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Abstract. The paper proposes the method for calculating of thin plates stability by the finite element method 
based on piecewise constant approximations of the moments’ fields. Using this approach may allow us to 
obtain the lower limit of critical stresses. We build the solution based on the extended functional of additional 
energy. The functional, using the method of Lagrange multipliers, includes algebraic equations of nodes 
equilibrium of the finite elements mesh. Using the possible displacements principle, we get equilibrium 
equations. The plate vertical displacements function after stability loss, is combination of linear basis functions. 
For rectangular and triangular finite elements there are the necessary expressions for the stresses work, acting 
in the plate median plane, from bending deformations. There are critical stress calculations for rectangular 
plates with different supporting conditions. The options for the action of compressive and shear stresses are 
considered. It is shown, that when the finite element mesh is refining up, the critical stress value in all the 
considered examples tends to the exact value from below. We perform comparison of the obtained solutions 
with the analytical solutions and the solutions by the program based on the finite element method in 
displacements. Comparison of solutions showed good accuracy in determining critical stresses by the 
proposed method. 

1. Introduction 
An analysis of elastic stability is necessary when we design many structural elements, especially thin 

plates. The study of the stability of elastic systems basically comes down to determining the magnitude of 
critical compressive loads which will lead to buckling of the structure. To ensure the margin of stability of 
structures, it is important to determine the lower limit of critical loads. The finite element method is one of the 
main methods for solving problems of stability theory, because it can be used to consider irregularities in 
constructions that cannot be allow in analytical methods [1, 2]. On the other hand, analytical methods using 
uniform approximations of displacements for the entire subject area make it possible to obtain more accurate 
and continuous solutions for plates with simple shapes [3, 4]. The solutions of stability problems for various 
structures by the finite element method in displacements are widely used [5, 6]. Such solutions are based on 
various functionals and use displacements fields approximations which may to allow the different deformations 
of structural elements [7, 8]. 

In [9], the solution of stability problem for spatial rod systems was obtained by the finite element method 
based on the forces approximations. This approach allowed to obtain the convergence of the critical load 
approximate value to exact value from below. To analyze the stability of the plates, the Ritz method is also 
often used [10–11]. Valid functions used to approximate displacements are a series of regular orthogonal 
polynomials which supplemented with special functions. The analysis performed in [11] shows the 
effectiveness and potential of the method which provides accurate results in combination with a reduced 
number of freedom degrees and simplified data preparation. 

The stability analysis is great importance for the design of various steel plates [12–13]. In [13], the model 
was proposed for stability analysis of a corrugated steel plate. The proposed procedures only allow the linear 
elastic behavior of the material. The paper [14] is devoted to the analysis of the stability of variable thickness 
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plates. To modeling plate thickness variability, quadratic functions and the same nodal parameters are used, 
which approximate the displacements. To confirm the reliability of the proposed method, numerical results of 
stability plates calculations are presented. To analyze the stability of skew plates, a differential quadrature 
method was proposed in [15]. A complete set of equilibrium equations, in an inclined coordinate system, of 
bending and torques moments, equivalent transverse forces and angular forces is obtained. The accuracy of 
the solution was checked by comparing the results of inclined plates calculations, which had different boundary 
conditions, with the results obtained by the finite element method using very fine grids. 

The use of analytical methods for solving the stability problems of plates is still relevant [16–17]. The 
main advantage of the analytical method is that it is simple and universal and does not require any 
predetermined deformations functions. In [17], the generalized integral transformation method was first used 
to obtain an exact analytical solution to the stability loss of a rectangular thin plate. In the article [18] it is given 
an idea of the implementation and using of the Ritz method for the analysis of free vibrations and loss of 
composite plates stability. Attention was paid to the selection of approximation functions depending on the 
degree and type of plates anisotropy. An efficient calculation method of Ritz integrals is proposed, which allows 
one to process a set of admissible functions. The effect of various forms of elastic bonds, boundary conditions 
and the material anisotropy variants on the convergence and accuracy of the solution was investigated. 
Various sets of admissible functions were used - Legendre and Chebyshev polynomials, as well as 
trigonometric type functions. The tasks of studying shallow shells stability [19] and plates of variable stiffness 
[20, 21] remain relevant. Alternative variational principles, in particular the Castilian’s principle [22], are also 
used to solve various problems of elasticity theory. An important task is to study of plates stability during 
heating. In [23], experimental and theoretical studies of round plates during axisymmetric heating are 
presented. 

