scripts.

When the deployment infrastructure is selected and verified, the deployment decision-making
mechanism generates a YAML script with deployment instructions for the container-orchestration system.
The instructions described in the YAML script provide information on the deployment infrastructure,
applications for deployment, backup and replication policies.

The proper work of the MDP-based system for decision-making and verification strongly depends on
the monitoring system. The monitoring system is a set of monitoring components, such as: monitoring
probes, monitoring agents, monitoring server, databases and knowledge bases. It plays an important role
in the proposed mechanism, because it is used to collect input data for the decision-making process (e.g.
throughput, latency, CPU and memory utilization) and ensures that any application satisfies the QoS
requirements at runtime. Usually, the monitoring system begins to work once an infrastructure becomes
available to the system. The monitoring system was implemented by using Jcatascopia, NetData and
Prometheus monitoring systems.

Monitoring Agents are lightweight components that control the collection of metrics from virtual
machine and container instances. Monitoring Probes are metric collectors managed by the Monitoring
Agents. They are designed to collect low-level and high-level metrics. Monitoring Probes send metrics
to the appropriate Monitoring Agent either periodically or when a specific event occurs. The Monitoring
Server is used to collect the metrics from the Monitoring Agent and forward them to a database. The
Monitoring Server must be installed on a host that meets the database hardware requirements. In other
words, the host must provide enough memory, processor and disk resources.

To store the metrics from the monitoring system, it is necessary to implement a time series database
(TSDB). For the purposes of this study, we integrated Apache Cassandra, which is an open source TSDB.

A Knowledge Base (KB) is used to collect complex information, which is required by ECS and PMGS
as input parameters. The KB that was implemented was Apache Jena Fuseki, which collects information
about the selected infrastructure, such as: location of the infrastructure, information about the type of
application, assessment of the quality of experience and information about the deployment, in the form
of RDF semantic triples. Utilizing such a KB allows to perform analysis of long-term trends or conduct a
variety of strategic analyzes, such as, utilization trends.

Computing, Telecommunications and Control Vol. 13, No. 1, 2020

14

Experimental evaluation

The approach described in this study was experimentally evaluated with a typical cloud scenario for
uploading and storing files in the Cloud. The file storage application is designed to be deployed on an
infrastructure, used and terminated each time the user needs to use it. The File Storage application is
a Java servlet web application that processes requests to upload files to a server. The approach in this
work allows one to choose the thresholds of different NFRs for each upload operation, since a container
instance can be initiated in a different cloud infrastructure for each file upload operation.

For this experimental evaluation, the application was implemented as a Docker container, which
is an advanced technology for application virtualization. Furthermore, the following NFRs were
used: infrastructure location (Europe), latency (less than 100 ms), throughput (more than 4 Gbit/s),
packet loss (less than 2 %) and quality of experience (more than 4). In this evaluation, infrastructure
location was used as a hard constraint, whilst other attributes were used as soft constraints. Also, it was
assumed that there are several deployment scenarios. After the initial deployment of the application,
the software engineer had two different workload requirements, such as 1000 (deployment 2), 1500
(deployment 3) requests every five seconds. The experimental workload was created using the httperf
tool. The software engineer was able to deploy the application in one of 42 available Fog-Cloud
infrastructures or in one of 2 Edge infrastructures. Edge infrastructures were hosted near to the data
sources (i.e. the application user), and Fog-Cloud infrastructures were hosted on the Google Cloud
Platform, Amazon AWS EC2 and ARNES in 6 different locations: Ljubljana, Frankfurt, London,
Tokyo, Sydney and Oregon. The experimental evaluation results are enlisted in Table.

