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For the first time, an algorithm for reconstructing an arbitrary distribution of residual stresses 
by the polarization tomography method for cylindrical rod structures with a radial distribution of 
the refractive index has been presented. The reconstruction took into account the ray refraction. 
The algorithm is based on the expansion of the tensor stress field in angular harmonics (singular 
value expansion). The case of an axisymmetric tensor field with an arbitrary stress gradient along the 
cylinder axis was considered. Numerical calculations were carried out for an axially symmetric stress 
distribution in a gradan for the case of a plane deformation state. The reconstruction was based on 
the expansion of the stress tensor in eigenfunctions of the boundary value problem. The regularized 
solution of the resolving equation (of Abelian type) used the expansion in the Zernike polynomials. 
The results of the reconstruction are given with taking into account the additional term due to the 
deflection of the transmission rays as well as without this doing.
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НАПРЯЖЕНИЙ В ОСЕСИММЕТРИЧНЫХ ГРАДИЕНТНЫХ 

СТЕРЖНЯХ ПРИ ИСКРИВЛЕНИИ ПРОСВЕЧИВАЮЩИХ ЛУЧЕЙ
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Впервые представлен алгоритм реконструкции произвольного распределения остаточных 
напряжений методом поляризационной томографии для цилиндрических стержневых структур 
с радиальным распределением показателя преломления, с учетом рефракции лучей. Алгоритм 
основывается на разложении тензорного поля напряжений по угловым гармоникам (сингуляр-
ное разложение). Рассмотрен важный в прикладном плане случай осесимметричного тензорного 
поля при произвольном градиенте напряжений вдоль оси цилиндра. Численные расчеты прове-
дены для аксиально симметричного распределения напряжений в градане для случая плоского 
деформированного состояния. Реконструкция основана на разложении тензора напряжений по 
собственным функциям краевой задачи. Регуляризованное решение разрешающего уравнения 
(Абелева типа) использует разложение по полиномам Цернике. Приводятся результаты рекон-
струкции с учетом и без учета добавочного слагаемого, обусловленного отклонением просвечи-
вающих лучей.

Ключевые слова: остаточное напряжение, интегральная фотоупругость, поперечное просве-
чивание, стержневая градиентная линза 
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Introduction

Residual stress (RS) is one of the key char-
acteristics describing the strength and optical 
quality of glass and crystal articles. Gradient re-
fractive index (GRIN) structures, like rod lenses, 
laser rods, ball lenses, fiber preforms, and fibers 
have numerous applications. Most of them have 
an axially symmetric distribution of the refractive 
index that is the highest along its optical axis and 
decreases toward the periphery. A remarkably 
diverge range of optical profiling techniques has 
been developed during the last decades [1]; we 
assume in the discussion below that the refractive 
index (RI) n is known. Integrated photoelasticity 
[2] is a nondestructive method for stress analysis 
in 3D transparent specimens. This method con-
sists in placing a 3D sample in an immersion bath 
(n

imm
 = n

surf
 ; n

imm
, n

surf
 are the RI of the immer-

sion and product surface, respectively) and pass-
ing a beam of polarized light through the sample 
cross-section. Reconstruction of the spatial dis-
tribution of the stress tensor by interpreting the 
integrated optical effects of the rays that have 
passed through the medium may be considered 
a type of tensor field tomography [3]. It is based 
on solving the problem of optical tomography of 
the stress tensor field in combination with the re-
sulting problem of elasticity theory. The problem 
of light propagation is separated into two parts 
[4] in the case of weak stresses (fiber preforms 
and fibers, GRIN lenses, laser rods): determin-
ing the ray paths in the GRIN structure and de-
termining the change in the polarization of the 
light passed through a birefringent medium. As a 
rule, induced birefringence is rather weak in the 
GRIN structures, and it is possible to measure 
two linear integrals on each ray. One of them is 
connected with the transversal interaction of the 
2D vector field and the other with the transversal 
interaction of the 2D tensor field. From a math-
ematical standpoint, we have the special case of 
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tensor tomography with beam deflection [5, 6]. 
The reconstruction algorithm is based on circular 
harmonic decomposition (Cormac-type inver-
sion) [7] of ray integrals. The inverse problem of 
reconstructing the RSs is actually divided into the 
following two successive stages [3] for rectilinear 
propagation of rays: 

(i) reducing the tensor ray integrals to scalar 
ones,

(ii) determining all the stress-tensor compo-
nents based on inverting the ray integrals and 
solving the corresponding thermoelasticity prob-
lem [8]. 