In articles [24, 25], piecewise constant approximations of the moment fields were used to calculate 
bending plates by the finite element method. It was shown, that in this case when the finite element mesh is 
reducing the displacements values tend to exact values from above. This shows that the solution obtained 
using this technique is always more flexible than accurate. Thus, it can be assumed that the use of such 
approximations to analyze the stability of plates will allow us to obtain the lower boundary of the critical load. 

The aim of this work is to develop a method for calculating the thin plates stability, which is based on 
piecewise constant approximations of the moment fields. The main tasks of paper are: obtaining the necessary 
resolving equations for rectangular and triangular finite elements; performing test calculations of critical forces 
for plates with different boundary conditions; comparison of the obtained solutions with analytical solutions 
and solutions obtained by programs which are based on the finite element method in displacements. 

2. Methods 
The solution to the stability problem of thin plates corresponding to Kirchhoff’s theory will be built based 

on the additional energy functional [1]: 

( )( )2 2 2
3

1 12 2 2 1 d .
2

c
x y x y xyM M M M M

E t
Π = + − + + Ω∫

⋅ Ω
ν ν  (1) 

E is the elastic modulus of the plate material; t is the plate thickness; ν  is Poisson's ratio; M x  is 

bending moment directed along the X axis; M y  is bending moment directed along the Y axis; M xy  is torque. 

Bending moments are positive if they stretch the lower fibers of the plate. We write the functional (1) in matrix 
form: 

T -11 d .
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The following notation is introduced in expression (2): 
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We shall represent the subject area as a set of rectangular and triangular finite elements. In the region 
of the finite element for the moments fields we use piecewise constant approximation functions (Fig. 1) [24–
26]. 
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Figure 1. Piecewise constant approximations of the moments’ fields.  

Areas with constant moments are shown in the same color. 

We introduce the notation for unknown nodal moments , y, ,, ,x i i xy iM M M  and for the vector of the 

nodal moments to the rectangular finite element 

( )T
,1 y,1 ,1 ,2 y,2 ,2 ,3 y,3 ,3 ,4 y,4 ,4 .k x xy x xy x xy x xyM M M M M M M M M M M M=M  (4) 

To simplify the notation of expressions, we introduce auxiliary unit stage functions 
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Also, we introduce the corresponding diagonal matrices which correspond to the element nodes 
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Then the approximation matrix of moments in the region of the rectangular finite element will have the 
simple form: 

[ ]1 2 3 4 .k =Z ψ ψ ψ ψ  (7) 

For a triangular finite element, expressions (4) and (7) are written similarly. Then 

.k kΩ =M Z M  (8) 

Using (8), we shall express the additional strain energy of the finite element in the following form: 

( )T T 11 d .
2

k

c
k k k k k

−

Ω

Π = Ω∫ M Z E Z M  (9) 

We introduce the notation for the local flexibility matrix of the finite element kD : 

T 1 d .
k

k k k
−

Ω

= Ω∫D Z E Z  (10) 

Note that the matrix is calculated analytically and has a block-diagonal form. Expressions of the matrix 
elements can be found in article [24]. 

From the flexibility matrices of finite elements kD , the global flexibility matrix of the construction D  is 

formed, and from the vectors kM  global vector of nodal moments M  is formed. Using the introduced 
notations, we obtain the following expression of the functional (2): 

T1 .
2

cΠ = M DM  (11) 
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It is important that the matrix D  is block-diagonal and consists of square matrices measuring 3 by 
3. Therefore, the matrix D  is easily analytically reversible. This fact greatly simplifies construction of the 
problem solution. 

In accordance with the Castigliano's principle, the moment fields must satisfy the equilibrium equations 
and static boundary conditions. To provide the equilibrium of the moment’s fields, we compose the algebraic 
equilibrium equations of a grid nodes using the principle of possible displacements [24, 25]. 

 
Figure 2. Possible of the node displacements:  

a) possible of the node displacement for the rectangular element;  
b) rotation angles of the sides which lie along the axis Х1;  
c) rotation angles of the sides which lie along the axis Y1;  

d) possible displacements and rotation angles of the sides of the triangular element. 
In Fig. 2 possible displacements of the node are shown. Linear functions are used to represent possible 

displacements at the finite element region. Therefore, the second derivatives of the possible displacements’ 
functions will be equal to zero. Therefore, the moments which are normal to the finite element boundaries will 
be to do work on the corresponding rotation angles of the sides. But for a rectangular finite element, additional 
work will be performed by torques which will be constant over the element region. 