Experimental evaluation deployment results

Infrastructure
Deployment 1 Deployment 2 Deployment 3

Rank Utility Rank Utility Rank Utility

RaspberryPi 3 11 0.0 11 0.0 12 0.74010

RaspberryPi 4 5 1.02093 4 1.02093 4 1.02093

arnes 12 0.0 12 0.0 11 0.80221

g1-small 10 0.93593 8 0.93593 7 0.93593

n1-standard-1 7 1.01909 6 1.01909 6 1.01909

n1-standard-2 1 1.12443 10 0.86495 3 1.02220

n1-standard-4 6 1.01965 5 1.01965 5 1.01965

n1-standard-8 4 1.03024 3 1.03023 2 1.03024

a1.medium 8 1.01688 9 0.93204 8 0.93204

a1.large 3 1.11038 2 1.11038 1 1.11038

a1.xlarge 2 1.11571 1 1.11571 10 0.85815

a1.2xlarge 9 1.01473 7 1.01473 9 0.85853

According to the results of the experimental evaluation, the infrastructure n1-standard-2 offered the
highest utility value for deploying the application. However, after an additional workload was applied
to this infrastructure (1000 requests every five seconds), several quality thresholds were violated, so the
application was transferred to the a1.xlarge infrastructure. Following the same steps, with a workload
of 1,500 requests, the application was again redeployed to another infrastructure (i.e. a1.large), which
guaranteed high QoS.

P. Kochovski, P.D. Drobintsev, DOI: 10.18721/JCSTCS.13101

15

Conclusion

The goal of this work was to design a QoS-aware approach that guarantees high QoS for cloud
applications in highly dynamic and heterogeneous Edge-to-Cloud environments. QoS are relevant
requirements that software engineers at the deployment stage of cloud applications have to comply
with. This study offers an approach that can be used for this purpose and which can be integrated into
software development tools.

The results of the experimental evaluation elaborate that the proposed approach is universal enough for
the automated deployment of applications with different QoS requirements in various infrastructures. This
means that the proposed approach is not limited to a specific set of NFRs or types of applications.

The approach can be further expanded by improving deployment algorithms to implement multi-tier
application deployment operations across multiple infrastructures, where each application tier is deployed
in a different Edge-to-Cloud infrastructure.

REFERENCES

1. Hu J., Gu J., Sun G., Zhao T. A scheduling strategy on load balancing of virtual machine resources

in cloud computing environment. Proceedings of the 3rd International Symposium on Parallel Architectures,

Algorithms and Programming, 2010, Pp. 89–96.

2. Li L.E., Woo T. Dynamic load balancing and scaling of allocated cloud resources in an enterprise

network, US Patent App. 12/571,271, Mart 31, 2011.

3. Randles M., Lamb D., Taleb-Bendiab A. A comparative study into distributed load balancing

algorithms for cloud computing. Proceedings of the IEEE 24th International Conference on Advanced

Information Networking and Applications Workshops, 2010, Pp. 551–556.

4. Chaczko Z., Mahadevan V., Aslanzadeh S., Mcdermid C. Availability and load balancing in cloud

computing. Proceedings of the International Conference on Computer and Software Modeling. Singapur, 2011,

Vol. 14.

5. Manvi S., Shyam G.K. Resource management for Infrastructure as a Service (IaaS) in cloud

computing: A survey. Journal of Network and Computer Applications, 2014, Vol. 41, Pp. 424–440.

6. Jennings B., Stadler R. Resource management in clouds: Survey and research challenges. Journal of

Network and Systems Management, 2015, Vol. 23, No. 3, Pp. 567–619.

7. Luong N.C., Wang P., Niyato D., Wen Y., Han Z. Resource management in cloud networking

using economic analysis and pricing models: A survey. IEEE Communications Surveys & Tutorials, 2017,

Vol. 19, No. 2, Pp. 954–1001.

8. Jain N., Menache I. Resource management for cloud computing platforms, US Patent 9,450,838,

Sept. 20, 2016.

9. Singh S., Chana I. Q-aware: Quality of service based cloud resource provisioning. Computers &

Electrical Engineering, 2015, Vol. 47, Pp. 138–160.