In contrast to polarimetric tomography of 
straight light rays, the tomographical problem 
and the inverse thermoelastic problem must be 
solved together in the GRIN media [9]. 

Below we will investigate two types of inverse 
problems. 

The global inverse problem: tomographic 
measurements are performed in a system of par-
allel planes over the entire height of the sample 
(optical axis) (Fig. 1,a).

The local inverse problem: tomographic meas-
urements are carried out in the two closely spaced 
sections orthogonal to the optical axis (Fig. 1,b).

The paper is structured as follows. The basics 
of tensor field tomography are introduced in the 
next section. In what follows, we give the algo-
rithm of RS reconstruction. Appendix after the 

Fig. 1. Schematic drawing of the two raying
 methods corresponding to the global (a)  

and local (b) inverse problems
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Fig. 2. The Cartesian (x, y, z), the cylindrical (r, φ, z) and the moving coordinate (s, α, z)  
systems used in the paper; the z-axis coincides with the axes of the cylinder; 

 φ = θ ± α is the polar angle, n(r) is a radial distribution of the refractive index

main material of the paper gives the singular de-
composition of quasi-plane stresses in a circular 
cylinder.

Preliminaries

To make the presentation of our paper logical, 
we will give here the main concepts of tensor to-
mography of RS: the scalar and 2D-vector field 
tomography in the axially symmetric GRIN me-
dia and the main notions of the inverse thermo- 
elasticity problem of integrated photoelasticity.

Ray equation in axially symmetric optical 
media. We will rely on the results obtained in 
the ray theory of axially symmetric optical me-
dia [10]. We use the Cartesian (x, y, z) coordi-
nate system, as well as the cylindrical one (r, φ, z) 
and the moving one (s, α, z) associated with the 
measuring process (Fig. 2).

The axis z coincides with the axes of the cyl-
inder. The cylinder is taken to have a unit radius. 
The ray is localized by its normal vector s, such 
that s = ǀsǀ is the smallest distance from the ray to 
the origin, and θ is the angle between the s and 
the axis x (see Fig. 2). An arbitrary point on the 
ray is determined by its polar angle φ = θ ± α and 
by its distances r from the origin. 

The RI n(r) has rotational symmetry around 
the z-axis and R(r) = n(r)r is a monotonic con-
tinuous function of r so that there is a one-to-

one correspondence between R and r and only 
one ray passes through any two points inside the 
circle. We introduce another moving coordinate 
systems, (R, Ω, z) and (S, T, z), associated with 
the RI:

where the plus sign holds for the left-hand side 
and minus for the right-hand side of the ray.

Then, the ray equation can be written in the 
next form:

where α(r,s) = ±(φ(r) – θ).
We give here also the formula for the differen-

tial of length l of an arc on the ray:

22( ) ( ), ,

sin ,

S s sn s T SR
T
R

= = ± −

Ω =

( ) ( )( ( )
( ) ( )

( ) ( )

( ) ( )( )
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2 2
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S
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(3)

We assume that the RI is known and we can 
determine the ray equation. 

Attenuated Radon transform in axially sym-
metric optical media. The Radon transform of 
          with attenuation is defined here as fol-
lows [7]:
( )ˆ , ,f s θ µ

( ) ( )
( )

( )

( )
0

ˆ , ,

exp ,

l s

l s

l

f s f s

s dk dl

−

θ µ = + ×

 
× µ + 

 

∫

∫

è x

è x

θ

θ

where l(s) is half the length of the ray in the circle,  
θ = (cosθ, sinθ) is the unit vector along the s-axis, 
µ is the attenuation. 

Let us transform the attenuation accumulated 
along the ray

We can transform the ray integral by using po-
lar coordinates (R, φ):

where

an integral equation (generalized Cormack equa-
tion) for

The absorption is imaginary in the problems 
of magneto-photoelasticity [11], in the studies of 
the magnetic field of the Tokamak plasma [12, 
13], and in the magnetic resonance imaging [14]. 
Thus, we give the reconstruction algorithm for 
the case of imaginary attenuation, µ = iη,

Inserting relationship (4) into a circular har- 
monic, we obtain

( ) ( )
2 2

exp ,
.

M R S L R RdR

R S

−  ×
−

Applying the Radon transform for tomogra-
phy of stress tensor fields in the optical glasses is 
connected with the circular harmonic decompo-
sition (CHD) of stress functions [8, 9]. Expand-
ing f(r,φ) and         in a Fourier series with 
respect to the corresponding angular variables, 
we obtain
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The solution of Eq. (4) can be written as fol-
lows [7]:

where τ, N are the potentials of these compo-
nents; en, el denote the unit normal and unit tan-
gent vectors to our curves. 

