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Abstract. The article discusses the grounds of buildings and structures from weak viscoelastic soils, the 
features of the theoretical justification for their deformations. The need for this study is due to the discrepancy 
between the theory of filtration consolidation and field and laboratory experiments. Within the framework of 
the proposed model, the constructions of solutions to the problems of loading the ground surface with typical 
loads that describe the stress-strain state of each phase of a two-phase medium (soil skeleton + pore water) 
with account of the residual pore pressure. The deviation of the calculated residual pore pressures from the 
experimental data is not more than 5 % (laboratory experiment), 7 % (full-scale experiment). The calculation 
method presented in the article allows predicting the deformation of the foundations of structures from weak 
water-saturated soils. 

1. Introduction 
In connection with the increase in housing and industrial construction, the problem of erecting and 

operating industrial and civil structures on soft water-saturated soils, as a result of the development of new 
territories, is becoming especially relevant. Despite the successful construction and operation of buildings and 
structures on soft water-saturated soils in general, in practice, one has to deal with deformations of such 
structures. The analysis shows that the cause of deformations which result in emergency conditions of 
structures is the insufficient consideration of strength properties, permeability, creep of soils [1]. For soft water-
saturated soils (more than 80 % of the pores of the soil are filled with water) there are also special patterns of 
their deformability [2]. 

Speakers at international conferences devoted to these problems put forward a number of causes of 
deformations of structures located on the soils under consideration. They highlight three main features for soft 
soils. The first is the high compressibility of soils, the second is low strength, and the third is the long duration 
of settlement of structures [3]. In most cases, soft water-saturated soils cannot be used as the foundation of 
buildings and structures without their reinforcement through the use of geosynthetics, the construction of sand 
contour-reinforced piles, sand cushions, etc. [4–13]. 

Modern calculations of foundations and bases on soft water-saturated soils are carried out with account 
of the specifics of their properties, creep of the soil skeleton [14], compressibility of pore water [15–17] and 
filtration consolidation. Research into the determination of the stress-strain state of soil bases establishes the 
limits of applicability of methods for their calculation. 

In particular, the analysis of the models of the theory of filtration consolidation based on a system of 
parabolic equations [18] shows that the residual pore pressures necessarily turn to zero and the two-phase 
system becomes a single-phase one (curve 1, Fig. 1). However, starting from some time Tst, field and 
laboratory tests [19, 20] show the presence of excessive pore pressure in a stabilized state. Filtration 
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consolidation models are no longer applicable to the description of the stress-strain state of a two-phase 
(water-saturated) base. 

 
Figure 1. Change in pore pressure over time. 

The article discusses a scientific direction based on a system of elliptic equations, describes residual 
pore pressures [18]. In accordance with the experiment, starting from a depth of 2 m from the ground surface, 
the qualitative character of the graph of the change in pore pressure over time has the form of curve 2 in Fig. 1. 
A nonmonotonic change in pore pressure over time corresponds to the consolidation process; a nonzero pore 
pressure corresponds to a stable state of the system. Soils with low permeability less than 5 10-3 m/day. 

According to this model, the soil is a continuous two-phase medium. The model is phenomenological, 
its parameters are found from experiments and it doesn’t consider the mechanism of the interaction of phases 
based on their molecular nature. 

The object of the study is a water-saturated soil base, the behavior of which under load is described 
from the standpoint of the mechanics of a deformable solid with account of the influence of pore water on it 
("soil skeleton + pore water" two-phase system). The subject of the study is the effect of residual pore pressure 
on the deformed state of a water-saturated soil base. 

The purpose of the study is to solve the problem of mathematical modeling of the deformed state of the 
soil base, taking into account the residual pore pressure at the end of the consolidation process. Within the 
framework of the model under consideration, the construction of solutions to the problems of loading the day 
surface with typical loads that describe the stress-strain state of each of the phases of a two-phase medium 
is carried out. 

The kinematic model considered in the article describes the stress-strain state of a water-saturated soil 
base under load (its one-dimensional version is described in the monograph [21]) and is based on two 
assumptions: 

1. The relative deformation of pore water 𝜀𝜀𝑙𝑙  ( l -pore water) is proportional to the difference in pore 
pressure σl, per length unit, i.e., the relative movement of particles of pore water is caused by pressure drop 

(-) l
l

l

dh
E dz

=
σ

ε . 

Relative deformation lε  describes a local change in pore volume ldn dz A= ⋅ε , where A  is the 
cross-sectional area of the sample. 

