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APPLICATION OF THE COMPUTER VISION SYSTEM 
FOR CONTROLLING A MOBILE ROBOT 

IN A DYNAMIC ENVIRONMENT

F. Daeef
Peter the Great St. Petersburg Polytechnic University,

St. Petersburg, Russian Federation

The article proposes a new approach to the use of computer vision when controlling a robot 
in a dynamic environment. While moving along an unchanged path to the target point, a robot 
can encounter any new object (static or moving). We describe a visual analysis to determine the 
detection distance of moving objects to prevent collisions with the robot in a timely manner. An 
obstacle detection algorithm in the robot zone was developed based on data from an RGB-D video 
camera using computer vision methods. Based on ROS in a Gazebo virtual environment with a 
Turtlebot robot kit and an open source library (opencv), we adopted software implementation of the 
developed approaches which confirmed their applicability to the detection of objects in the mobile 
robot environment.
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ПРИМЕНЕНИЕ СИСТЕМЫ ТЕХНИЧЕСКОГО ЗРЕНИЯ 
ПРИ УПРАВЛЕНИИ МОБИЛЬНЫМ РОБОТОМ 

В ДИНАМИЧЕСКОЙ СРЕДЕ

Ф. Даееф
Санкт-Петербургский политехнический университет Петра Великого,

Санкт-Петербург, Российская Федерация

Предложен новый подход к применению системы технического зрения при управлении 
мобильным роботом в динамической среде. Во время движения по неизменной траектории 
к целевой точке на пути робота может появиться любой новый объект (статический или 
подвижный). В статье описан визуальный анализ для определения расстояния, на котором 
должно происходить обнаружение объектов, для своевременного предотвращения 
столкновения с роботом. Алгоритм обнаружения препятствий в зоне робота разработан на 
основе визуальных данных от RGB-D видеокамеры с помощью методов компьютерного 
зрения. На основе фреймворка ROS в виртуальной среде Gazebo, а также при помощи 
комплекта Turtlebot и библиотеки с открытым исходным кодом (opencv) написана 
программная реализация разработанных подходов, подтвердившая их применимость к 
обнаружению объектов в среде мобильного робота.

Ключевые слова: мобильный робот, динамическая среда, навигация, система 
технического зрения, обнаружение объектов.
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Introduction

Moving object detection in video streams is an interesting problem with a very wide range of vision-based 
application fields, such as action recognition [1], traffic control [2], industrial control [3], identification 
of human behavior [4] and intelligent video surveillance [5]. The general idea of detecting moving objects 
is to represent a set of related image pixels in a video sequence having a coherent motion in time (time 
aspect) and semantic similarity in the image space (spatial aspect) [6].

In this article we try to solve this problem for the purpose of robot navigation. Global path planning algorithm 
usually uses priori information to build a complete model of a structured environment, and then tries to find 
the best possible solution. But information is scarce in unknown or unstructured environments, so users need 
to combine the route planning method with local or reactive navigation using built-in sensors to locally observe 
small fragments of the environment at any time. A problem of detecting moving objects and responding to 
obstacles arises in this scenario. The most common approaches are: firstly, a proximity sensor belt (ultrasonic, 
infrared, ...) mounted on the vehicle, allowing for discrete scanning of the space around the robot; secondly, a 
rotating laser beam, often associated with a viewing system, which leads to a continuous assessment of the free 
area around the vehicle. The issue of accounting for moving obstacles in the management of a mobile robot 
still requires further research. We have a look at different ways to solve the problems presented in a number of 
studies. In the papers [7, 8] where laser scanners are used to detect obstacles the approaches described have 
limitations on the type of object’s movement and the environment in which the robot can move; laser scanners 
are also rather expensive. In other studies, robot navigation is described using an on-board camera and video 
data. The purpose of detecting a moving object is to take a video sequence from a fixed / moving camera and 
output a binary mask representing moving objects for each frame of the sequence. However, this is not an easy 
task due to many problems and difficulties that arise when using a camera to capture a video sequence of moving 
objects. We categorize the existing methods to solve the problem in Table 1.