For simplicity, we suppose that

τ(1,φ) = N(1,φ) = 0

have homogeneous boundary conditions, obtai- 
ned in the case of reconstructions of quasi-plane 
deformation.

The measurements in the linear vector tomog-
raphy can be represented by a ray path integral in 
the form of a scalar (inner) product of a “probe” 
vector p and vector W as

The operator Sr2 consists of the part connect-
ed with the ray curvature (it is proportional to 
the harmonic number m) and the part connected 
with attenuation (the second integral in square 
brackets). It means that this part can be neglect-
ed if the angle variation of the field is small (m is 
small).

Cormack-type inversion of attenuated ray 
integral of a vector function. Reconstruction of 
stresses is connected with the reconstruction of 
vector fields. According to the Helmholtz theo-
rem, any vector field W(r, φ) can be split up into 
a curl-free component and a source-free one:

We write it in a more familiar form:
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The special case when p = el is what H. Braun 
and A. Hauck [15] call the longitudinal measure-
ments, and this leads to the formula

with applications to the Doppler tomography of 
a velocity field. Here we transform the ray path 
integral by partial integration.

Another special case when p = en gives the 
transverse measurements:

where the plus sign holds for the left-hand side 
and minus for the right-hand side of the ray. 

Expanding τ(R, φ), η(R, φ), N(R, φ) and  
Ŵ

n 
(s,θ) in Fourier series, namely

we can transform integral equation (8) to the fol-
lowing form:

The reconstruction of potential τ is carried out 
by the operator [7]:

As integral (10) coinсides with Eq. (4), we can 
reconstruct Nm(R) by using Eq. (5) for recon-
struction of the scalar function [7]. 

Invariant representation of the stress ten-
sor field in the inverse thermoelasticity prob-
lem. Most of the GRIN structures are formed 
by the ion-exchange method based on diffusion 
in alkali-containing glasses. There are two possi-

which is essential for reconstructing the shear 
stresses.

A simple analogy between Eqs. (6), (7) is evi-
dent. Thus, only the application of Cormack-type 
inversion to the transverse vector integral (7) can 
be described. It can be written as the sum of two 
integrals:
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ble sources of RSs produced by varying the glass 
composition: the size difference between the 
exchange and the diffusing ions, and the radial 
variation in the coefficient of thermal expansion 
across the gradient region. As the lens cools from 
the ion-exchange temperature to room temper-
ature, RS is introduced. In general, the tensor 
of residual deformation is the reason for RSs; 
the components of this tensor do not satisfy the 
compatibility equations. In the case of ordinary 
glass, the tensor of residual deformation can be 
considered to be spherical. Such an isotropic 
dilation field can be described by a certain “fic-
tive” temperature field [16], and determination 
of RS can be connected with the solution of the 
thermoelasticity problem. The problem of recon-
structing the thermal residual stresses using inte-
grated photoelasticity is called the inverse ther-
moelasticity problem of optical tomography [8]. 
It is assumed in this model that the stress tensor 
σ obeys the equilibrium equations div σ = 0. The 
lateral surface of a cylinder is free from loads.

Let us use stress functions Φ, τ, N for the rep-
resentation of RSs:

2

2 2

1 1

12 ,

rr r r r

N
z r r

 ∂ ∂
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r rϕ
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∂ϕ ∂

It was established [8] that the following stressed 
states are possible in a sample: (i) a quasi-planar 
stressed state caused by residual deformations  
(N = 0); (ii) a torsional stressed state caused by 
external loads (Φ = τ = 0), and (iii) a superposi-
tion of the aforementioned stresses (a quasi-tor-
sional deformation). The state of pure torsion 
cannot be generated by a thermal source alone. 
Therefore, the first and third types of stresses are 
to be reconstructed.

We have also two additional equations for the 
reconstruction of the quasi-plane stress state:

( )

2 2

2 2 2

2

2

1 1

, , ,

,

0,

zz

zz

r r r r

x y z
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z
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+
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∆ Φ = + + Φ = ∂ ∂ ∂ϕ 

= σ +Ψ

∂
∆ τ = − σ

∂
 ∂
∆ + Ψ = ∆Ψ = ∂ 

(13)

and the equation for determining quasi-torsional 
stresses ΔN = 0.