10. Chaisiri S., Lee B.S., Niyato D. Optimization of resource provisioning cost in cloud computing.

IEEE Transactions on Services Computing, 2012, Vol. 5, No. 2. Pp. 164–177.

11. Zhang L., Li Z., Wu C. Dynamic resource provisioning in cloud computing: A randomized auction

approach. Proceedings of the IEEE Conference on Computer Communications, 2014, Pp. 433–441.

12. Paščinski U., Trnkoczy J., Stankovski V., Cigale M., Gec S. QoS-aware orchestration of network

intensive software utilities within software defined data centres. Journal of Grid Computing, 2018, Vol. 16,

No. 1, Pp. 85–112.

13. Mijumbi R., Serrat J., Gorricho J.L., Latre S., Charalambides M., Lopez D. Management and

orchestration challenges in network functions virtualization. IEEE Communications Magazine, 2016, Vol. 54,

No. 1, Pp. 98–105.

14. Karim R., Ding C., Miri A. An end-to-end QoS mapping approach for cloud service selection.

Proceedings of the IEEE 9th World Congress on Services, 2013, Pp. 341–348.

Computing, Telecommunications and Control Vol. 13, No. 1, 2020

16

Received 29.01.2020.

СПИСОК ЛИТЕРАТУРЫ

1. Hu J., Gu J., Sun G., Zhao T. A scheduling strategy on load balancing of virtual machine resources

in cloud computing environment // Proc. of the 3rd Internat. Symp. on Parallel Architectures, Algorithms

and Programming. 2010. Pp. 89–96.

2. Li L.E., Woo T. Dynamic load balancing and scaling of allocated cloud resources in an enterprise

network // US Patent App. 12/571,271, Mart 31, 2011.

3. Randles M., Lamb D., Taleb-Bendiab A. A comparative study into distributed load balancing

algorithms for cloud computing // Proc. of the IEEE 24th Internat. Conf. on Advanced Information

Networking and Applications Workshops. 2010. Pp. 551–556.

15. Garg S.K., Versteeg S., Buyya R. A framework for ranking of cloud computing services. Future

Generation Computer Systems, 2013, Vol. 29, No. 4, Pp. 1012–1023.

16. Goncalves Junior R., Rolim T., Sampaio A., Mendonca N.C. A multi-criteria approach for

assessing cloud deployment options based on non-functional requirements. Proceedings of the 30th Annual

ACM Symposium on Applied Computing, 2015, Pp. 1383–1389.

17. Zheng Z., Wu X., Zhang Y., Lyu M.R., Wang J. QoS ranking prediction for cloud services. IEEE

Transactions on Parallel and Distributed Systems, 2012, Vol. 24, No. 6, Pp. 1213–1222.

18. Guerrero C., Lera I., Juiz C. Genetic algorithm for multi-objective optimization of container

allocation in cloud architecture. Journal of Grid Computing, 2018, Vol. 16, No. 1, Pp. 113–135.

19. Štefanič P., Kimovski D., Siciu G., Stankovski V. Non-functional requirements optimisation

for multi-tier cloud applications: An early warning system case study. 2017 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud &

Big Data Computing, Internet of People and Smart City Innovation, 2017, Pp. 1–8.

20. Guo X., Wang Y., Wang X. Using objective clustering for solving many-objective optimization

problems. Mathematical Problems in Engineering, 2013, Vol. 2013.

21. Trenz M., Huntgeburth J., Veit D. The role of uncertainty in cloud computing continuance:

Antecedents, mitigators, and consequences. ECIS, 2013, P. 147.

22. Tchernykh A., Schwiegelsohn U., Alexandrov V., Talbi E.G. Towards understanding uncertainty in

cloud computing resource provisioning. Procedia Computer Science, 2015, Vol. 51, Pp. 1772–1781.

23. Yang J., Lin W., Dou W. An adaptive service selection method for cross-cloud service composition.

Concurrency and Computation: Practice and Experience, 2013, Vol. 25, No. 18, Pp. 2435–2454.

