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Abstract. Subject. In technological and general ventilation ducts with a given uniformity of intake is often 
needed to be designed. The calculation of pressure losses in such ducts is complicated by the lack of reliable 
information about the characteristics of the flows at the inlet to the intake openings and slots. Intensity of air 
intake through slot openings located on one and two opposite walls of the duct in a series of sequentially 
placed slots, which determines the presence of a transit air stream passing by the hole is calculated. The slots 
are perpendicular to the generatrix panel and can be opposite or offset relative to each other. The presence 
of a stagnant zone formed when the flow is cut off from a sharp edge at the inlet is taken into account. Methods. 
The search for a solution is carried out in the framework of ideal fluid jets theory using the Kirchhoff scheme 
and Chaplygin method of singularities, as well as by the numerical method using Flow3d software package, 
where the system of equations of plane turbulent motion was ended with “standard” k-e model. Results. The 
flow rates of the air entering through the slots were found, depending on their width and value of the transit 
flow. Dependencies for the attached flow with and without flow separation are obtained. The shape of the free 
streamline separating the jet and vortex zones, the compression coefficients of the jet are determined. Current 
flow lines are constructed for different values of the geometric parameters of the duct and the hole. Conclusion. 
Analytical and numerical calculations showed that the kinematics of currents and values of the attached flow 
rate are very similar, but the size and shape of the stagnant zone are significantly different. A numerical 
solution gives more physics of stagnant zone formation. It was found that flow separation reduces the 
associated flow rate. It was also found that the intensity of absorption is minimal with the opposite order of 
cracks. 

1. Introduction
The intake of air through slots or a series of local openings of various shapes (round, square, slotted) 

in the side wall when exposed to intense transit flow is a typical task for many technical devices. For example, 
it is used when calculating cooling of the turbine blades surface [1], during the operation of ejectors [2, 3]. In 
technological applications of ventilation, there is often a need to design ducts with a given uniformity 
(nonuniformity) of intake along the length. Failure to comply with the specified intake conditions can lead to 
ineffective local intake from sources of harmful emissions, a violation of regulations for the operation of 
technological equipment, etc. [3–10]. Uniform intake ducts (USD) are also used in public buildings to remove 
air from the upper zone by general ventilation. 

Depending on the current task, uniform intake along the entire length can be achieved by selecting the 
optimal hole sizes and distances between them. With sufficient length, such air ducts are more technologically 
advanced and economical in comparison with air ducts having variable parameters. The main characteristic 
of the energy-efficient choice of geometry and location of the openings in the USD is the local resistance 
coefficient (LRC) of its main perturbing elements. The analytical determination of USD flow parameters, which 
are important for calculating the LRC (associated flow rate, intake rate, stream compression ratio, flow stream 
lines, shape and size of stagnant zones), is very difficult, because when entering through openings and slots, 
air loses energy in the opening itself, and when passing through the duct near such a hole. Therefore, the 
LRC values are determined, as a rule, experimentally. A large amount of LRC data is contained in the well-
known Reference book on hydraulic resistance by I.E. Idelchik [11], which has already been published in four 
editions in 1960, 1975, 1992 and 2005. But this fundamental work is far from exhausting the whole variety of 
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constructive situations encountered in practice. In these handbooks there is no data on separation zones, 
compression ratios of flow at the entrance and passage through the side openings of the air-blast. 

Significant simplifications introduced in the USD analysis in the well-known works on this topic [13] do 
not make it possible to consider this problem as a solved one, and theoretical and experimental studies of 
transit ducts with constant parameters of channel and slot or channel and side openings are relevant. 
Therefore, now there still appear works devoted to the study of USD currents, for example. In these works, 
the authors use numerical experiment using computational fluid dynamics methods. Modern software systems, 
such as Fluent [13], Flow3d [14], which implement computational fluid dynamics methods, allow one to study 
such flows quite accurately and in detail. However, the accuracy and adequacy of results obtained by such 
methods should be monitored by comparison with already known and reliable methods. 