Such equilibrium equations for finite element grid nodes are written as the system of linear 
homogeneous algebraic equations: 

T
, 0, .i i eq zi= ∈ΞC M  (12) 

,i eqM  Is vector of nodal moments included in the equilibrium equation of node i. The equilibrium 

equation for a node will include unknown moments for nodes belonging to finite elements which are adjacent 

to node i. iC  is vector of coefficients at unknowns which are entering the equilibrium equation. In article [24] 
algorithm and necessary formulas for triangular and rectangular finite elements are presented. 

When solving stability problems, at nodes, which are lying on some boundaries of the subject domain, 
the moment normal to the boundary (13) or the moment directed along boundary (14), or both, can be equal 
to zero. 

2 2
, , , ,cos sin 2 sin cos 0.n i x i i y i i xy i i iM M M M= + − =α α α α  (13) 

( ) ( )2 2
, , , ,sin cos cos sin 0.ns i x i y i i i xy i i iM M M M= − + + − =α α α α  (14) 

iα  is the angle between the tangent to the boundary at node i and the global axis X;  
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Using the Lagrange's multipliers method, we add the equilibrium equations (12) and the static boundary 
conditions (13–14) to the functional (11): 

TT
, , , , ,

1 .
2

z n

c
i i i eq i n n i i s ns i

ii i
ns

w M M
Γ∈Ω∈Ω ∈ΩΓ

Π = + + +∑ ∑ ∑M DM C M ϕ ϕ  (15) 

iw  Is displacement of the node i; ,i nϕ , ,i sϕ  are the Lagrange multipliers, which are additional nodal 

unknowns; zΩ  is set of nodes in which the vertical displacement is not equal to zero; ,
n nsΓ ΓΩ Ω  is the 

sets of nodes which are lying on the boundary where the corresponding moments are equal to zero. 

Expression (15) can be represented in the simpler matrix form: 

T T1 .
2

cΠ = +M DM w LM  (16) 

L  is the "equilibrium" matrix of the whole system nodes. The number of this matrix rows is equal to the 
sum of number unknown nodal displacements and the number of static boundary conditions (13–14). The 
vector w includes unknown nodal displacements and Lagrange multipliers ,i nϕ , ,i sϕ . 

To reduce the number of unknowns, one can use the penalty function method to include static boundary 
conditions. Then we get the following expression: 
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α  is a large number, which is penalty parameter. In this case, the terms associated with the penalty 
functions are added to the elements of the matrix D . Note that in this case, the matrix remains block-diagonal, 
and the expression of the functional takes the form (16). 

If the boundary of the region is parallel to one of the global coordinate axes, then the static boundary 
conditions (13–14) can be allowed by excluding the corresponding unknown nodal moments. In further 
transformations, we will use for functional the expression (16). 

As is known [1], when we solve the problem of plates stability it is necessary to consider additional 
tensile-compression deformities which are arising, when the plate is bending: 

22

, , ,
1 1, , .
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w w w w
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 ∂ ∂ ∂ ∂ = = =  ∂ ∂ ∂ ∂   
ε ε ε  (18) 

Deformations (18) correspond to the work of internal stresses , ,x y xyσ σ σ  acting in median plane of 

the plate. To obtain an expression of such work, we consider the rectangular finite element (Fig. 1). The vertical 
displacements of the plate, when one loss of stability, are represented by linear basis functions: 

( )( )4
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4
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ξξ ηη
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iw  is displacement of node i. Then we obtain the following expressions for derivatives included in expressions 
(18): 

( ) ( )4 41 1
.2 21 1
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ii
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The work of stresses , ,x y xyσ σ σ  is expressed by the integral over the finite element area 

*
, , ,0 0 ( ) .o

a b
x o x y o y xy o xyU t dxdy= + +∫ ∫ε σ ε σ ε σ ε  (21) 
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In further transformations we will use the vector of unknown nodal displacements kw  and the vectors 

,k xN , k y,N  for finite element with index k: 
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Using (22) we obtain the following matrix expressions for strains (18): 
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Next, we obtain the expression for the work of stresses , ,x y xyσ σ σ : 

( ) ( ) ( )1 1 T T T T T T*
, , , , ,x ,1 1

1 1 d d .
4 2 2

o x k k x k x k y k k y k y k xy k k k y k
abU t− −

 = + +∫ ∫  
 

w N N w w N N w w N N wε σ σ σ ξ η  (24) 