2. The relative deformation of the particles of pore water and the skeleton of the soil sε  (s is the 

skeleton of the soil) are proportional and opposite in sign: s l= −ℵε ε . 

The parameters ,lE ℵ  are found from experiments to test large two-phase samples. 

Let us consider the stress state of a water-saturated soil base as a two-phase half-space loaded with a 
strip load in a cylindrical coordinate system , ,r zθ  (a fundamental problem of the Flaman type). Statement of 
the boundary value problem. The normal stresses are decomposed into the sum of the stresses in the solid 
and liquid phases, the shear stresses in the pore fluid are set equal to zero: 

− equations of equilibrium 
( ) ( ) ( ) 0sr lr r sr lr s l

r r
∂ − ∂ − − −

+ + =
∂ ∂

θ θ θσ σ τ σ σ σ σ
θ

, 
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∂ ∂ −
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− physical equations ( ) ( )2 2,
1 1

s s
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− geometrical equations 
sr
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=

∂
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∂
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− kinematic equations sr lr= −ℵε ε , s l= −ℵθ θε ε . 

Boundary conditions: 

2
πθ = ±       ( ) 0, 0s l r− = =θ θ θσ σ τ ,    0 0sr

r L

u =

=

=θ ;      0lr r= =ρσ . 

We consider the Boussinesq problem about the action of a concentrated force F  on an elastic half-
space in the spherical coordinates 𝑅𝑅,𝜃𝜃,𝜑𝜑 and generalize its fundamental solution to a two-phase half-space. 

The statement of a Boussinesq type boundary value problem: 

( ) 1 1 1
sin

2( ) ( ) ( )
0

RsR lR R

sR lR s l s l R

R R R R
ctg

R

∂∂ − ∂
+ + +

∂ ∂ ∂
− − − − − +
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φ θ

φ φ θ θ θ

τσ σ τ
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( ) 3 21 1 1 0

sin
R s l R ctg
R R R R R

∂ ∂ − ∂ +
+ + + =

∂ ∂ ∂
φ φ φ φθ φ φθτ σ σ τ τ τ θ

θ φ θ
, 

 

( ) ( ( )) 31 1 1 0
sin

s l s l s l RR ctg
R R R R R

∂ − − − − +∂∂
+ + + =

∂ ∂ ∂
θ θ θ θ φ φ θθφθ σ σ σ σ σ σ θ τττ

θ φ θ
, 

2( ( ) ( )) 0,sR lR s l s l∇ − + − + − =θ θ φ φσ σ σ σ σ σ  

( ) ( ), 0, 0.s l s l R− = − − = =θ θ φ φ θφ θσ σ σ σ τ τ  

In order to set the boundary conditions, we select two hemispheres: 1S  of a small radius ( ρ ) and 2S  

of a large radius ( L ). We replace the concentrated force F  with the equivalent load distributed over the 

surface
 1

1 : 0sR SS = −σ σ , displacements sRu  on the surface of the sphere 2S  are taken equal to zero: 

2
0sR Su = . On the daylight surface, stresses in the liquid phase are taken to zero. 
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2. Methods 
We will calculate the stress-strain state of a water-saturated soil base by means of expanding the well-

known Flaman solution for an elastic single-phase half-plane: 

2 cos , 0, 0.r r
F

r
−

= = =θ θ
θσ σ τ

π  

This solution, which uses the hypotheses and equations of the one-dimensional version of the kinematic 
model, is decomposed into the solutions for each phase separately: 

r sr lr= −σ σ σ , 

l
l

l

dh
E dz

=
σ

ε , 
21

s s
sE

−
=

νε σ , 

l
l

du
dz

=ε , s
s

du
dz

=ε , s l= −ℵε ε . 

The system of equations is reduced to one differential equation of the first order in the displacements 
of the solid phase. Its solution has the following form: 

( ) 22
2

2

2 1 cos 1ln ,
a r

sr
s

F R ea ru e dr
E ra r

 − −−  = ⋅ − ∫
  

ν θ

π  

We determine the tangential displacements of the solid phase: 

( ) ( )( )
2

22
2

2 sin 11 1 1 ln
a r

a r
s

s

F R eu a r e dr
E ra r

−
  −  = + + − + ⋅ − ∫
    

θ
θ ν ν ν ν

π . 

Basing on this fundamental solution, we get a solution for a number of problems, which are given below. 

The calculation of the elastic two-phase half-space in the stabilized state is carried out by expanding 
the well-known Boussinesq solution into two phases [18] (similar to the expansion of the Flaman solution): 

2
3 cos
2sR lR
F

R
− = − ⋅

θσ σ
π . 