24. Su G., Chen T., Feng Y., Rosenblum D., Thiagarajan P. An iterative decision-making scheme

for Markov decision processes and its application to self-adaptive systems. Proceedings of the International

Conference on Fundamental Approaches to Software Engineering, 2016, Pp. 269–286.

25. Llerena Y.R.S., Su G., Rosenblum D.S. Probabilistic model checking of perturbed mdps with

applications to cloud computing. Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, 2017, Pp. 454–464.

26. Mardani A., Jusoh A., Nor K., Khalifah Z., Zakwan N., Valipour A. Multiple criteria decision-

making techniques and their applications - A review of the literature from 2000 to 2014. Economic Research,

2015, Vol. 28, No. 1, Pp. 516–571.

27. Tsoumakos D., Konstantinou I., Boumpouka C., Sioutas S., Koziris N. Automated, elastic

resource provisioning for nosql clusters using tiramola. Proceedings of the 13th IEEE/ACM International

Symposium on Cluster, Cloud, and Grid Computing, 2013, Pp. 34–41.

28. Naskos A., Stachtiari E., Gounaris A., Katsaros P., Tsoumakos D., Konstantinou I., Sioutas S.
Dependable horizontal scaling based on probabilistic model checking. Proceedings of the 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing, 2015, Pp. 31–40.

P. Kochovski, P.D. Drobintsev, DOI: 10.18721/JCSTCS.13101

17

4. Chaczko Z., Mahadevan V., Aslanzadeh S., Mcdermid C. Availability and load balancing in cloud

computing // Proc. of the Internat. Conf. on Computer and Software Modeling. Singapur, 2011. Vol. 14.

5. Manvi S., Shyam G.K. Resource management for Infrastructure as a Service (IaaS) in cloud

computing: A survey // J. of Network and Computer Applications. 2014. Vol. 41. Pp. 424–440.

6. Jennings B., Stadler R. Resource management in clouds: Survey and research challenges //

J. of Network and Systems Management. 2015. Vol. 23. No. 3. Pp. 567–619.

7. Luong N.C., Wang P., Niyato D., Wen Y., Han Z. Resource management in cloud networking

using economic analysis and pricing models: A survey // IEEE Communications Surveys & Tutorials.

2017. Vol. 19. No. 2. Pp. 954–1001.

8. Jain N., Menache I. Resource management for cloud computing platforms // US Patent 9,450,838.

Sept. 20, 2016.

9. Singh S., Chana I. Q-aware: Quality of service based cloud resource provisioning // Computers &

Electrical Engineering. 2015. Vol. 47. Pp. 138–160.

10. Chaisiri S., Lee B.S., Niyato D. Optimization of resource provisioning cost in cloud computing //

IEEE Transactions on Services Computing. 2012. Vol. 5. No. 2. Pp. 164–177.

11. Zhang L., Li Z., Wu C. Dynamic resource provisioning in cloud computing: A randomized auction

approach // Proc. of the IEEE Conf. on Computer Communications. 2014. Pp. 433–441.

12. Paščinski U., Trnkoczy J., Stankovski V., Cigale M., Gec S. QoS-aware orchestration of network intensive

software utilities within software defined data centres // J. of Grid Computing. 2018. Vol. 16. No. 1. Pp. 85–112.

13. Mijumbi R., Serrat J., Gorricho J.L., Latre S., Charalambides M., Lopez D. Management and

orchestration challenges in network functions virtualization // IEEE Communications Magazine. 2016.

Vol. 54. No. 1. Pp. 98–105.

14. Karim R., Ding C., Miri A. An end-to-end QoS mapping approach for cloud service selection //

Proc. of the IEEE 9th World Congress on Services. 2013. Pp. 341–348.

15. Garg S.K., Versteeg S., Buyya R. A framework for ranking of cloud computing services // Future

Generation Computer Systems. 2013. Vol. 29. No. 4. Pp. 1012–1023.