To simplify we introduce the notation for the following matrices: 
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After integration, we obtain the following expressions for matrix elements: 

, , ,

2 2 1 1 2 1 1 2 1 1 1 1
2 2 1 1 1 2 2 1 1 1 1 1

, , .
1 1 2 2 1 2 2 1 1 1 1 16 6 4

1 1 2 2 2 1 1 2 1 1 1 1

y xyx
k x k y k xy

at tbt
a b

− − − − − −     
     − − − − − −     = = =
     − − − − − −
     − − − − − −     

H H H
σ σσ  (26) 

( )* , , ,
1 .
2

o
T T
k k x k y k k k xy kU = + +w H H w w H wε  (27) 

Calculating the derivative of additional energy, we obtain: 
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From geometric matrices of finite elements kH , the global geometric matrix H  is formed for entire 

system, and from vectors kw  is formed the global vector of nodal displacements w . 

Using the notation introduced, we obtain the matrix expression for the work of internal stresses acting 
in the plate middle plane 

T* 1 .
2

oU = w Hwε  (29) 
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Next, we obtain expressions of geometric matrices for a triangular finite element. The vertical 
displacement function for the triangular finite element of the plate is represented using the triangular 
coordinates: 

( ) ( ) ( ) ( )

1 2 2 1 1 2 2 1

3

1

1, , , , ,
2

, , .

i i i ii

i i i i i i i i i i i
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=
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= − = − = −

∑
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,i ix y  is coordinates of the nodes of the finite element in the global coordinate system; iw  is vertical 

displacement of the node; A  is area of the finite element. The partial derivatives of the displacement functions 
(30) will be constant functions: 

3 3
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Vectors like (22) will have the following view: 
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The stresses work in this case is calculated as an integral over the triangle area: 

*
, , ,( ) .o x o x y o y xy o xyAU t dA= + +∫ε σ ε σ ε σ ε  (33) 

Substituting expressions for deformations (18) in (33), we obtain expressions for the geometric matrices’ 
elements of the triangular finite element (which are like the matrices (25)): 
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Calculating the derivative of additional energy *oUε , we obtain: 
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Thus, to solve the stability problems of Kirchhoff plates, it is necessary to add to the functional (16) the 
work of internal stresses acting in the middle plane which is multiplied by the critical load parameter 

crλ . 

Summing up (16) and (29), we obtain the following functional for solving the plate stability problem: 

T T T1 .
2 2

c crΠ = + +M DM w LM w Hwλ  (36) 

To obtain solving equations, we equate to zero derivatives (36) with respect to the vectors M  and w : 

0,
0.

T

cr

+ =
+ =

DM L w
LM Hwλ

 (37) 

Expressing the vector from the first equation and substituting it into the second equation, we obtain: 

1 0.T
cr

− − =LD L w Hwλ  (38) 

We introduce the notation for the product of matrices: 

1 .T−=K LD L  (39) 
Using (39), we obtain the algebraic equations system for determining the critical parameter crλ : 

.cr=Kw Hwλ  (40) 
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As noted above, the matrix D  is block-diagonal form and is easily reversible analytically. The matrix 
1−D  will also is block-diagonal form, therefore, the matrix K  is a tape structure of nonzero elements, which 

significantly reduces the computational cost of solving the equations system. To calculate the elements of the 
matrix K , you can use special algorithm to reduce the computational operations number for its formation. 

To determine the critical value of the parameter, we apply the well-known reverse iterations method, 
which includes the following steps: 
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 (41) 

In (41), maxw  is the maximum element of the nodal displacements vector iw  by modulus. Parameter 
ε  determines the calculation accuracy of the critical parameter. 

3. Results and Discussion 
In [27], analytical solutions are given for the Kirchhoff plates stability problems with different supporting 

conditions. For comparison with analytical solutions, calculations were carried out to determine the critical 
stresses xσ  for the hinged plates shown in Fig. 3. The calculations were performed for grids consisting of 
rectangular and triangular finite elements (see Fig. 3). 