This equation is the equation of static equilibrium. We supplement it with the equations of the kinematic 
model for the one-dimensional case and the stabilized state (as in the case of the Flaman solution expansion), 
reduce the system to a first-order differential equation for the displacements of the solid phase, after integration 
of which we have the calculation formula for the displacements: 

2 2
2 2

2 2
3 cos

2

a R a RL Ra L a R
sR

s

F e eu e dR e dR
E R R

− −
 
 = ⋅ ⋅ − ⋅∫ ∫ 
 ρ ρ

θ
π . 

In a known manner, one can go from spherical coordinates to cylindrical coordinates and obtain the 
corresponding formulas for the stresses in the skeleton and pore fluid. 

For example, we obtained normal vertical stresses in the problem of a uniformly distributed load: 

2
23 12

3
2 ln ,

ab r ea rlz
b

q z ra e d d
r

ξ

ρ
σ ξ η

π ρ ξ
−−

−

 
 = ⋅ ⋅ +∫ ∫
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2 23 3
2

4 3

2 2
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−
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The obtained analytical dependences make it possible to construct graphs of changes in stresses and 
displacements in depth (along the OZ axis) and horizontally. Replacing the integral with a variable upper limit 
with an approximate expression with an error estimate allowed us to speed up the computational process 
while maintaining an acceptable accuracy of 3 %. 

Solving problems with account of the viscoelastic properties of the soil and changes in the stress-strain 
state of the soil base in time. One of the stages of the study was the study of changes in pore stress over time. 
For this study, we turned to the linear hereditary theory of viscoelasticity. In order to switch from the image to 
the original, we used the broken line method proposed by L.E. Maltsev. 

The essence of the broken line method is that the function of four arguments *( , , , )F x y z p  is 

transferred to the function of one argument *( )F p  by means of replacing spatial coordinates at a fixed point 

with coordinates , ,i i ix x y y z z= = =  ( 1, )i n=  with the numbers. A system of fixed spatial points for which 
it is interesting to obtain (expand) a solution in time in each problem is selected individually. The function 
known in the images 0 p≤  is approximated by a function of a special form: 

1
0

1( ) (0) 1 ( ) ,ipT
i i

n

i
p c c e

p
−

+
=

 ∗ = ⋅ − − 
 

∑φ φ  0 p≤ ≤ ∞ , 0 0 10, 0, 0iT c c += = =  

The original function ( )tφ  is known in advance and looks like a broken line: 

1( ) (0) ( ) ( )( ) ( )
0

i i i i
n

t h t c c t T h t T
i

+

 
 = ⋅ − − − −
 
 

∑
=

φ φ . 

Here ( )h t  is the Heaviside function, (0), ,i ic Tφ  are the desired parameters of the broken line. The 

parameter (0)φ  is necessarily dimensional, ,i ic T  are dimensionless. The arguments t and p are also 
dimensionless. 

Advantages of writing a function as a broken line: 

the possibility of approximation with a given accuracy (the number of links can be increased); 

the presence of an elementary image according to Laplace-Carson. 

The disadvantages of writing include the following: at the point 0t =  the broken line will have a finite 

derivative, and with the function ( )F t  a derivative may be infinite; the broken line reaching the asymptotic 
value occurs at the final value t. 

Let us consider how the pore pressure of a half-plane loaded with a uniformly distributed load changes 
at the initial stage of time. 

In the section, 1/ 5z b=  we fix the coordinate point ( 1/ 5 , 0z b x= = ), for which we show the change 

in pore stresses in time. In the elastic solution for 3( 1/ 5 , 0)lz z b xσ = = , in accordance with the Volterra 

principle we make a change of notation 2 2[ ( )]*a a p→ , and obtain the solution to the viscoelastic problem 
in the images: 
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( ) ( )
23 ( )*2 * 2* 2 * 2
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ρ
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. 

In accordance with the broken line method, we present the desired original in the form of a broken line: 

1 0 6 0
5

0
( ) (0) 1 ( )( ) ( ) , 0,lz i i i i

i
t c c t T h t T c c Tσ σ +

=

 
= ⋅ − − − − = = = 

 
∑  

in which the parameters (0), icσ  are the desired ones, and iT  are given as for the well-known original 
2( )a t . 

We rewrite this spline in images 

*
1

5

0

1( ) (0) 1 ( ) ipT
lz i i

i
p c c e

p
σ σ −

+
=

 
= ⋅ − − 

 
∑ . 

In order to determine the unknown parameters, we compose a system of linear algebraic equations 
using the conditions for the broken line to coincide in images with the known right-hand side on the point 
system jp P= : 

* *( ) ( ), 1, ,lz j lz jp P p P j kσ σ= = = =  . 