Table  1
Moving object detection from moving camera

Category Positive points Negative points

Background modeling [9-11]

• Moderately complex
• Good for real time applications
• Providing good object’s 
silhouette

• Not good for free camera motion
• Accuracy is highly dependent  
on background model

Trajectory classification [12, 13]
• Providing good object’s 
trajectory over time
• Moderately complex

• Very sensible to noise
• Does not provide information  
on object’s silhouette
• Accuracy is highly dependent  
on motion tracker mode

Object tracking [14-16]
• Good performance with all 
camera motion
• Moderately complex

• Does not provide information  
on object’s silhouette
• Needs initial good selection  
of the object

Low rank and sparse 
representation [17-19]

• Highly accurate
• Providing good object’s 
silhouette

• Requires a collection of frames
• Not suitable for real-time 
applications
• Highly complex
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In this work, we try to solve these problems for navigation of a mobile robot in a dynamic environment 
on an unchanged path using the on-board vision system (an RGB-D Camera).

Problem statement

Let’s have a transport robot on a flat underlying surface. There are static obstacles (walls, columns, tables, 
chairs, etc.), as well as moving obstacles (people, other robots), which are physical bodies that conform 
to the laws of dynamics. Let us also have a planned path for the robot, which cannot be changed during 
movement, in order to transfer material to the target point in the coordinates of the room. Such tasks arise 
during automation of transport operations in warehouses in which there are mobile objects –robots, people, 
etc. As a result, the system must position the robot at the target point, moving along the planned route and 
avoiding moving obstacles using high-speed adaptation method. It uses the computer vision system for this 
purpose while minimizing the movement time. Such transport robots, as a rule, can move at the maximum 
speed V

rmax
 = 1÷1.5 m/s and acceleration A

rmax
 = 0.1÷0.7 m/s2. In our task we consider that the maximum 

speed and maximum acceleration of the robot V
rmax

 = 1.5 m/s, A
rmax

 = 0.3 m/s2. 
During the task of transportation, the robot should not deviate from the route, and has to avoid collisions 

with objects (Fig. 1), which can appear on the way. For this, we need to detect all objects (moving and 
static) on the way by using a vision system. In our task, we have no condition on the movement direction of 
objects, so objects can move in any direction. At the same time, they are solids with an unchanged shape, 
the maximum value of speed is V

оmax
 = 1.5 m/s. 

First of all, we have to calculate the distance for detecting the object, on which we have to slow down, 
because this is one of the most important factors for evaluating our work.

Fig. 1. Example of an environment in which a mobile robot moves, containing moving obstacle objects O1–O5,  

here R1 = S
n
 (the distance at which a moving obstacle is to be detected),  

R2 = S
r
 (distance to the robot full braking)

Suppose we have robot acceleration A
r
, speed V

r
, then the braking distance S

r
 is determined by the formula:

(2)

2

 
2*( )

r
r

r

VS
A

=
−

.

(1) 2*( )*r r rV A S= −
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Fig. 2. Conversion from world coordinates to image coordinates

In our study the maximum velocity of the robot is V
rmax

 = 1.5 m/s, the maximum acceleration is A
r 
= ± 

0.3 m/s2, by the formula we get S
r
 = 3.75 m. In this paper, we consider a dynamic environment with moving 

objects. So, in our case, the formula for determining the distance S
n
, for detecting obstacles moving at a 

constant speed, should be:

where V
o
 is the maximum speed of the moving object; T

t
 – time to stop, which can be calculated:

At the maximum acceleration and speed of the robot, the time to stop T
t
 = 1,5 / 0,3 = 5 s. Thus, the 

detection of objects should be at a distance not less than S
n
 = 3,75 + 1,5•5 = 11,25 m, in case the object 

moves towards the robot.

Methodology development

Suppose we have a point with coordinates [ X
w 

, Y
w 

, Z
w 

] in the world coordinate system. We want to 
translate these coordinates into a robot camera coordinate system [ X

с
 ,Y

с
 , Z

с 
] and into image coordinate 

system [ X
img

 ,Y
img 

]. To do this we have to build matrix P, to convert the world 3D coordinates to 2D image 
coordinates. Since we are using a digital camera, we will use a “pinhole” – a camera with a small hole instead 
of a lens or with a lens that simulates this effect. So we can describe the projection matrix in this way: 

where К is the internal matrix of transformation of three-dimensional coordinates of the camera into two-
dimensional coordinates of the image (Fig. 2); [ R|t ] – the extrinsic matrix transformation of the camera 
which describes the camera in the world coordinate system, and the direction of its view.

 *n r o tS S V T= +

 r
t

r

VT
A

=
−

.

,

(3) * [ | ]P K R t= ,
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Thus, we have a projection from the world coordinate system to the camera coordinate system; therefore, 
we can accept that Zc = Xw + Z` as the sum Xw , Z` also for X

c
 ,Y

c
.