The paper considers methods for calculating flows during intake through a series of slit-like openings, 
which can be located on one or two opposite walls of the duct. The purpose of the calculation is to determine 
the intensity of absorption through the holes for different geometric situations, as well as the flow parameters 
necessary to calculate the CLR of the flow in the turbine fouling (connected flow rate, absorption rate, stream 
compression ratio, flow stream lines, shape and size of stagnant zones). The analysis is carried out within the 
framework of the ideal fluid flow model and numerically taking into account viscosity C using Flow3d software 
package. 

2. Methods
2.1. Hole on one side of the intake duct wall 

A flow diagram is given in Figure 1a where l – long CA slot in the wall of the intake duct with height h 
(Figure 1a). Transit airflow from overlying openings moves with velocity v∞, accordingly, specific transit flow 
is 0 .∞=q v h  It is necessary to determine the intensity of air intake ∆q0 through the gap (adjoined flow rate)
and construct the currents flow lines.

2.1.1. Ideal fluid, unseparated flow 
First, we consider the unseparated flow model (Figure 1, a), which does not take into account the fact 

of formation of a weakly-vortex (stagnant) zone when stream flows around a sharp edge A. We will find the 
solution using the conformal mapping method [15, 16]. 

As a parametric region, we take the upper half-plane = +t iξ η  with the location of points indicated in 
Figure 1, a, b. The flow region in the plane of complex potential = +w iφ ψ  is shown in Figure 1, c. 

Figure 1. Flow areas for unseparated flow model: a is physical plane z = x + iy; 
b is parametric plane t = ξ + iη; c is plane of complex potential w = φ + iψ 

The matching between the flow areas in the z and t planes is established using the Christoffel-Schwartz 
formula [15] 

2 2

2 ,
1

−
=

−
dz t bс
dt t

 

where c and b are the mapping parameters. 
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After integration the following expression is obtained: 

2 21 1 1ln .
2 1 2

 − − −
= + − + 

b t bz c t i
t

π  (1)  

At the point D (t = –1), the function dz/dt has a first order pole. By determining the residue of function 
at this point, we obtain 

2 1,
2
−

=
bh cπ  (2)  

and find the final form of the mapping formula 

2

2 1ln .
1 1

+ = + + − − 
h t tz iH
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 (3)  

At points A and C we have 

( )
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Consequently, 
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and further 
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 (4)  

From equations (2), (4) we obtain the formula for determining the parameter b > 1 

2

2 2 1ln .
1 1

+ = + − − 
l b b
h b bπ

 (5)  

Further we find the equation of the AC line in the parametric plane .= +t iξ η  It is a consequence of 
the expression 

2

2 1Im ln 0.
1 1

+ + = − − 
t t

b t
   

Having completed the necessary transformations, we obtain 

2
2

22 1 , 0 ,
1

= ± + − ≤ <
− Mctg

b
ηξ η η η η  (6)  

where 0>Mη  is determined from the equation 2
2

22 1 0.
1
+ − =

−
M

M Mctg
b
ηη η  

Note that for large values of b, from formula (6) it follows that the line BE in the parametric plane is 

determined by equation (at b → ∞) 2 2 ,= ± −bξ η  that is, this line is almost a circle of radius b. 

On the segment AC 

( )
( )

22 2 2

22 2

1 41 21, ln , , 0 .
1 1

 + − + = = = = ± + > ≤ < − − +  

M
y xy x b
h h b

ξ η ηξ ξ η η
π ξ η

 (7)  
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In the plane t, we have sources at points D (t = –1); B (t = ∞) and drain at E (t = 1). The complex 
potential of such a flow will be 

( ) ( ) ( ) ( ) ( )0 0 0 0ln 1 ln 1 ln 1 1 ln 1 ,+  = + − − = + − + − q
q q q qw t t t С t∆
π π π

 (8)  

where 0 0=qС q q∆  is the dimensionless adjoined flow. 