The points are selected in a special way, for example, 1 5
0

1

ln ln
, 10j j

j
j j

T T
p T

T T
− −

−

−
= =

−
. 

We repeat similar arguments for other points of the half-space. 

3. Results and Discussion 
Let us consider the results of calculating normal vertical stresses in the problem of a uniformly 

distributed load (Fig. 2). 
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The obtained analytical dependences make it possible to construct graphs of changes in stresses and 
displacements in depth (along the OZ axis) and horizontally. 

Below are the graphs of normal stresses in different sections (Fig. 3). 
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Figure 2. a) Effect of a uniformly distributed load on half-space; 

b) Transition from distributed load to concentrated force. 

+  

z = b/10 

 
z = b /2 

 
z = b  

Figure 3. Change in vertical stresses in solid, szσ , liquid lzσ  phases and the total ones zσ . 

In the central part of the loaded area, pore water is more strongly clamped by soil and therefore its 
bearing capacity is greater than at the periphery. After analyzing the latter graphs of normal stresses, we 
conclude that at a distance of z = b most of the external load falls on the liquid phase. This once again confirms 
the carrying capacity of the liquid phase. 

In the process of research, we solved the problems of the action of two or more structures on a two-
phase base. 

Let us consider the problem of determining the stress-strain state of the base from the action of two 
uniformly distributed loads (Fig. 4). This problem models the mutual influence of two closely standing buildings 
(flat case). In this case, the stresses and displacements at point M are found through the principle of 
superposition (summation) of two forces. In order to do this, we first need to place the origin of coordinates at 
the point of application of force 1 1dF q dξ=  and find the coordinates of the point 1( , )M x zξ− . Then we 
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transfer the coordinates system to the point of application of force 2 2dF q dξ=  and determine the new 

coordinates of the point 2( , )M x zξ− . 

 
Figure 4. Action of two evenly distributed loads on the base. 

Below are the formulas for the stresses: 

1 1 22 21 2( , , ) ( , , )1 1
1

c b c b d bq q
f x z d f x z dsz

c c b d
σ ξ ξ ξ ξ

π π

+ + + +
= − −∫ ∫

+ +
, 

1 1 22 21 2( , , ) ( , , )2 2
1

c b c b d bq q
f x z d f x z dlz

c c b d
σ ξ ξ ξ ξ

π π

+ + + +
= +∫ ∫

+ +
, 

and the corresponding graphs of displacements and stresses in Fig. 5, 6, 7. 

The study of the dependence of stresses in solid and liquid phases on the distance between the objects 
showed that with the separation of objects from each other, normal stresses in the solid phase found by the 
kinematic model fade out 40 % faster than similar stresses found by the Flaman solution. 

Basing on the expansion of the fundamental solution for the two-phase half-space, we considered 
several problems: about the action of the load distributed over rectangular and circular platforms, and about 
the action of the load from the interaction of two objects (spatial case). We completed the calculation of the 
stress and strain state for all cases. z = 2 m, d = 2 m, d = 4 m, d = 6 m. 

 

Figure 5. Vertical displacements of points in the section z = 0.5 m, s lw w  is according to the kinematic 
model, w  – by the Flaman solution. 

.  

Figure 6. Horizontal displacements of points in the section z = 0.5 m. 
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Figure 7. Dependence of stresses in the cross section z = 2 m on the distance between  

the objects d = 2 m, d = 4 m, d = 6 m. 

The problem of the action of a concentrated force F on an elastic two-phase half-space is considered 
above. Here are the graphs of normal stresses in fractions of force F in different sections (Fig. 8): 

 

Figure 8. Change in vertical stresses in solid szσ ,  

liquid lzσ  phases and the total ones zσ  in sections z = 1, z = 5. 

Fig. 9 shows the graphs of displacements from the action of a load distributed over a rectangle with a 
parameter a2 = 0.1(1/m) and different values of the coordinate Z. 

22(1 ) 1 (1 2 )2
2 22

a Rb l RF e zr Rra Ru a e dR d ds E R R zR Rs b l

ν ν ξ η
π ρ

 
+ −  −= − −∫ ∫ ∫    +  − −  

. 

 
Figure 9. Graphs a) vertical and b) horizontal movements along the X axis 

for z = 0 ()and z = 2 (---)by the Boussinesq solution (u,w) and by the kinematic model. 
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It follows from the graphs that the vertical displacements of the skeleton due to the unloading 
contribution of the liquid phase on the axis of symmetry for z = 2 decreased by 30 %. The maximum values of 
the horizontal movements of the skeleton decreased by 40 %. 