Since we assume we know the movement characteristics of the robot (position, speed and acceleration), 
so we will use the camera coordinate system [ X

c
 ,Y

c
 ,Z

c
 ].

Analysis of the object movement in the camera coordinates

We accept that objects move on a flat surface; therefore, we consider the movement of the objects in 
the XY plane in the robot coordinate system. We will try to describe how the real move of the objects in the 
robot coordinates system reflected on the image coordinates.

Depth axis movement (object speed on Z axis).To find how the movements of objects along the Z axis 
(depth axis) can be reflected in the image from the robot camera, we consider the relationship between the 
change in length of the line segment from object and the change in depth of the object. Let’s consider two 
points on the image with coordinates ( X

1img
 , Y

1img
 ) ( X

2img
 ,Y

2img
 ), the distance between these two points L

t
 :

Using equation (4) we can rewrite as:

Suppose that we observe two points belonging to one object, which does not change its shape or rotate 
around any of its axes, in other words the object is either static or moving in a straight line, so that Z

1c
 = Z

2c
 

in the camera coordinate system. Then we can rewrite:

From this equation (6) we notice that                which means that change in the length of a line 
segment from one object is inversely related to the change of the depth of the object. We can calculate a 
change of object coordinate in Z axis (depth information), but it is relative to depth value. Thus, we require 
information about depth (approximate) to calculate the change. These changes of depth information 

Now, let’s look at the change of the length of this line segment between two frames L
t
 , L

t+1

( ) ( )`
`

2

L
Z

L
−
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Consider the change in its coordinates between frames:

From this equation we can conclude that there are two factors affecting the movement of points in 
the image on axis X

img
 . The first factor is the movement of the point itself in space along X axis. The 

second one is its movement along the depth axis in such a way that both approximation and removal  
of the image of the controlled point eliminates the effect on the image of its movement along the 
depth axis.

The proposed approach

The general concept of our proposed method (detection of moving objects based on featured 
fragments) is shown in Fig. 3. As seen, the first step is the initialization of the featured fragments using 
the first set of frames. Next, we go in a cycle: 

- Find comparisons of the featured fragments on the next frame.
- Then calculate the change in the position and length of each fragment between two frames.
- Update the fragment data.
After every round we send the fragment data to the robot control unit, where changes are analyzed 

and decisions are made for control of the robot speed. Color and depth frame sequences from an RGB-D 
camera comprise the inputs of the system. The goal is to provide information about the presence of 
moving or non-moving objects to the robot controller in order to decide (increase, decrease or not 
change) the speed of the robot.

Initialize featured fragments. In our task we propose that we don’t have to find the whole moving object 
in the frame but the most interesting part of the object only for our task. We suppose this part is the edges 
that separate the body of the object from the background or other objects. That is a very widely studied 
problem called edge detection. To solve this kind of problem we use the Canny edge detector1 developed in 
1986 by John F. Canny. It uses a multi-stage algorithm to detect a wide range of edges in images. As a result 
of the Canny algorithm, we get a black and white picture where white pixels form the borders or edges that 
separate the objects. For better precision we have to filter the results of edge detection.

1 https://en.wikipedia.org/wiki/Canny_edge_detector

represent the speed of the object along Z axis. For this purpose, we use pixel depth data from the matrix of 
a digital RGB-D camera.

Vertical axis movement (object speed on X axis). To demonstrate the way object movement on the 
vertical axis is displayed on the image in the robot camera, consider one point with image coordinates 
X

img
, Y

img 
.

Based on equation (4), we can write X
img

 , X
img

 as follows:

( )  2img c
c

F wX X
Z

= + =>   2c img
c

F wX X
Z

= −

(7)

 

1 1
1

2

2

ct
imgtct

imgtct
ct

F X wXZ
F wXX

Z
++

+

−
=

−

 

1 11 

 2 * 
2

imgtct ct

ct ctimgt

wXX Z
wX ZX+ ++

−
=

−

.

,
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Fig. 3. Scheme of the proposed approach

Filtering featured fragments. The task of filtering is to remove false and unused points and fragments 
from image results after the edge detection phase. In order to apply such filtering, we need contours which 
represent curves connecting all the continuous points (along the boundary of an object) of the same color 
or intensity. Filtering is carried out on two bases: 

- The length of the fragment itself (using fragments with length starting from 32 pixels).
- The depth of the point (up to 10 m). 
Find the best matching fragment in the next frame. For the next step we propose to convert these 

fragments of the images into a set of segment lines and represent their by the two points ends segment. We 
use two methods for this step:

- The Hough transform to find imperfect instances of objects within a certain class of shapes (segment 
line) by a voting procedure.