The complex adjoined velocity is 

( ) ( )( )
0

2 2

1 1 1
.

− − + +
− = ⋅ = ⋅

−
q

x y

t С tqdw dtv iv
dt dz t bπ

 (9)  

By defining residues of function dw/dt at points D and B, we find the dimensionless adjoined flow 

2 .
1

=
−qС

b
 (10)  

By separating the real and imaginary parts of equalities (8), (9), we find the equations for the flow 
function 

( )
( )

( )
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 (11)  

and for the flow velocity components: 
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where 0,≥ξ  0.≥η  

We let us consider the problem of an ideal fluid flow, taking into account the separated flow (the diagram 
is shown in Figure 2 a). At point A, the flow breaks away from the wall, forming a stagnant (weakly vortex) 
zone. The velocity at the free AE boundary is v0. At point C, the leakage rate is finite. As before, it is necessary 
to determine the adjoined flow rate and construct the flow stream lines. We will find the general solution to the 
problem by the method of singular points of S.A. Chaplygin [15]. As a parametric region, we choose the upper 
right quadrant with the corresponding points shown in Figures 2, a, b. 

We construct the function dw/dt, which is a the complex conjugate velocity of the imaginary flow in the 
parametric plane. We take into account that the fluid flows from the infinitely distant points B, D and is 
absorbed at the infinitely distant point E, that is, the streamlines start at points B, D and close at point E. 
There exist a separation point C, where the general streamline is perpendicular to the axis ξ. 

We define the features of the function dw/dt. At points A and C, the right angles are flowed around, so 
tA = 0, tc = c are zeros of the first order. Points E lie at infinity; therefore, they do not participate in the 
construction of the function dw/dt. At points B (tB = b) and D (tD = 1) we have the poles of the first order. 

We analytically continue dw/dt on the entire complex plane. On the real axis ξ the condition Im 0=
dw

dt
 

is satisfied. According to the principle of symmetry, we analytically continue dw/dt through this axis to the 

lower right quadrant, with no additional features. On the imaginary axis η the condition Re 0=
dw

dt
 is satisfied 

that allows one to analytically continue dw/dt on the whole complex plane. Moreover, at the point C (tc = –c) 
we get zero, and at the points B (tB = –b) and D (tD = –1) we obtain the first order poles. 
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As a result of these continuations, the function dw/dt is built in the form 

( )
( )( ) ( )

2 2

0 02 2 21
.

t t cdw
f t

dt t t b
φ φ

−
= =

− −
 (14)  

On ADE Im 0=
dw

dt
 and therefore, is a real number. 

The picture of the flow lines of an imaginary flow in the parametric plane, constructed using the 
StreamPlot option of the Mathematica software [14], is shown in Figure 3. 

  

Figure 2. Flow areas for separated flow model:  
а is physical plane z = x + iy; b is parametric plane  

t = ξ + iη; c is plane of complex potential w = φ + iψ. 

Figure 3. Imaginary flow. 

We construct a function 
0 0 0

.= − yx vvdw
i

v dz v v
 This function has a unique zero at the point t = b, which, after 

analytic continuation through the imaginary axis, turns into a pole at the point t = −b, since 
0

1=
dw

v dz
 on the 

imaginary axis. Given that with t → ∞ 
0

1,=
dw

v dz
 we obtain 

0

.−
=

+
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Next, we find the derivative of the mapping function z = z(t)  
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The expressions (14), (15), in principle, allow constructing streamlines in the parametric and physical 
planes. 

We proceed to determine the flow rate of air sucked through the gap. The flow rate at point D is 

0 ,= ∞q v h  and at point E it is 0 1,=q v h  so flow through the gap is 0 0.q q q∆ = −   

Function dw/dt is analytical in the upper right quadrant, excluding points B, C, E. Points B, C on the 
parametric plane are marked by semicircles of infinitely small radius; we surround the remote point E with a 
quarter of a circle of infinitely large radius (Figure 2, b). When switching from DC to DE in a semicircle Cd 
Im w experiences a jump q0 (Figure 2, c). 