The vertical stresses in the solid phase decrease faster than the total ones, therefore, the vertical 
displacements of the skeleton particles decrease faster than the vertical displacements obtained by the 
Boussinesq solution. Consequently, taking account of the liquid phase leads to the fact that the two-phase 
base becomes more rigid compared to the single-phase base. Fig. 11 shows graphs of pore pressures which 
vary over time. 

 
Figure 10. Distribution of stresses in depth at points under the center of the circle:  

total – σ , in solid sσ  and liquid lσ  phases. 

0 200 400 600 800 1000
0

0.5

1

1.5

σ1 t( )

σ2 t( )

σ3 t( )

t  
Figure 11. Change in time of pore pressure at points: x = 0, z1 = 1/5b(), z2 = b(⋅⋅⋅), z3 = 5b(- - -). 

 
Figure 12. Comparison of the research results of pore pressure according to two models: ( -  -  -  ) – 

according to the theory of filtration consolidation; (_______) – according to the kinematic model. 

For all fixed spatial points, the pore pressure varies nonmonotonically over time. The non-uniformity of 
the change in pore pressure at a constant load over time reflects the peculiarity of a two-phase system. The 
process of pressure redistribution between phases is nonmonotonic. The maximum value of pore pressure 
lags in time with increasing depth, i.e. for 1 5z b=  the maximum value of pore pressure is reached at time 
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t = 100 days, and for 5z b=  the maximum is reached after 200 days. This effect was first established by 
L.S. Amaryan in experiments with monolithic large-sized samples. 

Let us compare the obtained solution with the well-known theoretical result of V.G. Korotkin given in the 
monograph [22]. In the problem we investigate the distribution of pore pressure in depth during the filtration 
consolidation of the base from the action of a uniformly distributed load. The soil characteristics are given: 

a = 0.01 cm2/kg, 0 1ε = , к = 1.16·10-6 cm·s, the width of the strip foundation is b = 10 m. The book contains 

graphs of pore pressure for time Т = 100, 300, 1000 и 10000 days, plotted in shares p·b/q. The comparison 
was carried out only for Т = 100 и 300 days, because for Т = 1000 days the consolidation process almost 
ends and the pore pressure differs little from zero. For Т = 10000 according to the theory of filtration 
consolidation, the pore pressure vanishes (Fig. 12). 

4. Conclusion 
1. The reliability of the model under consideration is shown by comparing the theoretical pore pressures 

with the data of a laboratory experiment LS Amaryan conducted on a sample of water-saturated peat [18]. The 
greatest discrepancy of 18 % is observed at the points of maximum pore pressure function. For the asymptotic 
value of the pore pressure function (i.e., residual pore pressure), the discrepancy between the calculated and 
experimental data is not more than 5 %. Comparison with the results of a full-scale experiment F.F. Zekhnieva 
the maximum discrepancy at the points of maximum pore pressure was 23 % and the discrepancy in residual 
pore pressures was 7 %. 

2. In problems of the Flaman type and Boussinesq type, the stress and strain state analytically 
accurately decomposes into two phases (soil skeleton + pore water). From a comparison of surface sediment 
for single-phase and two-phase bodies, it follows that the influence of pore water on the soil skeleton manifests 
itself in their rapid decrease to 40 %. 

3. The solution of problems in a viscoelastic formulation by the broken line method allowed us to 
describe the consolidation process over time and compare the result with the well-known solution obtained by 
the theory of filtration consolidation. For all fixed spatial points, the pore pressure varies nonmonotonically with 
time, and the initial value is less than the final value corresponding to a stabilized state. The non-uniformity of 
the change in pore pressure at a constant load over time reflects the experimentally defined feature of a two-
phase system. In all solutions, we numerically analyzed and graphically presented the reduction of stresses 
and displacements in the skeleton due to the unloading effect of pore water. Pore pressures can reach up to 
70 % of the total stresses. 

4. New analytical formulas are obtained for stresses and displacements in the soil skeleton and pore 
water when loaded with typical loads. The solutions, in contrast to single-phase soil, take into account the 
influence of pore water, that is, they determine the deformed condition of the base from two-phase viscoelastic 
soil. The calculation formulas for the final sediments corresponding to the stabilized state of the base, without 
a description of the consolidation process, are recommended to be used at the design stage of buildings. This 
will allow taking into account the influence of pore water on the soil skeleton and providing for measures to 
improve the safety of their construction and operation. 
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