Here Ψ is a 3D harmonic function, connected 
with boundary conditions. It was proved that the 
quasi-planar stress (N = 0, Ψ = 0) can be deter-
mined locally based on the values of axial stress 
and its two first derivatives along the direction of 
the axis. Moreover, it can be seen from Eqs. (13) 
that in this case,

( ) ( ), , , , .x y z x y z
z
∂
Φ = −τ

∂

In particular, it was confirmed that the thermal 
stresses of the first angular harmonic are com-
pletely reconstructed by the local method. The 
quasi-torsional stresses can be reconstructed by 
the global method. The magnitude of the quasi- 
torsional stresses is almost negligibly small in 
comparison with quasi-plane stresses and we will 



St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 13 (4) 2020

140

confine our attention mainly to reconstructing 
quasi-plane stresses (N = 0, Ψ = 0). 

Algorithm for reconstruction  
of residual stresses

Since the reconstruction of RS is based on 
solving the problem of optical tensor tomography 
of the stress tensor field together with the prob-
lem of elasticity theory, let us first consider the 
tomographical problem.

Ray integrals of polarized tomography. 
Transformation of light polarization is measured 
in a plane orthogonal to the axis of the cylin-
der. Because there is added torsion of the ray in 
the plane of transillumination, variations in the 
polarization within the quasi-isotropic approxi-
mation are governed by the following system of 
equations [9]:

where E is the vector representing the amplitude 
of the electric field strength (the Jones vector), σkj 
are the stress tensor components in the moving 
system coordinates en, el, ez (the Frenet – Serret 
frame), C is the photoelastic constant.

The solution of Eqs. (14) in the linear approx-
imation can be represented as two ray integrals 
along the ray [2, 3]:

where γ is the integrated optical retardation, ψ is 
the isocline parameter [2]. 

These parameters can be measured experi-
mentally and form the physical foundation of the 
tomography. The ray integral (15) is connected 
with  transversal interaction of the 2D tensor field 
in the plane of transillumination and the other 
one (16) is connected with transversal interaction 
of the 2D vector field (σxz, σyz). The cylindrical 
coordinate system is the most convenient for 
solving the inverse thermoelastic problem of the 
cylinder. Thus, we rewrite stress tensor compo-
nents in cylindrical coordinates:
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cos sin .nz zr zϕσ = σ β+σ β

where β is the angle between the normal to a ray 
and the θ-axis. 

Further, using the relations

we transform them to the following form:

Let us rewrite stresses (17) in terms of stress 
functions (12):
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Integrating by parts, we transform Eq. (20) to 
the formula

containing in an explicit form the term dn(r)/dr 
depending on the curvature of the ray.

The second ray integral (16) is connected with 
transversal interaction of the two-dimensional 
vector field and coincides with Eq. (11) in a space 
of angular harmonics:

Thus, for stress reconstruction, we have four 
equations: two differential (Eqs. (13)) and two in-
tegral (Eqs. (19), (22)) ones. 

The problem of reconstructing the RSs in 
the global and the local forms. Tomographic 
measurements in the global inverse problem are 
performed in a system of parallel planes over the 
entire height of the cylinder. The layer-by-layer 
reconstruction of stresses is possible starting from 
the bottom of the cylinder, where the axial stress is 
zero. Thus, we can determine τ from Eq. (22), the 
normal stress σzz and Φ using Eq. (13) and then 
all stress components given by Eqs. (12). The first 
ray integral (15) is not used in this algorithm. 

Although the presented algorithm includes, 
as a special case, rectilinear propagation of rays, 
numerical implementation of the algorithm may 
differ for these cases. More detailed analysis 
shows that the global approach allows for recon-
structing stresses completely [8]. 

Tomographic measurements in the local in-
verse problem are carried out in two closely 
spaced sections orthogonal to the optical axis 
for determining the height derivative of τ. Quasi- 
plane stresses are determined based on two dif-
ferential Eqs. (13) and two ray integrals (19), 
(22). 

Reconstruction of the quasi-plane stresses in 
the GRIN structures. For regularization of the 
inverse problem, we use singular decomposition of 

( ) 2
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(18)

The magnitude of quasi-torsion stresses is al-
most negligibly small in comparison with qua-
si-plane stresses, and below we consider the case of 
quasi-plane deformation: N = 0,                                 .