Using the residue theorem, we find 

( ) ( )
2

0 0 0 2

1
1 2 1

,−
= = =∫

= −
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d

dw c
iq dt i res f t i

tс dt b
π φ π φ    
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whence it follows that the transit flow intensity is 

( )
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When moving from BC to BA in a semicircle Cb Im w experiences a jump ∆q0, hence  
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and the intensity of flow entering the gap is 

( )
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=
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b c
q

b
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when switching from DE to AE in a quarter circle CR Im w experiencing a jump q and 

( )0 02 2
,= = =∫ =∞
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R

dw
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π π
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which means the intensity of the total flow 

0

2
.=q

πφ
 (18)  

From formulas (16)÷(18) we find the dimensionless associated flow 

2
0

2
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1
1 1

1
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= = − = −
−

q
q q b

С
q q c

∆
 (19)  

Now we determine the sizes h and h1. When switching from DC to DE by semicircles cd Im z 
experiences a jump h. From here 
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when switching from DE to AE in a quarter circle cR Im z experiences a jump h1 and it means that 

( )0 0
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1 2 2
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0
1

0 2
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v

φ π
 (21)  

Combining expressions (20), (21) we find the compression ratio of the flow 

( )2
1

2

1

1
.

−
= =

−

bh
K

h c
 (22)  

It remains to determine the mapping parameters b, c and the coefficient ϕ0. Since point B in the physical 
plane at infinity to the left and to the right of the gap is at the same level, then 

( )Im 0 0.= ⇒ =∫
==



dz
dt res F t

t bdtt b
 (23)  
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On the other hand 
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We take the logarithmic derivative 
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From the previous equalities it follows 
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From the graph of function (24) (Figure 4) it can be seen that for 0 < b < 1, the following is always true: 
b < c < 1. 

The function ( ) ( )
( )( )
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t t b
 entering the mapping formula (15), will be decomposed to a sum 

of partial fractions 
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Figure 4. Plot of function c = c(b).  
In view of (23) the coefficient K = 0, for other coefficients we get  
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We find the primitive for function F(t)  

( ) ( ) ( ) ( )ln 1 ln 1 .= = − + + −∫
−
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For the parametric plane the slot of the width l corresponds to a segment AC  

( ) ( )0

0

Re 0 .= −  l G G c
v

φ
   

Using the expression (20), we obtain 
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1
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−
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bl
G G c
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 (27)  

So, to find b and c, which meet the criteria 0 1b с< < < , one should solve a system of equations (24)–
(27). By combining them, we get  

( )
( )

( ) ( ) ( ) ( ) ( )
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.

+ − + − + − +−
⋅ =
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  b c b c b c b cb l

hc b cb π
 (28)  

The equation (28) is solved using the Find_Root of the MathematiCa software, and the parameter c is 
defined using the formula (24). 

Let v0 =1, h =1. We introduce notations: 

1 0 1 0 1 0, , .= = − =M M N N P Pφ φ φ    

Taking into account (20), (25), (28) we obtain 

( )
( ) ( )

2 2

1 1 12 2
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, , .

−
= = =
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b b
M N P

b bπ π π
   

As point A has coordinates (1/2,0), we have a conformal mapping of the parametric plane onto the 
physical plane in the form 

( ) ( ) ( )
( )

( )
( )

2 2

2 2

11 4 1
ln 1 ln 1

21 1
.

−
= − + + − − +

+ +

b b
z t t t i

b bπ π π
 (29)  

We proceed to the construction of streamlines. This is easier to perform in the parametric plane, and 
then, using the conformal mapping (29), to transfer them to the physical plane. The imaginary flow in the 
parametric plane has velocities 

( ) ( ), Re0 ,= = +  v v f iξ η φ ξ ηξ ξ    

( ) ( ), Im0 .= = − +  v v f iξ η φ ξ ηη η    

Since the imaginary flow is steady, the streamlines coincide with the particle trajectories. Therefore, the 
differential equations of streamlines will be 

( ) ( ) ( ) ( ) ( ) ( ), ,, ,′ ′= =      v vξξ τ ξ τ η τ η τ ξ τ η τ
η

 (30)  

where τ is the time of particles motion in the parametric plane.  