 
Figure 3. Hinged plates under the action of compressive load along the X axis:  

a) square hinged-supported plate on all sides; b) square plate hinged-supported on three sides;  
c) rectangular plate hinged-supported on three sides and the short side is free;  
d) a rectangular plate hinged-supported on three sides and the long side is free. 
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In the calculations, the following parameters were taken for the plate: 21 , 10 / , 0.3t m E kN m= = =µ . 
The hinged-supported sides of the plates are indicated by dashed line in Fig. 3. In the nodes, lying on the 
hinged-supported sides, moments directed perpendicular to this side were taken zero. In the nodes lying on 
the free side, also torques were taken zero. Tables 1–4 show the critical stress values xσ  calculated by the 
proposed methodology (SFEM), using the LIRA-SAPR program and obtained analytically [27]. 

Table 1. The critical stress 
2, /x kN mσ  for the plate in Fig. 3a. 

Grid 
SFEM LIRA-SAPR 

    
10х10 0.97938 0.99845 0.99373 1.01433 
20х20 0.99796 1.00270 1.00157 1.00675 
30х30 1.00144 1.00353 1.00305 1.00535 
40х40 1.00266 1.00383 1.00357 1.00487 

[27] 1.00423 
 

Table 2. The critical stress 
2, /x kN mσ  for the plate in Fig. 3b. 

Grid 
SFEM LIRA-SAPR 

    
10х10 0.33991 0.33376 0.35202 0.35360 
20х20 0.34703 0.34898 0.35193 0.35231 
30х30 0.34890 0.35365 0.35190 0.35207 
40х40 0.34975 0.35582 0.35189 0.35199 
[27] 0.361525 

 

Table 3. The critical stress 
2, /x kN mσ  for the plate in Fig. 3c. 

Grid 
SFEM LIRA-SAPR 

    
5х10 1.06470 1.06311 1.09547 1.10081 

10х20 1.08211 1.08490 1.09432 1.09538 
15х30 1.08660 1.09150 1.09392 1.09436 
20х40 1.08859 1.09457 1.09376 1.09404 
[27] 1.10465 

 

Table 4. The critical stress 
2, /x kN mσ  for the plate in Fig. 3d. 

Grid 
SFEM LIRA-SAPR 

    
10х5 1.17417 1.11743 1.33114 1.37259 

20х10 1.27265 1.26725 1.33916 1.34975 
30х15 1.29980 1.30917 1.34055 1.34504 
40х20 1.31193 1.32751 1.34103 1.34259 
[27] 1.38584 

 
In Fig. 4, the data from Tables 1–4 are presented in the form of graphs of the critical compression stress 

value. The divisions number of the plates long side is shown at the horizontal axis. The divisions number of 
the short side was half as much. 
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Figure 4. Graphs of the critical stress dependence on the divisions number of the plates long side, 

which are shown in Figure 3. Red lines are solutions obtained by the proposed SFEM method.  
Blue lines are LIRA-SAPR solutions. Solid lines are solutions obtained for the grid of rectangular 
elements. Dotted lines are solutions obtained for the grid of triangular elements. Green lines are 

analytical solutions [27]. 
The results show that the critical stresses calculated by the proposed method, when grinding up the 

finite elements mesh, tend to exact values from below. Thus, the proposed calculation method, based on 
piecewise constant approximations of the moment functions, provides the lower boundary of critical 
compressive stresses for the consideration plates. Such results are expected, since it was shown in [24, 25] 
that, using such approximations to calculate bending plates, we obtain convergence of displacements values 
to exact magnitudes from above. The proposed finite element model reduces the plate flexural rigidity, 
compared with the real rigidity, so we get lower values of critical compressive stresses. We also note that for 
the smallest grids, the critical stresses obtained based on the stress approximation for three plate options are 
closer to the analytical solutions that the solutions using the LIRA-SAPR program. Only for the plate in Fig. 3d 
the solution obtained by the LIRA-SAPR program is closer to the analytical one. But at the same time, when 
mesh grinding up the critical stress decreases and the solution moves away from the analytical one (Table 4). 

Also, calculations were carried out to determine the critical stresses for plates in which one side is 
pinched (Fig. 5). The material characteristics were taken to be the same as in the previous example. 

 
Figure 5. Plates with two hinged support sides and with one pinched side and one free. 
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Table 5. The critical stress 
2, /x kN mσ  for the plate in Fig. 5a. 

Grid 
SFEM LIRA-SAPR 

    
10х10 0.39418 0.39879 0.41440 0.41720 
20х20 0.40658 0.41798 0.41477 0.41543 
30х30 0.40986 0.42321 0.41483 0.41512 
40х40 0.41131 0.42545 0.41485 0.41501 
[27] 0.42680 

 

Table 6. The critical stress 
2, /x kN mσ  for the plate in Fig. 5b. 