16. Goncalves Junior R., Rolim T., Sampaio A., Mendonca N.C. A multi-criteria approach for

assessing cloud deployment options based on non-functional requirements // Proc. of the 30th Annual

ACM Symp. on Applied Computing. 2015. Pp. 1383–1389.

17. Zheng Z., Wu X., Zhang Y., Lyu M.R., Wang J. QoS ranking prediction for cloud services //

IEEE transactions on parallel and distributed systems. 2012. Vol. 24. No. 6. Pp. 1213–1222.

18. Guerrero C., Lera I., Juiz C. Genetic algorithm for multi-objective optimization of container

allocation in cloud architecture // J. of Grid Computing. 2018. Vol. 16. No. 1. Pp. 113–135.

19. Štefanič P., Kimovski D., Siciu G., Stankovski V. Non-functional requirements optimisation for

multi-tier cloud applications: An early warning system case study // 2017 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of People and Smart City Innovation. 2017. Pp. 1–8.

20. Guo X., Wang Y., Wang X. Using objective clustering for solving many-objective optimization

problems // Mathematical Problems in Engineering. 2013. Vol. 2013.

21. Trenz M., Huntgeburth J., Veit D. The role of uncertainty in cloud computing continuance:

Antecedents, mitigators, and consequences // ECIS. 2013. P. 147.

22. Tchernykh A., Schwiegelsohn U., Alexandrov V., Talbi E.G. Towards understanding uncertainty in

cloud computing resource provisioning // Procedia Computer Science. 2015. Vol. 51. Pp. 1772–1781.

23. Yang J., Lin W., Dou W. An adaptive service selection method for cross-cloud service composition //

Concurrency and Computation: Practice and Experience. 2013. Vol. 25. No. 18. Pp. 2435–2454.

24. Su G., Chen T., Feng Y., Rosenblum D., Thiagarajan P. An iterative decision-making scheme for

Markov decision processes and its application to self-adaptive systems // Proc. of the Internat. Conf. on

Fundamental Approaches to Software Engineering. 2016. Pp. 269–286.

Computing, Telecommunications and Control Vol. 13, No. 1, 2020

18

THE AUTHORS / СВЕДЕНИЯ ОБ АВТОРАХ

KOCHOVSKI Petar
КОЧОВСКИ Петар
E-mail: petako_bt@hotmail.com

DROBINTSEV Pavel D.
ДРОБИНЦЕВ Павел Дмитриевич
E-mail: drob@ics2.ecd.spbstu.ru

© Санкт-Петербургский политехнический университет Петра Великого, 2020

Статья поступила в редакцию 29.01.2020.

25. Llerena Y.R.S., Su G., Rosenblum D.S. Probabilistic model checking of perturbed mdps with

applications to cloud computing // Proc. of the 2017 11th Joint Meeting on Foundations of Software

Engineering. 2017. Pp. 454–464.

26. Mardani A., Jusoh A., Nor K., Khalifah Z., Zakwan N., Valipour A. Multiple criteria decision-

making techniques and their applications - A review of the literature from 2000 to 2014 // Economic

Research. 2015. Vol. 28. No. 1. Pp. 516–571.

27. Tsoumakos D., Konstantinou I., Boumpouka C., Sioutas S., Koziris N. Automated, elastic

resource provisioning for nosql clusters using tiramola // Proc. of the 13th IEEE/ACM Internat. Symp. on

Cluster, Cloud, and Grid Computing. 2013. Pp. 34–41.

28. Naskos A., Stachtiari E., Gounaris A., Katsaros P., Tsoumakos D., Konstantinou I., Sioutas
S. Dependable horizontal scaling based on probabilistic model checking // Proc. of the 15th IEEE/ACM

Internat. Symp. on Cluster, Cloud and Grid Computing. 2015. Pp. 31–40.