We construct N streamlines of the transit flow. Initial conditions must be added to the system of 
differential equations (30). On the semicircle Cd of a small radius ε1, we arrange N points. The initial conditions 
are formulated as 

( ) ( )1 10 cos 1, 0 sin , 1... ,
1 1

i i j N
N N
π πξ ε η ε= + = =
+ +

 (31)  

Using NDSolve program of the Mathematica software the Cauchy problem (30), (31) was solved on the 
interval [ ]max0, .τ τ∈  As a result, we obtain the coordinates of streamlines in the parametric plane  
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( ) ( ) [ ]0, max, , .ξ ξ τ η η τ τ τ= = ∈    

The values τmax were determined from a numerical experiment. 

The problem described above for a viscous fluid was solved numerically by Flow3d software package. 
The system of equations for plane turbulent motion of a viscous fluid was closed using the “standard” k-ε 
model (k is the kinetic energy of turbulence, ε is the dissipation rate k). For flow zones in the immediate vicinity 
of the duct walls, standard wall functions were used. 

At the boundaries of the computational domain, the following boundary conditions were adopted (see 
Figure 1, a): 

– On DD, the condition for uniform distribution and constancy of velocity ∞
v  in the positive direction of 

the x axis corresponding to a given specific intensity q0; 

– On EE, the condition for a smooth continuation of the flow through the boundary (normal derivatives 
at the boundary for all quantities are equal to zero); 

– At the permeable boundaries of the area of air leakage to the gap, the excessive static pressure ∆Р = 0; 

– On the boundaries ВC, AB, DE, solid impermeable walls on which the condition of adhesion (non-
slip) is fulfilled 0.=

vτ  

The temperature at all boundaries is equal to air temperature of 293K. 

The total number of grid cells in the channel is 80 thousand, along the length of the slotted hole it is at 
least 20, as it is recommended in [14]. The channel length to the slot hole was taken equal to 3h in order to 
exclude the influence of boundary conditions in the DD section on the flow near the slot hole. The length of 
the channel after the slot hole was taken to be at least 10h to smooth the flow deformation due to adjoining of 
the flow through the slot and separation of flow from the sharp edge, which affects the accuracy of determining 
the total flow rate q = q0 + ∆q0. 

2.2. Bilateral arrangement of slotted openings in the duct 
An element of the intake panel with a two-sided arrangement of slotted openings is shown in Figure 5 a. 

Transit flow from upstream openings has velocity v∞. Here it is also necessary to determine the flow rates of 
air entering through the slots and to build the flow stream lines. 

 

Figure 5. Flow areas: a) physical plane z = x + iy; b) parametric plane t = ξ + iη. 

Ideal fluid, unseparated flow. We find the solution using the theory of potential flows of ideal fluid by the 
method of conformal mappings. We do not take into account the presence of vortex zones in the places of 
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boundaries fractures (points A4, A6). We assume that at points A0 and A2 the Kutta-Joukowski condition of 
the limited velocity [20] is satisfied. 

We will construct the flow in the parametric region, which in our case will be the upper half-plane with 
the correspondence of points shown in Figure 7a, b. The relationship between the flow regions in the z and t 
planes is established using the Christoffel – Schwartz formula 

( ) ( )
2

2 4
2

1 1 3 5

( 1)( )( )
;

( )( ) ( )
,

t t t a t a
z A F u du F t

t a t a t a−

− − −
= =∫

− − −
 (32)  

where u is the integration variable. 