Grid 
SFEM LIRA-SAPR 

    
10х10 1.17417 1.11745 1.33114 1.37259 
20х20 1.27265 1.26725 1.33916 1.34975 
30х30 1.29980 1.30917 1.34055 1.34504 
40х40 1.31195 1.32757 1.34103 1.34259 
[27] 1.38584 

 

 
Figure 6. Graphs of the critical stress dependencies on the plate long side divisions number  

(Figure 5). 
The calculation results for the plate with pinched side (Fig. 5) confirm the conclusions which made at 

discussing the previous example results. The critical stress values obtained by the proposed method (SFEM), 
when grinding up the finite element mesh, approach the analytical solution from below. This direction of 
solution convergence provides the critical stress lower boundary. Note that in the proposed method for the 
displacement approximations in the finite element region, after loss of stability, simple linear functions are 
used. Therefore, with coarse grids, the critical forces values are calculated with a larger error, compared with 
the values obtained using the LIRA-SAPR program which uses displacements approximations a higher order. 
But, as the calculation results show, when we solve using the LIRA-SAPR program which is based on the 
displacements approximations we do not have a certain direction of approximate solution convergence to the 
exact one. In some cases, when the mesh of finite elements is refined up, the value of the critical force 
increases, but in many cases, it decreases (see blue lines in Fig. 4 and Fig. 6). 

Also, stability calculations of hinged-supported plates by the tangent stresses action were performed 
(Fig. 7). The square plate (Fig. 7a) and the plate with one to two aspect ratios (Fig. 7b) were calculated. For 
the subject area discretization rectangular and triangular grids of finite elements were used. Calculation results 
comparison with the analytical solutions [27] is presented in Table 7–8 and in Fig. 8. 

 

100



Magazine of Civil Engineering, 95(3), 2020 

Tyukalov, Yu.Ya 

 
Figure 7. Hinged-supported plates. The action of tangent stresses. 

Table 7. The critical stresses 2, /xy kN mσ  for the plate in Fig. 7a. 

Grid 
SFEM LIRA-SAPR 

    
10х10 2.23904 2.24885 2.27247 2.38643 
20х20 2.22525 2.31822 2.32265 2.35250 
30х30 2.33737 2.33081 2.33273 2.34610 
40х40 2.34287 2.34045 2.35057 2.34368 
[27] 2.36497 

 

Table 8. The critical stresses 2, /xy kN mσ  for the plate in Fig. 7b. 

Grid 
SFEM LIRA-SAPR 

    
10х6 1.50975 1.56137 1.55895 1.69831 

20х12 1.62150 1.63299 1.62299 1.65734 
30х16 1.64095 1.64727 1.63322 1.65022 
40х40 1.64921 1.65315 1.63753 1.64754 
[27] 1.65698 

 

 
Figure 8. The critical stresses dependence graphs on the number of the long sides divisions  

of the shown in Figure 7 plates. 
The graphs in Fig. 8 shows that the critical tangent stresses values obtained based on the stress 

approximation (SFEM) tend to analytical values from below when the finite element mesh is refined up. The 
critical tangent stresses which obtained using the LIRA-SAPR program for the triangular finite elements 
decrease when mesh is refined up. Thus, approximate solutions which are obtained based on the 
displacement approximations can converge to the exact solution from different sides. 
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4. Conclusion 
1. The stability analysis method of thin plates, which is based on piecewise constant approximations of 

the moments, is proposed. The solution is based on the additional energy functional. For the finite element 
grid nodes, using the principle of possible displacements, algebraic equilibrium equations are formed, which 
are then added to the functional of additional energy by using Lagrange multipliers. 

2. To calculate the work of the stresses acting in the plate median plane, the plate vertical 
displacements function after stability loss, is represented by linear basis functions. The necessary solving 
relations for rectangular and triangular finite elements are obtained. 

3. According to the proposed method, critical stress calculations were performed for rectangular plates 
with different supporting conditions. The options for the action of compressive and shear stresses are 
considered. It is shown, that when the finite element mesh is refining up, the critical stress value in all the 
considered examples tends to the exact value from below. That direction of the solution convergence provides 
the lower boundary of the critical stress value. 

4. The obtained solutions are compared with the analytical solutions and the solutions obtained by the 
LIRA-SAPR program. The solutions comparison showed good accuracy in determining critical stresses which 
are calculated by the proposed method. 
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