The first ray integral in the space of angular 
harmonics can be written as
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the solution of Eqs. (13). The angular decomposi-
tion using trigonometric functions and radial de-
composition using the Zernike polynomials were 
applied to represent the stresses (see Appendix) 
[8, 17]. MATLAB codes were developed to nu-
merically solve integral Eqs. (19), (22) by the least 
square method. This method has been previously 
used for inversion of the Abel transform [18, 19]. 
We have three types of unknown coefficients:

2
, , ,

2, , .kc s kc s kc s
zzm zzm zzmz z

∂ ∂
σ σ σ

∂ ∂

The second type of them can be determined 
from Eq. (22). The integrals

The Cartesian coordinates of these rays can be 
expressed analytically in terms of the parameters 
r, s:

It is clear that g < 0.5 here. These relations 
are used for ray tracing and solutions (19), (22) if  
m > 0. 

Another profile (parabolic) of the form

is typically used to approximate the index refrac-
tion of GRIN lenses [21, 22] and of multimode 
fibers. The parameter g varies from 0.01 for fibers 
up to 0.30 for GRIN rod lenses. 

Ray tracing is given for the case g = 0.2 
(Fig. 3). The angle (1) can be expanded using the 
small parameter g. The expansion to within the 
first two terms

is known as the parabolic refractive index profile 
[21]. Here n0 is the refractive index on the axis 
and g is a positive constant, R is the radius of the 
cylinder. 

In this case, the ray equation (1) has an ana-
lytical solution:
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where Sn are the n measured points, Ĥ
1
(Sn, m) is 

the measured ray integral. 
The number of polynomials in the representa-

tion is connected with noise filtering. The second 
derivative           can be approximately de-
termined by measuring integrals in two parallel 
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Two types of refractive index profiles have 
been used in MATLAB codes [20, 21]. The pro-
file of GRIN structures
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coincides with the expansion of

Optical retardation (23) consists of two terms: 
main retardation due to axial stress and addition-
al one due curving of the ray. It has an additional 

This approximation can be used in practice to 
solve Eqs. (19), (22) if g < 0.1 and m < 15. The 
algorithm of reconstruction is simplified [9] for 
axial symmetric plane-strain state (m = 0). In this 
case, all functions depend only on the radial co-
ordinates, and we take only Eq. (19):

Fig. 3. Ray tracing through the sample (its half-round cross-section of diameter 2R is shown)  
when n (r/R) = n

0
[(1 – 0.2(r/R)2]1/2  

(g = 0.2, x is the translucence parameter)

Fig. 4. The reconstructed principal components of the stress tensor  
over the GRIN lense’s radius (the lense was made of zirconium-silicate glass)
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The graphs for the reconstruction of stress-
es in GRIN lenses made of zirconium-silicate  
(n0 = 1.54) glasses are shown in Fig. 4 [23].

Fig. 5 shows the result of simulation of resid-
ual stresses by the polynomial datum for the case 

( ) ( )
2

0 01
ˆ min .N k

n k n zzn
H s h s

=
 − σ = ∑

term connected with ray deflection. The above 
algorithm is used for stress reconstruction

Fig. 5. The result of the residual stresses simulation 
(an example for using  

the polynomial datum on the sample of R = 3 mm); 
in addition to the axial stress curve (1), the curves of optical 
(2), additional (3) and main (4) retardations are presented

Fig. 6. Integrals h
k
(r) obtained  

on a basis of the first seven Zernike polynоmials

of R = 3 mm. Fig. 6 gives the retardations for the 
first seven Zernike polynomials.

Summary

In recent years, there has been a growing inter-
est towards tomographic reconstruction of vector 
and tensor fields in the refracting medium [5, 6, 
22]. We present the algorithm for reconstruc-
tion of residual stresses in GRIN lenses. From 
an experimental standpoint, implementation 
of the given method of reconstruction does not 
pose any particular difficulties and is conducted 
similarly to the case of the constant refractive in-
dex. The simplest examples of applications of this 
algorithm for the axial symmetric distribution of 
stresses are presented. The inversion algorithm 
provides a comparatively smooth stress distribu-
tion, produced by the ion-change technique. In-
cluding the radial dependences of the photoelas-
ticity coefficients and elastic constants in GRIN 
structures in the algorithm for reconstructing 
stresses is the subject for further research.

Appendix

SCD of quasi-plane stresses

Let us consider a representation of quasi- 
plane stresses in terms of Zernike polynomials 
Rk

m (r) [12], m > 0:
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In the following, as evident from the context 
of the notation, the trigonometric functions are 
not written out:
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In the case of an axial symmetric plane strain 
state (m = 0), the solution of the inverse thermo-
elastic problem can be represented in terms of 
Zernike polynomials              :( )0
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