The mapping parameters a1, a2, a3, a4, a5 and coefficient A must be defined. We expand the function 
F(t) at the sum of simple rational fractions 

1 1
2

1 5 3 3

( ) 1
( )

,F t
t a t a t a t a

α βα β
= + + + +

− − − −
   

where coefficients α, α1, β, β1 are real. The coefficient A is also real and positive, since for A6A7 we have 
dx/dξ > 0.  

In order to obtain the same duct width at points A1 and A5, the following conditions must be met 

1

Im
dz

ih
с dt

=∫  and 
5

Im ,dz
ih

с dt
= −∫    

where C1 and C5 are semicircles of infinitely small radius, surrounding points A1 and A5 in the parametric 
plane t (see Figure 7, b). 

Using the residue theorem, we obtain 

1

5

1

1 1
5

Im ;

Im ..

A dt h
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A dt h
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α
απ α

π

α
α π α

π
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−
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−

   

It follows that 

1

;h h
А

απ α π
= = −  (33)  

1 0.α α+ =  (34)  

In order to have the straight lines A7A0, A6A7 at the same level in the physical plane, we additionally 
use the condition 

Im 0 Im ( ) 0,
R R

dz
F t dt

с сdt
= → =∫ ∫  (35)  

or otherwise 
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 
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where CR is the semicircle of an infinitely large radius surrounding the point A7 in the parametric plane (see 
Figure 5, b). 

According to the residue theorem 2
3

0
( )

,=∫
−R

dt
с t a

β
 and besides, Im 0,=∫

R

dt
с

 which means 

1 1 0.+ + =i i iπ α π α π β  Taking into account expression (34), β1 = 0, and the function F(t) takes the form  
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2
1 5 3

( ) 1
( )

.F t
t a t a t a

α α β
= − + +

− − −
   

Having determined the residues of function F(t) at points A1, A5 and the limit of function value 

( )2
3( ) −F t t a  at 3,→t a  we express the coefficients α , α1 , β through mapping parameters a1, a2, a3, a4, a5 

22
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Using condition (3) from the first two expressions we find 
22
5 5 2 5 41 1 2 1 4

2 2
1 3 5 3

( 1)( )( )( 1)( )( )
0 .

( ) ( )

a a a a aa a a a a

a a a a
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− −
 (36)  

Now consider the condition Im ( ) 0 ( ) 0.= → =∫ =∞
R

F t dt res F t
tс

 By determining the residue of the function 

F(t) at infinity, we get 
2 0 .51 2 3 4a a a a a− + − + − =

 (37)  

If the mapping parameters satisfy conditions (36), (37), then 

( ) ( ) ln( ) ln( ) .51
3

f t F t dt t a t a t
t a

β
α α= = − − − − +∫

−
   

The well-known geometric characteristics of the flow region make it possible to write down three more 
equalities 

[ ]Re (1) ( 1) ; Re ( ) ( ) ; Re ( ) ( 1) .1 2 4 2 3 2l f f A l f a f a A l f a f A= − − ⋅ = − ⋅ = − − ⋅        
  

Given that ,=A h απ  and introducing new notations , ,1 1 2 2 3 3= = =l h l l h l l h l  we get three 

equations that are missing to determine the five mapping parameters aj , j=1,2,…5 

[ ]Re (1) ( 1) 0 ;1− − − =f f l απ  (38)  

Re ( ) ( ) 0 ;4 2 2− − =  f a f a l απ  (39)  

Re ( ) ( 1) 0 .2 3− − − =  f a f l απ  (40)  

Now it is necessary to solve a system of five nonlinear equations (35), (36), (38)-(40) with respect to 
five mapping parameters. The main difficulty in solving this system by the Newton method is the ordering of 

parameters: 

1 2 3 4 51 1a a a a a− < < < < < <    

The point is that the method iterations regularly violate this ordering. To preserve it, we use the technique 
proposed in [18] (see also [19]). We introduce new variables 

0 6
1ln , 1, 5 , 1, 1.