- We use two ends of the contours that we found earlier as the two ends of a line segment.
As a result, we get a list of pairs of points we track between frames using an optical flow algorithm, based 

on the Lucas‒Kanade method1.

Calculating changes parameters of the featured fragments  
between two frames (determining the speed of objects)

We represent each pair of points (single segment line) as a separated object and try calculating the 
change in the length and position of this object (segment line) between two frames to find the speeds on 
vertical axis V

ox
 and depth V

oz
.

1. Speed V
oz

We use an RGB-D camera that gives us depth data. For our task it is very important to measure depth 
error and how it increases with depth value. Khoshelham [2] studied a model for measuring depth error 
in the Kinect model camera (RGB-D) and concluded that the uncertainty of depth measurement is 

proportional to the square of the depth value                         where d is depth σ
d
 standard deviation, f is 

the focal length. For Intel® RealSense™ Depth Camera D435i errors increase quadratically from a few 

millimeters at a distance of 0.5 m to ~5 cm at the maximum distance of 10 m.
Therefore, we cannot get depth changes between frames from the depth data of the camera, but we can 

use the depth data from equation (6) to find the speed of an object:

1 https://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method

21  ,z d d
f

σ σ=σ σ
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Fig. 4. Quantitative analysis of our approach

Precision-recall curve at the pixel level (left) and at the object level (right)

where L
t
 is the length of a segment line at frame t and Z

tc
 is the depth of the object from the robot at the 

frame t.
2. Speed V

ox

We can calculate the projection of the velocity of object V
ox

 relative to the coordinate system of the 
mobile robot by the formula:

Testing the developed approaches

To test our method, we performed a precision-recall curve. Using virtual implementation in an 
environment (ROS), we examined two metrics (precision-recall) for detecting moving objects at the 
pixel level and at the object level. The results are shown in Fig. 4.

( )
( )

2 2

2 2
1

    t t c

tct

L Z
ZL
+

+

= (8)

/ox yrV s t= ∆

 

1 11 

 2 *  
2

imgtct ct
yr

ct ctimgt

wXX Zs wX ZX+ ++

−
∆ = =

−

(9)

We also compared our results to a study conducted with the use of lidar [20]. Table 2 shows our result 
do not deviate much from lidar results, although we had only an RGB-D camera instead of some very 
expensive pieces of equipment.

Table  2
Comparison of the proposed method to lidar detection

#Grd 
TruthObj

#Correct 
Obj #Wrong Obj Precision Object Rcl Sec./frame

Lidar [20] 52 48 0 1 0.9231 0.26

Proposed 
method 50 40 2 0.96 0.8 0.3

,

.
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To analyze the tracking method, we consider a metric (EPE) that determines the error of the end-to-
end point and how the distance of the object from the robot affects it. The end-point error is calculated 
by comparing the calculated optical flow vector V

est
 with the true optical flow vector V

gt
 for each point. 

We calculated this metric for each point in the list that we received in the previous step, in a static scene, 
because we know how they should move in the image (surface truth). Endpoint error is defined as the 
Euclidean distance between the two points: A = | V

est
 ‒ V

gt
 | .

Using a virtual implementation, we were able to calculate the optical flow error EPE as a function of 
the distance of the object from the robot. We examined the values of the optical flow of static objects, the 
coordinates of which we know in the absolute system. We can calculate their coordinates on the images 
in each frame, then we calculate the error of the optical flow. Note in Fig. 5 that the closer is the object 
to the robot, the greater the error.

Conclusions
A detailed analysis of the environment of the mobile robot allowed us to solve the problem of 

calculating the braking distance and the distance of detection of obstacles to prevent collisions with 
them. The developed software implementation of the proposed approaches uses ROS (Robot Operating 
System) middleware (Fig. 6), which provides developers with libraries and tools for creating robotic 
applications. Our study conducted on a mobile robot with a caterpillar chassis confirms the applicability 
of our approach to analysis of a dynamic environment in real conditions when navigating transport 
robots in warehouse and workshop premises.

Fig. 5. Endpoint error (EPE) and the distance of the object from the robot

Fig. 6. Example of application based on ROS in Gazebo virtual environment with a Turtlebot robot kit.  

There are a general view of the scene (left), 3D image (center), and the result of the proposed method (right)
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