1

a ai ib i a ai a aii

− −= = = − =
−+

 (41)  

We turn the last equalities to variables ai, for this we solve the following system of linear equations with 
a tridiagonal matrix 

( ) 01 1 ,
bia a e a ai ii i− − − =− +  where 1, 5.i =    

Solving this system of equations in the Mathematica package, we obtain 
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1 2 5( , , , ) , 1, 5.i ia G b b b i= =  (42)  

where functions Gi are built explicitly.  

Now, taking into account equalities (42), we transform the system of equations (35), (36), (38)–(40), 
solving which we find the mapping parameters. Note that variables bi are unordered, but any set of them gives 
an ordered set of variables ai . When applying the Newton method to the transformed system, the zero values 
of variables bi were simply chosen as the zeroth approximation, and the iteration process was always 
converged. 

Thus, we have an opportunity to construct a function 

( ) ( ) ln( ) ln( )51
3

f t F t dt t a t a t
t a

β
= = α − − α − − +∫

−
 

  

and conformal mapping  

( ) ( ) ( )1z t A f t f= − −    
(43)  

Now we calculate the adjoined flow rate through the slotted openings in the walls of duct. In the parametric 
plane, we have sources at points A1 (t = a1), A3 (t = a3), A7 (t = ∞) and stock at point A5 (t = a5). The complex 
potential w iφ ψ= +  of such a flow will be equal to 

2
5

2
1 3

( )1ln( ) ln( ) ln( ),
q q qq q

w t a t a t a
π π π

+ +
= − − − + −  (44)  

where ϕ, ψ are potential and function of flow, q1 and q2 are flow rates through the corresponding slotted 
openings, q = v∞h is the transit flow rate. We find the derivative 

1 2 2
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At points A0, A2 velocities are limited and therefore dw/dt, dw/dt = 0. We solve the system of equations 
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with respect to q1 and q2. As a result, we obtain 
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Now we can calculate the adjoined flow rate, which we present in the dimensionless form  

3 1 5 1 3 3 2 1 51 2

1 2 1 1 2 1 3 5

( )( ) ( 1)( )( ) .
(1 )( ) (1 )( )( )q
a a a a a a a a aq qC
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− − + − −+

= = +
+ − + − −

 (45)  

The problem for a viscous fluid was also solved numerically in the Flow3d software package. The 
boundary conditions were formulated in the same way as in Problem 1. The calculation results are presented 
below. 

3. Results and Discussion 
3.1. Hole on one side of the intake duct wall 

During the calculations, we also determined the dimensionless adjoined flow rate Cq and the jet 
contraction coefficient K. Figure 6 shows graphs of the corresponding dependences (19) and (22). Recall that 
the parameters b and c at given values l/h are determined by formulas (24), (28). The dashed line shows the 
graph Cq for the flow, where the flow separation at point A is not taken into account. 
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Comparison of graphs shows that separation of flow reduces the adjoined flow. We also see that the 
jet contraction coefficient tends to 0.5 with an increase in the length of the gap, that is, the flow in the channel 
becomes close to the flow in the Bord nozzle [17]. 

 
Figure 6. Function graphs: 1 – adjoined flow taking into account flow  

separation (solid line), without taking into account flow separation (dashed line),  
2 – jet contraction coefficient, (Cq values obtained  

numerically in the Flow3d program are shown by circles). 

Using the mapping formula (29), the streamlines’ coordinates in the physical plane are determined. 
Similarly, the intake flow streamlines are constructed, but a semicircle of small radius Cb is constructed around 
point B (t = b). Figure 5a shows the streamlines constructed in the described way for various values of l/h. 

 
Figure 7. Flow lines near the hole in one wall of the duct: a – analytical solution in NDSolve program 

of Mathematica software, b – numerical solution in the Flow3d program 

3.2. Double-sided intake panel element 
Figure 8 presents a graph of dependence of Cq

 on the device geometry. Minimum of Cq is achieved for 
opposed openings. As the gap between the slots increases, the adjoined flow tends to a constant value. 
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The intake rate is minimal with the opposite arrangement of openings, with an increase in the spacing it 
increases. Starting from a distance 3 2,=l  it reaches its maximum value and then remains constant. That is, 

it can be argued that at 3 2>l  the mutual influence of the openings disappears. 

 
Figure 8. The graph of dependence of the adjoined flow from  

the spacing between openings 1 2= 1, = 0.5l l . 

Knowing the complex potential (44) and the conformal mapping formula (43), we can further construct 
the flow streamlines in the physical domain. Figure 9a shows the flow map for different locations and sizes of 
slot openings. 

 
Figure 9. Flow streamlines in openings on opposite walls of the duct:  

a – analytical solution in the NDSolve program of Mathematica package,  
b – numerical solution in the Flow3d program. 

The intake rate is minimal with the opposite arrangement of holes, with an increase in the spacing it 
increases. Starting from a distance 3 2,=l  it reaches its maximum value and then remains constant. I.e. it 
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can be argued that with 3 2>l  the mutual influence of the cracks disappears. Considering the complex 
potential (44) and the conformal mapping formula (43), we can further construct the flow streamlines in the 
physical domain. In Figure 9a a flow pattern for different locations and sizes of slit openings is shown. Pictures 
of flows constructed by Flow3d software package are shown in Figure 9, b.  

The results of calculating the attached flow are shown by dots in Figure 8. We can state the accordance 
between analytical and numerical calculations  

The numerical method allows to obtain more physics of the flow and, in particular, determines the 
geometry of the stagnant zone formed when the flow is cut off from sharp edges. Within the framework of the 
used analytical model, the shape of the stagnant zone is not determined. 

The problem was also solved numerically in the Flow3d software package. The boundary conditions 
were formulated in the same way as in Problem 1. The flow maps constructed using the Flow3d software 
package are shown in Figure 9, b. The results of calculating the adjoined flow are shown by dots in Figure 8. 
We can state a good agreement between analytical and numerical calculations. 

The numerical method allows one to obtain a more physical picture of the flow and, in particular, it 
determines the geometry of the stagnant zone formed when the flow is cut off from sharp edges. Within the 
framework of the used analytical model, the shape of the stagnant zone is not determined. 

4. Conclusions 
In the work, the velocity field created by the action of the slotted hole on the duct wall, as well as at the 

intake panel with a two-sided arrangement of slotted holes, is analytically and numerically calculated. In the 
framework of the inseparable and detached models of potential ideal fluid flows, equations for the flow stream 
lines are obtained. The flow patterns are compared with the results of numerical calculations performed for a 
viscous fluid. The intensity of absorption is determined depending on the width of the slit and the flow rate. 

Important results have been obtained that can be used in the design of air duct systems: 

• the flow rates of air entering through the slots in the walls of the duct are determined, depending on 
their width, relative position and transit flow value; 

• current flow lines are constructed; 

• it was found that the intake intensity is minimal with the opposite arrangement of slots; 

• The shape and size of the stagnant zones are determined numerically. 

It should be noted that the qualitative patterns of the flows obtained by analytical and numerical methods 
are slightly different, since the flow model underlying the analytical calculation does not imply that the 
boundaries of the stagnant zone are closed on the duct wall. The values of the attached flow, determined 
analytically and numerically, practically coincide. 

The results of the experimental determination of the flow characteristics and the intensity of absorption 
through the openings for the considered geometric situations are being prepared for publication. In particular, 
Figure 10 shows photographs of the boundaries of the separation zones at the middle suction inlet in a 
rectangular duct at l/h = 0.32. The experiments were run by Ph.D. Ziganshin A.M. in the laboratory of Kazan 
State University of Architecture and Engineerin (KSUAE). 

 
 Figure 10. Boundaries of the separation zones at the middle intake hole  
in a rectangular duct at l/h = 0.32 at different velocity of the transit flow. 
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